1
|
Chu Z, Gao M, Wang J, Yuan G, Wang M, Gao D. Research progress of traditional Chinese medicine compound "Chaihu Shugan Powder" in the treatment of premenstrual syndrome. Medicine (Baltimore) 2024; 103:e38351. [PMID: 39465719 PMCID: PMC11460882 DOI: 10.1097/md.0000000000038351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND This paper aims to conduct a comprehensive and insightful review and analysis of the potential targets and corresponding pathways of Chaihu Shugan Powder (CSP) for the treatment of premenstrual syndrome (PMS) using a network pharmacology approach. The review will encompass traditional applications, active ingredients of Chinese medicines, clinical applications, pharmacological mechanisms, and active ingredients. METHODS The active ingredients, pharmacological mechanisms, and clinical applications of the herbal ingredients in the CSP formulation were summarized by searching the literature, and the main signaling pathways of the CSP formulation for the treatment of PMS were identified by network pharmacological studies. RESULTS CSP is a representative traditional Chinese medicine formula known for its liver detoxification properties and its effectiveness in alleviating depression. It is also recognized as one of the most widely used formulas for treating PMS. In this study, we systematically summarized the active ingredients and pharmacological mechanisms of the 7 traditional Chinese medicine components present in CSP. Through network pharmacology analysis, we identified 75 common targets of CSP relevant to the treatment of PMS. These targets were predominantly concentrated within 17 specific signaling pathways, elucidating the potential molecular mechanisms underlying CSP's therapeutic effects on PMS. CONCLUSION In this paper, we have reviewed CSP and PMS, investigated the potential targets and corresponding pathways of CSP for the treatment of PMS, and systematically summarized the active ingredients and pharmacological mechanisms of 7 herbal components. In addition, 17 pathways of CSP for PMS were identified for future research and clinical application. However, the specific mechanism of action of CSP for the treatment of PMS is only based on literature and online pharmacological studies, and no basic or clinical experiments have been conducted. In addition, CSP has many components with complex and varied interactions, and the effects of certain compounds may be overlooked. Based on the present findings, it is beneficial to further explore the mechanism of action of the new effector compounds and the prospect of their application in basic research and clinical trials. In conclusion, the revelation of new effector compounds and mechanisms of action is conducive to the further clinical application of CSP, the discovery of new targets for PMS, and the modernization of Chinese medicine.
Collapse
Affiliation(s)
- Zhenhan Chu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Mingzhou Gao
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Jieqiong Wang
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Guoshan Yuan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Mengxuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Dongmei Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| |
Collapse
|
2
|
Yuan MH, Zhong WX, Wang YL, Liu YS, Song JW, Guo YR, Zeng B, Guo YP, Guo L. Therapeutic effects and molecular mechanisms of natural products in thrombosis. Phytother Res 2024; 38:2128-2153. [PMID: 38400575 DOI: 10.1002/ptr.8151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Thrombotic disorders, such as myocardial infarction and stroke, are the leading cause of death in the global population and have become a health problem worldwide. Drug therapy is one of the main antithrombotic strategies, but antithrombotic drugs are not completely safe, especially the risk of bleeding at therapeutic doses. Recently, natural products have received widespread interest due to their significant efficacy and high safety, and an increasing number of studies have demonstrated their antithrombotic activity. In this review, articles from databases, such as Web of Science, PubMed, and China National Knowledge Infrastructure, were filtered and the relevant information was extracted according to predefined criteria. As a result, more than 100 natural products with significant antithrombotic activity were identified, including flavonoids, phenylpropanoids, quinones, terpenoids, steroids, and alkaloids. These compounds exert antithrombotic effects by inhibiting platelet activation, suppressing the coagulation cascade, and promoting fibrinolysis. In addition, several natural products also inhibit thrombosis by regulating miRNA expression, anti-inflammatory, and other pathways. This review systematically summarizes the natural products with antithrombotic activity, including their therapeutic effects, mechanisms, and clinical applications, aiming to provide a reference for the development of new antithrombotic drugs.
Collapse
Affiliation(s)
- Ming-Hao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Xiao Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Lu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Shi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Wen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Rou Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi-Ping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Yang T, Liu X, Zhou Y, Du L, Fu Y, Luo Y, Zhang W, Feng Z, Ge J, Mei Z. Sanpian decoction ameliorates cerebral ischemia-reperfusion injury by regulating SIRT1/ERK/HIF-1α pathway through in silico analysis and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116898. [PMID: 37467820 DOI: 10.1016/j.jep.2023.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cerebral ischemia-reperfusion injury (CIRI) is a complex pathophysiological process involving multiple factors, and becomes the footstone of rehabilitation after ischemic stroke. Sanpian decoction (SPD) has exhibited protective effects against CIRI, migraine, and other cerebral vascular diseases. However, the underlying mechanisms have not been completely elucidated. AIM OF THE STUDY This study sought to explore the potential mechanisms underlying the effect of SPD against CIRI. MATERIALS AND METHODS High-performance liquid chromatography (HPLC) and ultra-high-performance liquid chromatography (UPLC) were carried out to determine the chemical constituents of SPD. A network pharmacology approach combined with experimental verification was conducted to elucidate SPD's multi-component, multi-target, and multi-pathway mechanisms in CIRI occurrence. The pharmacodynamics of the decoction was evaluated by establishing the rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). In vivo and in vitro experiments were carried out, and the therapeutic effects of SPD were performed using 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin-eosin (HE) staining, and Nissl staining. We used terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and flow cytometry to evaluate cortex apoptosis. The quantification of mRNA and corresponding proteins were performed using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot respectively. RESULTS Our research showed that pretreatment with SPD improved neurological function and inhibited CIRI. Network pharmacology revealed that the hypoxia-inducible factor-1 (HIF-1) signaling pathway and mitogen-activated protein kinase (MAPK) signaling pathway-mediated apoptosis may be associated with CIRI. In vivo and in vitro experiments, we confirmed that SPD increased cerebral blood flow, improved neural function, and reduced neural apoptosis via up-regulating the expression of sirtuin 1 (SIRT1) and down-regulating phospho-extracellular regulated protein kinases (p-ERK)/ERK and HIF-1α levels in CIRI rats. CONCLUSION Taken together, the present study systematically revealed the potential targets and signaling pathways of SPD in the treatment of CIRI using in silico prediction and verified the therapeutic effects of SPD against CIRI via ameliorating apoptosis by regulating SIRT1/ERK/HIF-1α.
Collapse
Affiliation(s)
- Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiaolu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, Hubei, China; State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Lipeng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Yang Fu
- Xiangyang Hospital of Traditional Chinese Medicine, Xiangyang, 441000, Hubei, China
| | - Yanan Luo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, Hubei, China.
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, Hubei, China.
| |
Collapse
|
4
|
Lin JH, Yang KT, Ting PC, Lee WS, Lin DJ, Chang JC. Licochalcone a improves cardiac functions after ischemia-reperfusion via reduction of ferroptosis in rats. Eur J Pharmacol 2023; 957:176031. [PMID: 37660967 DOI: 10.1016/j.ejphar.2023.176031] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Myocardial ischemia-reperfusion (I/R) injury triggers several cell death types, including apoptosis, autophagy, and ferroptosis. Licochalcone A (LCA), a natural flavonoid compound isolated from the root of Glycyrrhiza glabra, has been demonstrated to exert potential pharmacological benefits, such as antioxidant, antitumor, and anti-inflammatory activities. The present study aimed to investigate the involvement of ferroptosis in the pathogenesis of I/R and determine whether LCA can inhibit ferroptosis to prevent the myocardial I/R injury in rats. The effects of LCA on myocardial I/R injury were detected by examining the left ventricular-developed pressure and triphenyltetrazolium chloride staining. We conducted Western blotting analyses, ELISA assay, and quantitative real-time PCR to determine the levels of ferroptosis-related molecules. To demonstrate the cardioprotective effect of LCA in vitro, H9c2 and primary neonatal rat cardiomyocytes were co-treated with ferroptosis inducers (erastin, RSL3, or Fe-SP) and LCA for 16 and 24 h. Our ex vivo study showed that LCA increased the cardiac contractility, and reduced the infarct volume and ferroptosis-related biomarkers in rat hearts after I/R. Moreover, LCA reduced the levels of ferroptosis inducers-induced reactive oxygen species generation, lipid peroxidation, and ferroptosis-related biomarkers in cultured H9c2 cells and cardiomyocytes. LCA also reduced the Fe-SP-increased nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 protein levels in cultured cardiomyocytes. In the present study, we showed that the LCA-induced cardioprotective effects in attenuating the myocardial I/R injury were correlated with ferroptosis regulation, and provided a possible new therapeutic strategy for prevention or therapy of the myocardial I/R injury.
