1
|
Dallinger R. Metals and metallothionein evolution in snails: a contribution to the concept of metal-specific functionality from an animal model group. Biometals 2024; 37:671-696. [PMID: 38416244 PMCID: PMC11101346 DOI: 10.1007/s10534-024-00584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/10/2024] [Indexed: 02/29/2024]
Abstract
This is a critical review of what we know so far about the evolution of metallothioneins (MTs) in Gastropoda (snails, whelks, limpets and slugs), an important class of molluscs with over 90,000 known species. Particular attention will be paid to the evolution of snail MTs in relation to the role of some metallic trace elements (cadmium, zinc and copper) and their interaction with MTs, also compared to MTs from other animal phyla. The article also highlights the important distinction, yet close relationship, between the structural and metal-selective binding properties of gastropod MTs and their physiological functionality in the living organism. It appears that in the course of the evolution of Gastropoda, the trace metal cadmium (Cd) must have played an essential role in the development of Cd-selective MT variants. It is shown how the structures and Cd-selective binding properties in the basal gastropod clades have evolved by testing and optimizing different combinations of ancestral and novel MT domains, and how some of these domains have become established in modern and recent gastropod clades. In this context, the question of how adaptation to new habitats and lifestyles has affected the original MT traits in different gastropod lineages will also be addressed. The 3D structures and their metal binding preferences will be highlighted exemplarily in MTs of modern littorinid and helicid snails. Finally, the importance of the different metal requirements and pathways in snail tissues and cells for the shaping and functionality of the respective MT isoforms will be shown.
Collapse
|
2
|
Gnatyshyna L, Khoma V, Martinyuk V, Matskiv T, Pedrini-Martha V, Niederwanger M, Stoliar O, Dallinger R. Sublethal cadmium exposure in the freshwater snail Lymnaea stagnalis meets a deficient, poorly responsive metallothionein system while evoking oxidative and cellular stress. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109490. [PMID: 36265756 DOI: 10.1016/j.cbpc.2022.109490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022]
Abstract
The Great Pond snail Lymnaea stagnalis (Gastropoda, Hygrophila) is a wide-spread freshwater gastropod, being considered as a model organism for research in many fields of biology, including ecotoxicology. The aim of the present study was to explore the Cd sensitivity of L. stagnalis through the measurement of a biomarker battery for oxidative, toxic and cellular stress. The interpretation of biomarker parameters occurred against the background of a truncated metallothionein protein with a limited Cd-binding capacity. Individuals of L. stagnalis were exposed through 14 days to uncontaminated water (controls) or to low (30 μg · L-1) or high (50 μg · L-1) Cd