Collapse
Affiliation(s)
- Jian-Hong Lin
- Division of Experimental Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan.
| | - Kun-Ta Yang
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Pei-Ching Ting
- PhD Program in Pharmacology and Toxicology, School of Medicine Tzu Chi University, Hualien 97004, Taiwan; Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | - Wen-Sen Lee
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ding-Jyun Lin
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Jui-Chih Chang
- Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; Department of Surgery, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan R.O.C.
| |
Collapse
|
5
|
Huang W, Yao W, Weng Y, Xie X, Jiang J, Zhang S, Shi Z, Fan Q. Hydroxysafflor yellow A inhibits the hyperactivation of rat platelets by regulating the miR-9a-5p/SRC axis. Arch Biochem Biophys 2023; 747:109767. [PMID: 37748625 DOI: 10.1016/j.abb.2023.109767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Pathological platelet activation plays a vital role in the prevalence of cardiovascular diseases. Hydroxysafflor yellow A (HSYA) has been shown to have significant anti-platelet aggregation and anti-activation effects, but its mechanism of action is unclear. Our study showed that HSYA inhibited the expression of platelet surface glycoproteins IIβ/III α (GPIIβ/III α) and thromboxane A2 (TXA2) during platelet activation and reduced platelet Ca2+ accumulation. HSYA significantly reduced the number of platelets and inhibited adrenaline-induced platelet hyperaggregation in rats. Transcriptomic analysis of platelets suggested that HSYA significantly suppressed SRC and MAPK3 (ERK1/2) gene expression. YEEI peptide, an SRC activator, could significantly reverse the inhibition of HSYA on the phosphorylation of SRC/PLCγ2/PKCδ/MEK/ERK1/2 pathway proteins and reverse the effect of HSYA on platelet activation-related markers GPIIβ/IIIα protein, TXA2 and cAMP. The SRC genes were further predicted by transcriptome analysis of HSYA-regulated miRNAs combined with bioinformatics techniques. The results suggested that HSYA could significantly upregulate the expression level of the miR-9a-5p gene and further confirmed that miR-9a-5p had a targeted regulatory relationship with SRC by dual-luciferase activity reporter and cell transfection experiments. The inhibitory effect of HSYA on the SRC/PLCγ2/PKCδ/MEK/ERK1/2 pathway was significantly reversed after platelets were transfected with the miR-9a inhibitor, while SRC siRNA attenuated the effect of the miR-9a inhibitor. SRC siRNA was able to attenuate the effect of the miR-9a inhibitor. In conclusion, this study suggests that HSYA can inhibit the activation of the SRC/PLCγ2/PKC δ/MEK/ERK1/2 axis by upregulating platelet miR-9a-5p, thereby reducing the activation of platelets and inhibiting platelet aggregation.
Collapse
Affiliation(s)
- Wei Huang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Wendong Yao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Yayun Weng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Xianze Xie
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Jiali Jiang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Shuo Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Zheng Shi
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China.
| | - Qiaomei Fan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China.
| |
Collapse
|
6
|
Huang WC, Jayakumar T, Sheu JR, Hsia CW, Hsia CH, Yen TL, Chang CC. Mechanisms of glabridin inhibition of integrin α IIbβ 3 inside-out signals and NF-κB activation in human platelets. Chin Med 2023; 18:71. [PMID: 37301823 DOI: 10.1186/s13020-023-00779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Platelets play a crucial role in cardiovascular diseases (CVDs) and are activated by endogenous agonists like collagen. These agonists initiate signal transduction through specific platelet receptors, resulting in platelet aggregation. Glabridin, a prenylated isoflavonoid found in licorice root, is known for its significance in metabolic abnormalities. Glabridin has been observed to inhibit collagen-induced platelet aggregation, but the precise mechanisms, specifically concerning NF-κB activation and integrin αIIbβ3 signaling, are not yet fully understood. METHODS In this study, platelet suspensions were prepared from healthy human blood donors, and the aggregation ability was observed using a lumi-aggregometer. The inhibitory mechanisms of glabridin in human platelets were evaluated through immunoblotting and confocal microscopy. The anti-thrombotic effects of glabridin were assessed by histological analysis of lung sections in acute pulmonary thromboembolism and by examining fluorescein-induced platelet plug formation in mesenteric microvessels in mice. RESULTS Glabridin inhibited integrin αIIbβ3 inside-out signals such as Lyn, Fyn, Syk, and integrin β3 activation and NF-κB-mediated signal events, with similar potency to classical inhibitors BAY11-7082 and Ro106-9920. Glabridin and BAY11-7082 inhibited IKK, IκBα, and p65 phosphorylation and reversed IκBα degradation, while Ro106-9920 only reduced p65 phosphorylation and reversed IκBα degradation. BAY11-7082 reduced Lyn, Fyn, Syk, integrin β3, phospholipase Cγ2 and protein kinase C activation. Glabridin reduced platelet plug formation in mesenteric microvessels and occluded vessels in thromboembolic lungs of mice. CONCLUSION Our study revealed a new pathway for activating integrin αIIbβ3 inside-out signals and NF-κB, which contributes to the antiplatelet aggregation effect of glabridin. Glabridin could be a valuable prophylactic or clinical treatment option for CVDs.
Collapse
Affiliation(s)
- Wei-Chieh Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Thanasekaran Jayakumar
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, 605014, India
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Chih-Wei Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Chih-Hsuan Hsia
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan
| | - Ting-Lin Yen
- Department of Medical Research, Cathay General Hospital, Taipei, 106, Taiwan
| | - Chao-Chien Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- Department of Cardiovascular Center, Cathay General Hospital, Taipei, 106, Taiwan.
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan.
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
7
|
Zhang N, Zhang D, Zhang Q, Zhang R, Wang Y. Mechanism of Danggui Sini underlying the treatment of peripheral nerve injury based on network pharmacology and molecular docking: A review. Medicine (Baltimore) 2023; 102:e33528. [PMID: 37171334 PMCID: PMC10174355 DOI: 10.1097/md.0000000000033528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Danggui Sini is a traditional Chinese medicine prescription for treating peripheral nerve injury (PNI). We studied the mechanisms of this decoction through network pharmacology analysis and molecular docking. Using R language and Perl software, the active components and predicted targets of Danggui Sini, as well as the related gene targets of PNI, were mined through TCMSP, GeneCards, OMIM, TTD, and DrugBank. The network diagram of active components and intersection targets was constructed using Cytoscape software and the STRING database. The CytoNCA plug-in was used to screen out the core compounds and key targets. The genes were analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment. AutoDock was used to analyze the molecular docking of key targets and core compounds of diseases. The drug component disease target regulatory network showed that the key components included quercetin, kaempferol, naringenin, and licochalcone A, which play key roles in the whole network and may be the primary compounds associated with the action of Danggui Sini against PNI. PPI network topology analysis showed high degree values for RELA, JUN, MAPK1, RB1, and FOS. Enrichment analysis showed that the core targets of Danggui Sini participated in pathways associated with neurogenesis-multiple diseases. Molecular docking showed that the active ingredients in Danggui Sini had a good binding ability with key targets. We conclude that many active components of Danggui Sini play therapeutic roles in PNI treatment by regulating RELA, JUN, MAPK1, RB1, and FOS, and multiple other targets in inflammation, immunity, and lipid metabolism.
Collapse
Affiliation(s)
- Ning Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- Dalian Port Hospital, Dalian, China
| | - Dandan Zhang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Dalian Women and Children's MedicalGroup, Dalian, China
| | - Qian Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ruisu Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Lin KH, Li JY, Chen RJ, Chen TY, Hsu SH, Wang HH, Peng HY, Sun YY, Lu WJ. Paclitaxel exerts antiplatelet and antithrombotic activities: Additional benefit from use of paclitaxel-coated balloons and -eluting stents in coronary revascularization and prevention of in-stent restenosis. Thromb Res 2023; 225:63-72. [PMID: 37030187 DOI: 10.1016/j.thromres.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/12/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
INTRODUCTION Paclitaxel is a microtubule-stabilizing drug used to treat several types of cancer, including ovarian and breast cancer. Because of its antiproliferative effect on vascular smooth muscle cells, balloons and stents are coated with paclitaxel for use in coronary revascularization and prevention of in-stent restenosis (ISR). However, mechanisms underlying ISR are complicated. Platelet activation is one of the major causes of ISR after percutaneous coronary intervention. Although the antiplatelet activity of paclitaxel was noted in rabbit platelets, the effect of paclitaxel on platelets remains unclear. This study investigated whether paclitaxel exhibits antiplatelet activity in human platelets. METHODS AND RESULTS Paclitaxel inhibited platelet aggregation induced by collagen but not that induced by thrombin, arachidonic acid, or U46619, suggesting that paclitaxel is more sensitive to the inhibition of collagen-induced platelet activation. Moreover, paclitaxel blocked collagen receptor glycoprotein (GP) VI downstream signaling molecules, including Lyn, Fyn, PLCγ2, PKC, Akt, and MAPKs. However, paclitaxel did not directly bind to GPVI and cause GPVI shedding, as detected by surface plasmon resonance and flow cytometry, respectively, indicating that paclitaxel may interfere with GPVI downstream signaling molecules, such as Lyn and Fyn. Paclitaxel also prevented granule release and GPIIbIIIa activation induced by collagen and low convulxin doses. Moreover, paclitaxel attenuated pulmonary thrombosis and delayed platelet thrombus formation in mesenteric microvessels without significantly affecting hemostasis. CONCLUSION Paclitaxel exerts antiplatelet and antithrombotic effects. Thus, paclitaxel may provide additional benefits beyond its antiproliferative effect when used in drug-coated balloons and drug-eluting stents for coronary revascularization and prevention of ISR.
Collapse
|
9
|
Zhao X, Han J, Zhou L, Zhao J, Huang M, Wang Y, Kou J, Kou Y, Jin J. High mobility group box 1 derived mainly from platelet microparticles exacerbates microvascular obstruction in no reflow. Thromb Res 2023; 222:49-62. [PMID: 36566704 DOI: 10.1016/j.thromres.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION No reflow manifests coronary microvascular injury caused by continuous severe myocardial ischemia and reperfusion. Microvascular obstruction (MVO) has emerged as one fundamental mechanism of no reflow. However, the underlying pathophysiology remains incompletely defined. Herein, we explore the contribution of high mobility group box 1 (HMGB1), derived mainly from platelet microparticles exacerbating MVO in no reflow. MATERIALS AND METHODS 44 STEMI patients undergoing successful primary percutaneous coronary intervention (PCI) were included in our study. Plasma HMGB1 levels in both the peripheral artery (PA) and infarct-related coronary artery (IRA) were measured by ELISA. Flow cytometry and confocal microscopy assessed the level of HMGB1+ platelet derived microparticles (PMPs) and platelet activation. Flow cytometry and western blot evaluated the procoagulant activity (PCA) and the release of inflammatory factors of human microvascular endothelial cells (HCEMCs). RESULTS HMGB1 levels were significantly higher in the IRA in no-reflow patients. The levels of HMGB1+ PMPs were considerably higher in the IRA of patients with no reflow and were strongly associated with platelet activation. Moreover, our results show that HMGB1 interacts with human microvascular endothelial cells primarily through TLR4, inducing HCMEC proinflammatory, procoagulant phenotype, and monocyte recruitment, accelerating microvascular obstruction and facilitating the development of no reflow. CONCLUSION Our results illustrate a novel mechanism by which HMGB1, derived mainly from PMPs, plays a crucial role in the pathogenesis of no-reflow, revealing a novel therapeutic target.
Collapse
Affiliation(s)
- Xinyi Zhao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - Jianbin Han
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - Lijin Zhou
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinjin Zhao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - Meijiao Huang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - Yueqing Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - Junjie Kou
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China.
| | - Yan Kou
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China.
| | - Jiaqi Jin
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China; Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
10
|
Wei HP, Peng ZF, Shao KM, Zhang PH, Chen L, Hu JA, Chai H, Liu JM. cPKCγ Inhibits Caspase-9-Initiated Neuronal Apoptosis in an Ischemia Reperfusion Model In Vitro Through p38 MAPK-p90RSK-Bad Pathway. Neurochem Res 2023; 48:362-374. [PMID: 36152136 DOI: 10.1007/s11064-022-03747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/03/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023]
Abstract
Strokes are one of the leading causes of death and disability in the world. Previously we have found that conventional protein kinase Cγ (cPKCγ) plays neuroprotective role in ischemic strokes. Further, we found that cPKCγ knockdown increased the level of cleaved (cl)-Caspase-3. However, the precise mechanisms underlying cPKCγ-mediated neuronal death remain unclear. To this end, a model incorporating 1 h oxygen-glucose deprivation/24 h reoxygenation (1 h OGD/24 h R) was established in cortical neurons. We found that cPKCγ knockdown remarkably increased neuronal death after OGD. We also found that cPKCγ knockdown increased the level of cl-Caspase-3 through the upstream initiators Capsases-9 (not Caspase-8/12) in OGD-treated neurons. Overexpression of cPKCγ could decrease neuronal death and cl-Caspase-3 and -9 levels. Moreover, cPKCγ knockdown further reduced the phosphorylation levels of p38 MAPK, p90RSK, and Bad. In addition, the protein levels of Bcl-2 and Bcl-xl were decreased after cPKCγ knockdown, whereas that of Bax was increased. In conclusion, our results suggest that cPKCγ partly alleviates ischemic injury through activating the p38 MAPK-p90RSK-Bad pathway and inhibiting Caspase-9 initiated apoptosis. This may have potential as a therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Hai-Ping Wei
- Department of Neurology, Lanzhou University Second Hospital, No. 82 Cuiyingmen Street, Chengguan District, Lanzhou, 730030, Gansu, China.
| | - Zhi-Feng Peng
- Department of Physiology, School of Medicine, Shanxi Datong University, Xingyun Street, Pingcheng District, Datong, 037009, Shanxi, China
| | - Kang-Mei Shao
- The Second Clinical Medical College, Lanzhou University Second Hospital, No. 82 Cuiyingmen Street, Chengguan District, Lanzhou, 730030, Gansu, China
| | - Pei-Hao Zhang
- The Second Clinical Medical College, Lanzhou University Second Hospital, No. 82 Cuiyingmen Street, Chengguan District, Lanzhou, 730030, Gansu, China
| | - Lei Chen
- The Second Clinical Medical College, Lanzhou University Second Hospital, No. 82 Cuiyingmen Street, Chengguan District, Lanzhou, 730030, Gansu, China
| | - Jin-An Hu
- The Second Clinical Medical College, Lanzhou University Second Hospital, No. 82 Cuiyingmen Street, Chengguan District, Lanzhou, 730030, Gansu, China
| | - Hui Chai
- The Second Clinical Medical College, Lanzhou University Second Hospital, No. 82 Cuiyingmen Street, Chengguan District, Lanzhou, 730030, Gansu, China
| | - Jin-Mei Liu
- The Second Clinical Medical College, Lanzhou University Second Hospital, No. 82 Cuiyingmen Street, Chengguan District, Lanzhou, 730030, Gansu, China
| |
Collapse
|
11
|
Wang L, Wang Z, Yang Z, Wang X, Yan L, Wu J, Liu Y, Fu B, Yang H. Potential common mechanism of four Chinese patent medicines recommended by diagnosis and treatment protocol for COVID-19 in medical observation period. Front Med (Lausanne) 2022; 9:874611. [PMID: 36388945 PMCID: PMC9643314 DOI: 10.3389/fmed.2022.874611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
The global epidemic has been controlled to some extent, while sporadic outbreaks still occur in some places. It is essential to summarize the successful experience and promote the development of new drugs. This study aimed to explore the common mechanism of action of the four Chinese patent medicine (CPMs) recommended in the Medical Observation Period COVID-19 Diagnostic and Treatment Protocol and to accelerate the new drug development process. Firstly, the active ingredients and targets of the four CPMs were obtained by the Chinese medicine composition database (TCMSP, TCMID) and related literature, and the common action targets of the four TCMs were sorted out. Secondly, the targets of COVID-19 were obtained through the gene-disease database (GeneCards, NCBI). Then the Venn diagram was used to intersect the common drug targets with the disease targets. And GO and KEGG pathway functional enrichment analysis was performed on the intersected targets with the help of the R package. Finally, the results were further validated by molecular docking and molecular dynamics analysis. As a result, a total of 101 common active ingredients and 21 key active ingredients of four CPMs were obtained, including quercetin, luteolin, acacetin, kaempferol, baicalein, naringenin, artemisinin, aloe-emodin, which might be medicinal substances for the treatment of COVID-19. TNF, IL6, IL1B, CXCL8, CCL2, IL2, IL4, ICAM1, IFNG, and IL10 has been predicted as key targets. 397 GO biological functions and 166 KEGG signaling pathways were obtained. The former was mainly enriched in regulating apoptosis, inflammatory response, and T cell activation. The latter, with 92 entries related to COVID-19, was mainly enriched to signaling pathways such as Coronavirus disease-COVID-19, Cytokine-cytokine receptor interaction, IL-17 signaling pathway, and Toll-like receptor signaling pathway. Molecular docking results showed that 19/21 of key active ingredients exhibited strong binding activity to recognized COVID-19-related targets (3CL of SARS-CoV-2, ACE2, and S protein), even better than one of these four antiviral drugs. Among them, shinflavanone had better affinity to 3CL, ACE2, and S protein of SARS-CoV-2 than these four antiviral drugs. In summary, the four CPMs may play a role in the treatment of COVID-19 by binding flavonoids such as quercetin, luteolin, and acacetin to target proteins such as ACE2, 3CLpro, and S protein and acting on TNF, IL6, IL1B, CXCL8, and other targets to participate in broad-spectrum antiviral, immunomodulatory and inflammatory responses.
Collapse
Affiliation(s)
- Lin Wang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zheyi Wang
- Qilu Hospital, Shandong University, Shandong, China
| | - Zhihua Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xingwang Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, China
| | - Liping Yan
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jianxiong Wu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yue Liu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Baohui Fu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
12
|
Glabridin, a Bioactive Flavonoid from Licorice, Effectively Inhibits Platelet Activation in Humans and Mice. Int J Mol Sci 2022; 23:ijms231911372. [PMID: 36232674 PMCID: PMC9570097 DOI: 10.3390/ijms231911372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Platelets are crucial for hemostasis and arterial thrombosis, which may lead to severe cardiovascular diseases (CVDs). Thus, therapeutic agents must be developed to prevent pathological platelet activation. Glabridin, a major bioalkaloid extracted from licorice root, improves metabolic abnormalities (i.e., obesity and diabetes) and protects against CVDs and neuronal disorders. To the best of our knowledge, no studies have focused on glabridin’s effects on platelet activation. Therefore, we investigated these effects in humans and mice. Glabridin exhibited the highest inhibitory effects on collagen-stimulated platelet aggregation and moderate effects on arachidonic-acid-stimulated activation; however, no effects were observed for any other agonists (e.g., thrombin or U46619). Glabridin evidently reduced P-selectin expression, ATP release, and intracellular Ca2+ ([Ca2+]i) mobilization and thromboxane A2 formation; it further reduced the activation of phospholipase C (PLC)γ2/protein kinase C (PKC), phosphoinositide 3-kinase (PI3K)/Akt/glycogen synthase kinase-3β (GSK3β), mitogen-activated protein kinase (MAPK), and NF-κB. In mice, glabridin reduced the mortality rate caused by acute pulmonary thromboembolism without altering bleeding time. Thus, glabridin effectively inhibits the PLCγ2/PKC cascade and prevents the activation of the PI3K/Akt/GSK3β and MAPK pathways; this leads to a reduction in [Ca2+]i mobilization, which eventually inhibits platelet aggregation. Therefore, glabridin may be a promising therapeutic agent for thromboembolic disorders.
Collapse
|
13
|
Artesunate as a glycoprotein VI antagonist for preventing platelet activation and thrombus formation. Biomed Pharmacother 2022; 153:113531. [DOI: 10.1016/j.biopha.2022.113531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
|
14
|
Liu H, Zhu L, Chen L, Li L. Therapeutic potential of traditional Chinese medicine in atherosclerosis: A review. Phytother Res 2022; 36:4080-4100. [PMID: 36029188 DOI: 10.1002/ptr.7590] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022]
Abstract
Atherosclerosis is the onset of endothelial cell damage and is characterized by abnormal accumulation of fibrinogen and lipid in large and middle arteries. Recent researches indicate that traditional Chinese medicine including Notoginseng Radix et Rhizoma, Astragali Radix, Salviae Miltiorrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, Fructus Crataegi, Glycyrrhizae Radix et Rhizoma, Polygoni Multiflori Radix, Fructus Lycii, and Coptidis Rhizoma have therapeutic effects on atherosclerosis. Furthermore, the pharmacological roles of these kinds of traditional Chinese medicine in atherosclerosis refer to endothelial function influences, cell proliferation and migration, platelet aggregation, thrombus formation, oxidative stress, inflammation, angiogenesis, apoptosis, autophagy, lipid metabolism, and the gut microbiome. Traditional Chinese medicine may serve as potential and effective anti-atherosclerosis drugs. However, a critical study has shown that Notoginseng Radix et Rhizoma may also have toxic effects including pustules, fever, and elevate circulating neutrophil count. Further high-quality studies are still required to determine the clinical safety and efficacy of traditional Chinese medicine and its active ingredients.
Collapse
Affiliation(s)
- Huimei Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Zhu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
15
|
Atheroprotective Effects of Glycyrrhiza glabra L. Molecules 2022; 27:molecules27154697. [PMID: 35897875 PMCID: PMC9332620 DOI: 10.3390/molecules27154697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiovascular diseases associated with atherosclerosis are the major cause of death in developed countries. Early prevention and treatment of atherosclerosis are considered to be an important aspect of the therapy of cardiovascular disease. Preparations based on natural products affect the main pathogenetic steps of atherogenesis, and so represent a perspective for the long-term prevention of atherosclerosis development. Numerous experimental and clinical studies have demonstrated the multiple beneficial effects of licorice and its bioactive compounds—anti-inflammatory, anti-cytokine, antioxidant, anti-atherogenic, and anti-platelet action—which allow us to consider licorice as a promising atheroprotective agent. In this review, we summarized the current knowledge on the licorice anti-atherosclerotic mechanisms of action based on the results of experimental studies, including the results of the in vitro study demonstrating licorice effect on the ability of blood serum to reduce intracellular cholesterol accumulation in cultured macrophages, and presented the results of clinical studies confirming the ameliorating activity of licorice in regard to traditional cardiovascular risk factors as well as the direct anti-atherosclerotic effect of licorice.
Collapse
|
16
|
Yun HS, Dinzouna-Boutamba SD, Lee S, Moon Z, Kwak D, Chung DI, Hong Y, Rhee MH, Goo YK. Petasites japonicus extract exerts anti-malarial effects by inhibiting platelet activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154167. [PMID: 35598522 DOI: 10.1016/j.phymed.2022.154167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND New antimalarial agents are needed to combat emerging resistance to the currently available drugs. In the pathology of cerebral malaria, platelets play a central role by binding infected and uninfected red cells and the endothelium. Since Petasites japonicus extract was reported as an effective inhibitor of platelet activation, we examined the antimalarial activities of the P. japonicus extract. PURPOSE This study aimed to evaluate the impact of P. japonicus extract prepared from whole plants on malarial infection. METHODS The P. japonicus extract were characterized by high-performance liquid chromatography (HPLC) profiling. Antimalarial activity of the P. japonicus ethanolic extract was evaluated in vitro using chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) P. berghei strains. Also, the in vivo activity of the extract was evaluated in P. berghei-infected mice via oral administration followed by a four-day suppressive test to measure the hematological parameters. In addition, platelet activation signaling induced by the P. japonicus extract in P. berghei infection was evaluated. RESULTS In HPLC study, catechin, rutin, liquiritin, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, and 4,5-di-O-caffeoylquinic acid were identified in P. japonicus extract. Exposure to the P. japonicus extract significantly inhibited both CQ-sensitive (3D7) and resistant (Dd2) strains of P. falciparum with IC50 values of 8.48 ± 1.70 and 7.83 ± 6.44 μg/ml, respectively. Administration of the P. japonicus extract also resulted in potent antimalarial activities in P. berghei-infected mice with no associated toxicity. The treatment also improved the hematologic parameters. In addition, the survived mice from P. berghei infection exhibited the inhibition of collagen-induced platelet aggregation by attenuated glycoprotein VI (GPVI) downstream signaling. CONCLUSION P. japonicus extracts promote antimalarial effects both in vitro and in vivo. In addition, the effects appear to be induced by the inhibition of collagen-induced platelet activation related to attenuated GPVI downstream signaling. Further studies to identify and characterize the antimalarial compounds in P. japonicus will promote the development of new drugs.
Collapse
Affiliation(s)
- Hae Soo Yun
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | | | - Sanghyun Lee
- Division of Bio Bigdata, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Chungbuk 28159, Republic of Korea
| | - Zin Moon
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Dongmi Kwak
- Laboratory of Parasitology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Il Chung
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yeonchul Hong
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Man Hee Rhee
- Laboratory of Veterinary Physiology & Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
17
|
Zheng S, Hao T, Zhang L. Development of the Antithrombotic Peptide LEKNSTY Targeting the Collagen Surface: I. Design and Validation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7107-7113. [PMID: 35622988 DOI: 10.1021/acs.langmuir.2c00586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exposed collagen on the diseased vessel wall is crucial for arterial thrombosis. The currently developed antithrombotic drugs mostly target blood components such as platelets and suffer from the risk of bleeding. Therefore, anticollagen therapy of covering the collagen surface was proposed as an alternative in our previous study, and an antithrombotic peptide LWWNSYY was designed and validated. However, its application was hindered due to the poor water solubility. In the present study, in order to develop a novel antithrombotic peptide with enhanced water solubility, redesigning of LWWNSYY to LEKNSTY using the EK pattern was proposed. Improved solubility was obtained for LEKNSTY. Moreover, the binding of LEKNSTY on the collagen surface was confirmed by molecular docking, molecular dynamics simulations, and experimental validation. A Kd of 0.91 ± 0.44 μM was observed. The effective inhibition of platelet adhesion on the collagen surface by LEKNSTY was demonstrated at an IC50 of 2.48 ± 0.59 μg/mL. Therefore, the successful design of the antithrombotic peptide LEKNSTY was confirmed, which would facilitate the research into the interface involving thrombus and the development of antithrombotic agents.
Collapse
Affiliation(s)
- Si Zheng
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Tanyi Hao
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| |
Collapse
|
18
|
Yang Z, Wei F, Zhang B, Luo Y, Xing X, Wang M, Chen R, Sun G, Sun X. Cellular Immune Signal Exchange From Ischemic Stroke to Intestinal Lesions Through Brain-Gut Axis. Front Immunol 2022; 13:688619. [PMID: 35432368 PMCID: PMC9010780 DOI: 10.3389/fimmu.2022.688619] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
As a vital pivot for the human circulatory system, the brain-gut axis is now being considered as an important channel for many of the small immune molecules’ transductions, including interleukins, interferons, neurotransmitters, peptides, and the chemokines penetrating the mesentery and blood brain barrier (BBB) during the development of an ischemic stroke (IS). Hypoxia-ischemia contributes to pituitary and neurofunctional disorders by interfering with the molecular signal release and communication then providing feedback to the gut. Suffering from such a disease on a long-term basis may cause the peripheral system’s homeostasis to become imbalanced, and it can also lead to multiple intestinal complications such as gut microbiota dysbiosis (GMD), inflammatory bowel disease (IBD), necrotizing enterocolitis (NEC), and even the tumorigenesis of colorectal carcinoma (CRC). Correspondingly, these complications will deteriorate the cerebral infarctions and, in patients suffering with IS, it can even ruin the brain’s immune system. This review summarized recent studies on abnormal immunological signal exchange mediated polarization subtype changes, in both macrophages and microglial cells as well as T-lymphocytes. How gut complications modulate the immune signal transduction from the brain are also elucidated and analyzed. The conclusions drawn in this review could provide guidance and novel strategies to benefit remedies for both IS and relative gut lesions from immune-prophylaxis and immunotherapy aspects.
Collapse
Affiliation(s)
- Zizhao Yang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Fei Wei
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Luo
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Xing
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongchang Chen
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Xiaobo Sun,
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Xiaobo Sun,
| |
Collapse
|
19
|
Analysis of the Composition of Deinagkistrodon acutus Snake Venom Based on Proteomics, and Its Antithrombotic Activity and Toxicity Studies. Molecules 2022; 27:molecules27072229. [PMID: 35408629 PMCID: PMC9000436 DOI: 10.3390/molecules27072229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
There is a strong correlation between the composition of Deinagkistrodon acutus venom proteins and their potential pharmacological effects. The proteomic analysis revealed 103 proteins identified through label-free proteomics from 30 different snake venom families. Phospholipase A2 (30.0%), snaclec (21.0%), antithrombin (17.8%), thrombin (8.1%) and metalloproteinases (4.2%) were the most abundant proteins. The main toxicity of Deinagkistrodon acutus venom is hematotoxicity and neurotoxicity, and it acts on the lung. Deinagkistrodon acutus venom may have anticoagulant and antithrombotic effects. In summary, the protein profile and related toxicity and pharmacological activity of Deinagkistrodon acutus venom from southwest China were put forward for the first time. In addition, we revealed the relationship between the main toxicity, pharmacological effects, and the protein components of snake venom.
Collapse
|
20
|
Zhu Y, Zhong W, Peng J, Wu H, Du S. Study on the Mechanism of Baimai Ointment in the Treatment of Osteoarthritis Based on Network Pharmacology and Molecular Docking with Experimental Verification. Front Genet 2021; 12:750681. [PMID: 34868222 PMCID: PMC8635803 DOI: 10.3389/fgene.2021.750681] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose: The external preparation of the Tibetan medicine formula, Baimai ointment (BMO), has great therapeutic effects on osteoarthritis (OA). However, its molecular mechanism remains almost elusive. Here, a comprehensive strategy combining network pharmacology and molecular docking with pharmacological experiments was adopted to reveal the molecular mechanism of BMO against OA. Methods: The traditional Chinese medicine for systems pharmacology (TCMSP) database and analysis platform, traditional Chinese medicine integrated database (TCMID), GeneCards database, and DisGeNET database were used to screen the active components and targets of BMO in treating OA. A component-target (C-T) network was built with the help of Cytoscape, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment through STRING. Autodock Tools which was used to dock the key components and key target proteins was analyzed. Animal experiments were performed to verify the key targets of BMO. Hematoxylin-eosin and toluidine blue staining were used to observe the pathology of joints. Protein expression was determined using enzyme-linked immunosorbent assay. Results: Bioactive compounds and targets of BMO and OA were screened. The network analysis revealed that 17-β-estradiol, curcumin, licochalone A, quercetin, and glycyrrhizic acid were the candidate key components, and IL6, tumor necrosis factor (TNF), MAPK1, VEGFA, CXCL8, and IL1B were the candidate key targets in treating OA. The KEGG indicated that the TNF signaling pathway, NF-κB signaling pathway, and HIF-1 signaling pathway were the potential pathways. Molecular docking implied a strong combination between key components and key targets. The pathology and animal experiments showed BMO had great effects on OA via regulating IL6, TNF, MAPK1, VEGFA, CXCL8, and IL1B targets. These findings were consistent with the results obtained from the network pharmacology approach. Conclusion: This study preliminarily illustrated the candidate key components, key targets, and potential pathways of BMO against OA. It also provided a promising method to study the Tibetan medicine formula or external preparations.
Collapse
Affiliation(s)
- Yingyin Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wanling Zhong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huichao Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Regulation of Key Antiplatelet Pathways by Bioactive Compounds with Minimal Bleeding Risk. Int J Mol Sci 2021; 22:ijms222212380. [PMID: 34830261 PMCID: PMC8620148 DOI: 10.3390/ijms222212380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Cardiovascular disease is strongly influenced by platelet activation. Platelet activation and thrombus formation at atherosclerotic plaque rupture sites is a dynamic process regulated by different signaling networks. Therefore, there are now focused efforts to search for novel bioactive compounds which target receptors and pathways in the platelet activation process while preserving normal hemostatic function. The antiplatelet activity of numerous fruits and vegetables and their multiple mechanisms of action have recently been highlighted. In this review, we review the antiplatelet actions of bioactive compounds via key pathways (protein disulfide isomerase, mitogen-activated protein kinases, mitochondrial function, cyclic adenosine monophosphate, Akt, and shear stress-induced platelet aggregation) with no effects on bleeding time. Therefore, targeting these pathways might lead to the development of effective antiplatelet strategies that do not increase the risk of bleeding.
Collapse
|
22
|
Influence of Vincristine, Clinically Used in Cancer Therapy and Immune Thrombocytopenia, on the Function of Human Platelets. Molecules 2021; 26:molecules26175340. [PMID: 34500771 PMCID: PMC8434001 DOI: 10.3390/molecules26175340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/05/2022] Open
Abstract
Vincristine is a clinically used antimicrotubule drug for treating patients with lymphoma. Due to its property of increasing platelet counts, vincristine is also used to treat patients with immune thrombocytopenia. Moreover, antiplatelet agents were reported to be beneficial in thrombotic thrombocytopenic purpura (TTP). Therefore, we investigated the detailed mechanisms underlying the antiplatelet effect of vincristine. Our results revealed that vincristine inhibited platelet aggregation induced by collagen, but not by thrombin, arachidonic acid, and the thromboxane A2 analog U46619, suggesting that vincristine exerts higher inhibitory effects on collagen-mediated platelet aggregation. Vincristine also reduced collagen-mediated platelet granule release and calcium mobilization. In addition, vincristine inhibited glycoprotein VI (GPVI) signaling, including Syk, phospholipase Cγ2, protein kinase C, Akt, and mitogen-activated protein kinases. In addition, the in vitro PFA-100 assay revealed that vincristine did not prolong the closure time, and the in vivo study tail bleeding assay showed that vincristine did not prolong the tail bleeding time; both findings suggested that vincristine may not affect normal hemostasis. In conclusion, we demonstrated that vincristine exerts antiplatelet effects at least in part through the suppression of GPVI signaling. Moreover, this property of antiplatelet activity of vincristine may provide additional benefits in the treatment of TTP.
Collapse
|
23
|
Shih TL, Lin KH, Chen RJ, Chen TY, Kao WT, Liu JW, Wang HH, Peng HY, Sun YY, Lu WJ. A novel naphthalimide derivative reduces platelet activation and thrombus formation via suppressing GPVI. J Cell Mol Med 2021; 25:9434-9446. [PMID: 34448532 PMCID: PMC8500964 DOI: 10.1111/jcmm.16886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/04/2022] Open
Abstract
Naphthalimide derivatives have multiple biological activities, including antitumour and anti‐inflammatory activities. We previously synthesized several naphthalimide derivatives; of them, compound 5 was found to exert the strongest inhibitory effect on human DNA topoisomerase II activity. However, the effects of naphthalimide derivatives on platelet activation have not yet been investigated. Therefore, the mechanism underlying the antiplatelet activity of compound 5 was determined in this study. The data revealed that compound 5 (5–10 μM) inhibited collagen‐ and convulxin‐ but not thrombin‐ or U46619‐mediated platelet aggregation, suggesting that compound 5 is more sensitive to the inhibition of glycoprotein VI (GPVI) signalling. Indeed, compound 5 could inhibit the phosphorylation of signalling molecules downstream of GPVI, followed by the inhibition of calcium mobilization, granule release and GPIIb/IIIa activation. Moreover, compound 5 prevented pulmonary embolism and prolonged the occlusion time, but tended to prolong the bleeding time, indicating that it can prevent thrombus formation but may increase bleeding risk. This study is the first to demonstrate that the naphthalimide derivative compound 5 exerts antiplatelet and antithrombotic effects. Future studies should modify compound 5 to synthesize more potent and efficient antiplatelet agents while minimizing bleeding risk, which may offer a therapeutic potential for cardiovascular diseases.
Collapse
Affiliation(s)
- Tzenge-Lien Shih
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kuan-Hung Lin
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Ray-Jade Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yu Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Ting Kao
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Jen-Wei Liu
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Yu-Yo Sun
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Wan-Jung Lu
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
24
|
Shekhawat RS, Mandal CC. Anti-obesity Medications in Cancer Therapy: A Comprehensive Insight. Curr Cancer Drug Targets 2021; 21:476-494. [PMID: 34225630 DOI: 10.2174/1568009621666210322122829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/29/2020] [Accepted: 12/10/2020] [Indexed: 11/22/2022]
Abstract
The interplay between cancer and obesity is multifactorial and complex with the increased risk of cancer development in obese individuals posing a significant threat. Obesity leads to the upregulation or hyperactivation of several oncogenic pathways in cancer cells, which drives them towards a deleterious phenotype. The cross-talk between cancer and obesity is considered a large contributing factor in the development of chemotherapeutic drug resistance and the resistance to radiotherapy. The link between obesity and the development of cancer is so strong that a medication that demonstrates effectiveness against both conditions would serve as an essential step. In this context, anti-obesity medications provide a worthy list of candidates based on their chemo-preventive potential and chemotherapeutic properties. The current study focuses on exploring the potential of anti-obesity medicines as dual anticancer drugs. These medications target several key signaling pathways (e.g., AMPK, PI3K/Akt/mTOR, MAPK, NF-κB, JNK/ERK), which prove to be crucial for both cancer growth and metastases. Some of these drugs also play an important role in attenuating the signaling and cellular events which incite cancer-obesity cross-talk and demonstrate efficient counteraction of neoplastic transformation. Thus, this review highlights a comprehensive view of the potential use of anti-obesity medicines to treat both cancer and obesity for patients exhibiting both comorbities.
Collapse
Affiliation(s)
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, India
| |
Collapse
|
25
|
Synthetic methods and biological applications of retrochalcones isolated from the root of Glycyrrhiza species: A review. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
26
|
Effect of Huoxiang Zhengqi Pill on Early Neurological Deterioration in Patients with Acute Ischemic Stroke Undergoing Recanalization Therapy and Predictive Effect of Essen Score. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6912015. [PMID: 32963567 PMCID: PMC7499270 DOI: 10.1155/2020/6912015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/15/2020] [Accepted: 08/26/2020] [Indexed: 11/22/2022]
Abstract
Early neurologic deterioration (END) in the acute phase of ischemic stroke is a serious clinical event, which is closely related to poor prognosis. Therefore, it is important to identify presentation features that predict END and take relevant treatment measures, as they could help to prevent the deterioration of high-risk patients. The prospective intervention study was carried out from January 2018 to December 2019. We included consecutive patients hospitalized for acute ischemic stroke (AIS) within 6 hours of onset. Patients were randomly assigned (1 : 1) to recanalization therapy plus Huoxiang Zhengqi Pill (HXZQ) (intervention group) or standard recanalization therapy alone (control group). The primary outcome was the development of END according to predefined criteria within the first 1 week of stroke onset. Poisson regression was used to identify predictors for END. Of the 155 patients enrolled in the study (age, 63 ± 11 years; 28.4% female), 20 (12.9%) developed END. Univariate analysis showed that the use of HXZQ and Essen stroke risk score (ESRS) (low risk group) were protective factors for END, while advanced age was a risk factor for END. However, in multivariate analysis, only ESRS (OR, 0.232; 95%CI, 0.058–0.928; P=0.039) and the use of HXZQ (OR, 0.297; 95%CI, 0.096–0.917; P=0.035) were statistically significant. ESRS can be used as the prediction factor of END. HXZQ has small side effects and wide indication. It could be used in the treatment of AIS.
Collapse
|
27
|
Phospholipase D1 and D2 Synergistically Regulate Thrombus Formation. Int J Mol Sci 2020; 21:ijms21186954. [PMID: 32971863 PMCID: PMC7555624 DOI: 10.3390/ijms21186954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 11/16/2022] Open
Abstract
Previously, we reported that phospholipase D1 (PLD1) and PLD2 inhibition by selective PLD1 and PLD2 inhibitors could prevent platelet aggregation in humans, but not in mice. Moreover, only the PLD1 inhibitor, but not PLD2 inhibitor, could effectively prevent thrombus formation in mice, indicating that PLD might play different roles in platelet function in humans and mice. Although PLD1 and PLD2 were reported to be implicated in thrombotic events, the role of PLD in mice remains not completely clear. Here, we investigated the role of PLD1 and PLD2 in acute pulmonary thrombosis and transient middle cerebral artery occlusion-induced brain injury in mice. The data revealed that inhibition of PLD1, but not of PLD2, could partially prevent pulmonary thrombosis-induced death. Moreover, concurrent PLD1 and PLD2 inhibition could considerably increase survival rate. Likewise, inhibition of PLD1, but not PLD2, partially improved ischemic stroke and concurrent inhibition of PLD1, and PLD2 exhibited a relatively better protection against ischemic stroke, as evidenced by the infarct size, brain edema, modified neurological severity score, rotarod test, and the open field test. In conclusion, PLD1 might play a more important role than PLD2, and both PLD1 and PLD2 could act synergistically or have partially redundant functions in regulating thrombosis-relevant events.
Collapse
|
28
|
Xie ZT, Liu B, Xiong YY, Yang YF, Wu HZ. Study of Components and Mechanism of Juechuang Against Platelet Aggregation Based on Network Pharmacology. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20941292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Juechuang, a traditional Chinese herbal medicine, is originated from Rostellularia procumbens (L.) Nees. Many studies have shown that the ethyl acetate extract from Juechaung may inhibit platelet aggregation. However, the antiplatelet aggregation mechanism of Juechuang requires more systematic research. In this article, network pharmacology was used to explore the antiplatelet aggregation components and its antiplatelet aggregation mechanism. Different components were evaluated and screened by pharmacokinetic characteristics. The potential targets of active ingredients were predicted by a reverse pharmacophore matching method, and the targets were screened according to targets related to antiplatelet aggregation in the GeneCards database. Thus, an interaction network of component-target-pathway of Juechuang was generated using Cytoscape 3.2.1. software. Furthermore, the binding energy of relevant active components with key targets was calculated using a Lamarck genetic algorithm in the molecular docking calculations. Finally, the study identified 28 potentially active ingredients in Juechuang, providing further evidence that the active ingredients act on 277 targets, and 38 protein targets related to antiplatelet aggregation were screened. Through the Kyoto encyclopedia of genes and genome pathway enrichment analysis, we found that the mechanism of antiplatelet aggregation may be related to the Ras signaling pathway, platelet activation signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, etc. Via molecular docking of 2 targets, non-receptor tyrosine kinases(SRC) and MAPK were selected for molecular docking. By comparing the molecular docking results of Chinensinaphthol, Taiwanin E, Tuberculatin, Cycloeucalenol, and Justicidin B to the control drug, we found that those test molecules combined with targets and lead to high binding activity. These molecular docking results were also consistent with the literature values, and they helped identify the active ingredients and assured the reliability of the network analysis. This study may further provide a reference for the systematic study of the pharmacodynamic effect and the antiplatelet aggregation mechanism of Juechuang.
Collapse
Affiliation(s)
- Zhou-Tao Xie
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Department of Pharmacy, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Bo Liu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yi-yi Xiong
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan-Fang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Preparation Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
| | - He-Zhen Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Preparation Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
29
|
Wang ML, Yang QQ, Ying XH, Li YY, Wu YS, Shou QY, Ma QX, Zhu ZW, Chen ML. Network Pharmacology-Based Approach Uncovers the Mechanism of GuanXinNing Tablet for Treating Thrombus by MAPKs Signal Pathway. Front Pharmacol 2020; 11:652. [PMID: 32477130 PMCID: PMC7237702 DOI: 10.3389/fphar.2020.00652] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/22/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND GuanXinNing tablet (GXNT), a traditional Chinese patent medicine, has been found to have remarkable antithrombotic effects and can effectively inhibit pro-thrombotic factors in previous studies. However, the mechanism of its antithrombotic effects remains little known. METHODS In this study, we first determined and identified the sources of each main compound in GXNT using liquid chromatography-mass spectrometry (LC-MS). Through the approach of network pharmacology, we predicted the action targets of the active components, mapped the target genes related to thrombus, and obtained potential antithrombotic targets for active ingredients. We then performed gene ontology (GO) enrichment analyses and KEGG signaling pathway analyses for the action targets, and constructed networks of active component-target and active component-target-pathway for GXNT. Additionally, we evaluated the pharmacodynamic effects of GXNT on thrombus using the rat thrombus model induced by FeCl3, observed the effects of antiplatelet aggregation via platelet assay, and further verified the results predicted by network pharmacology via Western blot. RESULTS In total, 14 active ingredients were identified in GXNT, and 83 action targets were predicted, 17 of which are antithrombotic targets that potentially participate in processes including response to oxidative stress and positive regulation of blood vessel endothelial cell migration. KEGG pathway analyses revealed that the predicted action targets were involved in multiple signal pathways, such as MAPK, IL-17, and platelet activation. Pharmacodynamics study found that GXNT could significantly reduce the thrombus length and weight, lower platelet aggregation function, and decrease the levels of Fbg and PAI-1. In addition, GXNT could significantly increase 6-keto-PGF1α content and regulate the ratio of TXB2/6-keto-PGF1α, while not having dramatic effects on TXB2. GXNT was also observed to visibly inhibit maximum platelet aggregation. Herein, we further studied the thrombus-related MAPKs signaling pathway and found that GXNT could significantly reduce the phosphorylation levels of p38MAPK, ERK, and JNK proteins in platelet. CONCLUSIONS This study revealed the pharmacodynamic material basis of GXNT and its potential multicomponent-multitarget-multipath pharmacological effects, confirmed the antithrombotic effects of GXNT, and showed that its mechanism may be related to inhibiting phosphorylation of p38, ERK, and JNK proteins in MAPKs signaling pathway, partially verifying the results from network pharmacology. The results from this study could provide a theoretical basis for the development and clinical application of GXNT.
Collapse
Affiliation(s)
- Mu-Lan Wang
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- The Department of Medicine, Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, China
| | - Qin-Qin Yang
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Experimental Animals, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Xu-Hui Ying
- The Department of Medicine, Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, China
| | - Yuan-Yuan Li
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang-Sheng Wu
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi-Yang Shou
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Quan-Xin Ma
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zi-Wei Zhu
- The Department of Medicine, Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, China
| | - Min-Li Chen
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
30
|
VAS2870 and VAS3947 attenuate platelet activation and thrombus formation via a NOX-independent pathway downstream of PKC. Sci Rep 2019; 9:18852. [PMID: 31827142 PMCID: PMC6906488 DOI: 10.1038/s41598-019-55189-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
NADPH oxidase (NOX) enzymes are involved in a various physiological and pathological processes such as platelet activation and inflammation. Interestingly, we found that the pan-NOX inhibitors VAS compounds (VAS2870 and its analog VAS3947) exerted a highly potent antiplatelet effect. Unlike VAS compounds, concurrent inhibition of NOX1, 2, and 4 by treatment with ML171, GSK2795039, and GKT136901/GKT137831 did not affect thrombin and U46619-induced platelet aggregation. These findings suggest that VAS compounds may inhibit platelet aggregation via a NOX-independent manner. Thus, we aimed to investigate the detailed antiplatelet mechanisms of VAS compounds. The data revealed that VAS compounds blocked various agonist-induced platelet aggregation, possibly via blocking PKC downstream signaling, including IKKβ and p38 MAPK, eventually reducing platelet granule release, calcium mobilization, and GPIIbIIIa activation. In addition, VAS compounds inhibited mouse platelet aggregation-induced by collagen and thrombin. The in vivo study also showed that VAS compounds delayed thrombus formation without affecting normal hemostasis. This study is the first to demonstrate that, in addition to inhibiting NOX activity, VAS compounds reduced platelet activation and thrombus formation through a NOX-independent pathway downstream of PKC. These findings also indicate that VAS compounds may be safe and potentially therapeutic agents for treating patients with cardiovascular diseases.
Collapse
|
31
|
Li JY, Chen RJ, Huang LT, Lee TY, Lu WJ, Lin KH. Embelin as a Novel Inhibitor of PKC in the Prevention of Platelet Activation and Thrombus Formation. J Clin Med 2019; 8:jcm8101724. [PMID: 31635287 PMCID: PMC6832570 DOI: 10.3390/jcm8101724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 12/25/2022] Open
Abstract
Embelin is a quinone derivative and found in the fruits of Embelia ribes Burm.f. Embelin has been identified as a small molecular inhibitor of X-chromosome-linked inhibitor of apoptosis proteins, and has multiple biological activities, including antioxidation, anti-inflammation, and antitumor effects. However, the effect of embelin in platelets remains unclear. Thus, this study investigated the antiplatelet mechanism of embelin. Our data revealed that embelin could inhibit platelet aggregation induced by various agonists, including the protein kinase C (PKC) activator phorbol 12,13-dibutyrate (PDBu). Embelin, as well as the PKC inhibitor Ro 31-8220, markedly reduced PDBu-mediated phosphorylation of the PKC substrate, suggesting that embelin may be a PKC inhibitor for platelets. Embelin could block PKC downstream signaling and events, including the inhibition of protein kinase B and mitogen-activated protein kinase activation, granule release, and glycoprotein IIbIIIa activation. Moreover, embelin could delay thrombus formation in the mesenteric microvessels of mice, but did not significantly affect the tail bleeding time. In conclusion, we demonstrated that embelin is a PKC inhibitor and possesses antiplatelet and antithrombotic effects. The further analysis is necessary to more accurately determine clinical therapeutic potential of embelin in all clinical thromboembolic events with disturbance of thrombocyte function.
Collapse
Affiliation(s)
- Jiun Yi Li
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
- Department of Surgery, MacKay Memorial Hospital, Taipei 104, Taiwan.
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Ray Jade Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan.
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Li Ting Huang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Tzu Yin Lee
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Wan Jung Lu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan.
| | - Kuan Hung Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252, Taiwan.
| |
Collapse
|
32
|
Upregulated LOX-1 Receptor: Key Player of the Pathogenesis of Atherosclerosis. Curr Atheroscler Rep 2019; 21:38. [DOI: 10.1007/s11883-019-0801-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Maria Pia GD, Sara F, Mario F, Lorenza S. Biological Effects of Licochalcones. Mini Rev Med Chem 2019; 19:647-656. [PMID: 30049263 DOI: 10.2174/1389557518666180601095420] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/20/2017] [Accepted: 05/11/2018] [Indexed: 12/22/2022]
Abstract
Medicinal plants and their natural bioactive molecules, are evaluated as the foundation for health preservation and care of humanity. The licorice root, known as "Radix Glycyrrhizae", is a perennial plant that comes from Mediterranean countries, central to southern Russia, Asia, Turkey, Iraq and Iran. The licorice root has been used in traditional Chinese medicines for centuries and has been defined as "the progenitor of herbs". The name 'Licorice' is derived from the ancient Greek word Glukurrhiza, meaning 'sweet root'. It consists of approximately 30 species, however, the most common ones consist of Glycyrrhiza glabra L., Glycyrrhiza uralensis Fisch and Glycyrrhiza Inflata. In addition, the licorice root contains chalcones, which are a part of an important class of natural products and are precursors of flavonoids. Chemically, chalcones are composed of two aromatic rings associated with α, β-unsaturated α-carbon ketone, representing the prima nucleus of the structure. They have been classified, according to chemical structures, in Licochalcone A, B, C, D, E, F and G. This review aims to highlight all the in vitro and in vivo studies that have been conducted on the licochalcones, extracted from Glycyrrhiza species. The main effects are as follows: anti-inflammatory, antioxidant, anticancer, antimicrobial, antiviral, antiallergic, antidiabetic, hepatotoxic and osteogenic. It is important to implement the introduction of biologically active natural molecules from the bench (research) to the bedside (clinical practice). However, in the future, it is required to conduct additional studies to validate these biological effects.
Collapse
Affiliation(s)
- Gatta Daniela Maria Pia
- Department of Medicine and Science of Aging, University "G. D'Annunzio", Chieti 66100, Italy
| | - Franceschelli Sara
- Department of Medicine and Science of Aging, University "G. D'Annunzio", Chieti 66100, Italy
| | - Felaco Mario
- Department of Medicine and Science of Aging, University "G. D'Annunzio", Chieti 66100, Italy
| | - Speranza Lorenza
- Department of Medicine and Science of Aging, University "G. D'Annunzio", Chieti 66100, Italy
| |
Collapse
|
34
|
Bao F, Bai HY, Wu ZR, Yang ZG. Phenolic compounds from cultivated Glycyrrhiza uralensis and their PD-1/PD-L1 inhibitory activities. Nat Prod Res 2019; 35:562-569. [PMID: 30908097 DOI: 10.1080/14786419.2019.1586698] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
One new compound (1) and fifteen known phenolic compounds (2-16) were isolated and identified from the roots and rhizomes of Glycyrrhiza uralensis, including ten flavonoids, four coumarins, and two benzofurans compounds. Their structures were identified by NMR and MS analysis. Most of these compounds showed weak PD-1/PD-L1 inhibitory activities with the inhibition ratios from 30 to 65% at 100 uM. To our knowledge, it is the first time that their PD-1/PD-L1 inhibition activities were reported.
Collapse
Affiliation(s)
- Fang Bao
- Institute of Pharmacognosy, School of Pharmacy, Lanzhou University, LanZhou, China
| | - Hai-Ying Bai
- Institute of Pharmacognosy, School of Pharmacy, Lanzhou University, LanZhou, China
| | - Zheng-Rong Wu
- Institute of Pharmacognosy, School of Pharmacy, Lanzhou University, LanZhou, China
| | - Zhi-Gang Yang
- Institute of Pharmacognosy, School of Pharmacy, Lanzhou University, LanZhou, China
| |
Collapse
|
35
|
Molecular Pharmacology and Pathology of Strokes. Int J Mol Sci 2018; 19:ijms19124103. [PMID: 30567346 PMCID: PMC6321196 DOI: 10.3390/ijms19124103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 11/17/2022] Open
Abstract
Stroke, an important neurological disease, is becoming an increasingly non-communicable ailment and is the second leading cause of death after coronary heart disease in developed countries [...].
Collapse
|
36
|
Hou X, Yang S, Zheng Y. Licochalcone A attenuates abdominal aortic aneurysm induced by angiotensin II via regulating the miR-181b/SIRT1/HO-1 signaling. J Cell Physiol 2018; 234:7560-7568. [PMID: 30417353 DOI: 10.1002/jcp.27517] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/10/2018] [Indexed: 01/15/2023]
Abstract
Licochalcone A (LA), a chalcone derived from liquorice, exhibits multiple biological activities, including anti-oxidation and anti-inflammation. This study aimed to investigate the role and underlying mechanism of LA in the abdominal aortic aneurysm (AAA). AAA model was established by continuous infusion of 1000 ng/kg/min of angiotensin II (AngII) in ApoE -/- mice for 4 weeks. At 7 days before AngII administration, 5 mg/kg/day or 10 mg/kg/day of LA was intraperitoneally administered to mice and continued for 4 weeks. The characteristics and quantification of AAAs were determined in situ. Real-time PCR or western blot was used to measure mRNA or protein levels of matrix metalloproteinase 2 and matrix metalloproteinase 9; pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6; apoptosis-related proteins Bax, Bcl-2, and active caspase-3; miR-181b; Sirtuin 1 (SIRT1); and heme oxygenase-1 (HO-1). Mouse-aorta-origin vascular smooth muscle (MOVAS) cells were used to confirm the involved pathways in vitro. We found LA administration dose-dependently reduced the incidence of AngII-induced AAA, aneurysm diameter enlargement, elastin degradation, matrix metalloproteinase production, pro-inflammatory cytokines and miR-181b expression, and vascular smooth muscle cell apoptosis. It elevated SIRT1 and HO-1 expression that was suppressed by AngII. AngII enhanced miR-181b but reduced SIRT1 and HO-1 expression in MOVAS cells. In AngII-stimulated MOVAS cells, downregulation of miR-181b significantly upregulated the expression of SIRT1 and HO-1, the effect of which was abrogated by SIRT1 siRNA. Collectively, LA could attenuate AngII-induced AAA by modulating the miR-181b/SIRT1/HO-1 signaling. LA might be a potential medical therapy for small AAA.
Collapse
Affiliation(s)
- Xuhui Hou
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Songbai Yang
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yan Zheng
- Department of Anesthesiology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
37
|
MOTS-c attenuates endothelial dysfunction via suppressing the MAPK/NF-κB pathway. Int J Cardiol 2018; 268:40. [DOI: 10.1016/j.ijcard.2018.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/08/2018] [Indexed: 12/27/2022]
|
38
|
Yang F, Su X, Pi J, Liao K, Zhou H, Sun Y, Liu J, Guo X, Jiang J, Jin H, Cai J, Li T, Liu L. Atomic force microscopy technique used for assessment of the anti-arthritic effect of licochalcone A via suppressing NF-κB activation. Biomed Pharmacother 2018; 103:1592-1601. [DOI: 10.1016/j.biopha.2018.04.142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 11/29/2022] Open
|
39
|
Lu Z, Wang F, Yu P, Wang X, Wang Y, Tang ST, Zhu HQ. Inhibition of miR-29b suppresses MAPK signaling pathway through targeting SPRY1 in atherosclerosis. Vascul Pharmacol 2018; 102:29-36. [PMID: 29398368 DOI: 10.1016/j.vph.2018.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 01/10/2023]
Abstract
The treatment of atherosclerosis (AS), a severe condition associated with the pathogenesis of cardiovascular diseases (CVDs), is still not satisfactory worldwide. In this study, we aim to investigate whether protein sprout homologue 1 (SPRY1), a upstream mediator of MAPK signal pathway, is the target of miR-29b in vascular endothelium during the development of AS. ApoE-/- mice model was established, and an inverse correlation was noticed between level of miR-29b and SPRY1 expression in the aortic tissues. Meanwhile, the tumor necrosis factor-α (TNF-α), reactive oxygen species (ROS) expression and NADPH oxidase activity were up-regulated in atherosclerotic tissues. In vitro experiments were carried out to investigate the roles of miR-29b in regulating the expression of SPRY1 in cultured human umbilical vein endothelial cells (HUVECs). We found that miR-29b mimic and antagomir could modulate the expression of SPRY1 protein in cultured HUVECs. However, the expression of SPRY1 mRNA showed no statistical difference when treating with miR-29b mimic or antagomir. These indicated that the modulation of SPRY1 induced by miR-29b was at the posttranslational level. Dural luciferase reporter assay was conducted to detect the potential interaction between miR-29b and the 3'UTR of SPRY1, which indicated that SPRY1 was a target of miR-29b. Besides, miR-29b antagomir induced decrease of TNF-α, ROS production and NADPH oxidase activity and down-regulated the expression of p-ERK and p-p38 in the presence of oxLDL. In conclusion, inhibition of miR-29b could attenuate AS by inhibiting the SPRY1/MAPK signaling pathway and inflammation in aorta. In future, treatment options based on miR-29b may be applicable for the treatment of AS.
Collapse
Affiliation(s)
- Zhen Lu
- Department of Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Feng Wang
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Pei Yu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Xue Wang
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Yuan Wang
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Song-Tao Tang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hua-Qing Zhu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, China.
| |
Collapse
|
40
|
Lei Z, Wang J, Sun W, Chen X, Jiao W, Zhang H, Lei T, Li F. PKCδ reveals a tumor promoter function by promoting cell proliferation and migration in somatotropinomas. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:208-215. [PMID: 31938102 PMCID: PMC6957976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/13/2017] [Indexed: 06/10/2023]
Abstract
Protein kinase C δ (PKCδ), a subtype of PKC family, has been recognized as a tumor promoter or suppressor depending on different tissue specificities in various tumor types. However, the effects of PKCδ on somatotropinomas are poorly understood. This study aims to explore the precise role of PKCδ in promoting tumor progression in somatotropinomas. In the present study, we examined the expression levels of PKCδ in clinical specimens of human somatotropinomas to show that PKCδ overexpression correlated with invasive properties of somatotropinomas. Furthermore, we employed rat anterior pituitary GH3 cells as the experiment model to demonstrate that PKCδ activation by PKC agonist (Phorbol-12-myristate-13-acetate, PMA) significantly promoted the proliferation and migration potential of GH3 cells, and these effects could be abolished following PKCδ inhibition by specific inhibitor Rottlerin. Mechanistically, PKCδ activated ERK1/2 signaling, which was responsible for PKCδ-induced promotion of GH3 cell proliferation and migration. Taken together, our results indicated that PKCδ functions as a tumor promoter by promoting cell proliferation and migration in somatotropinomas.
Collapse
Affiliation(s)
- Zhuowei Lei
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Junwen Wang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Wei Sun
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Xi Chen
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Wei Jiao
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Huaqiu Zhang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Ting Lei
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| |
Collapse
|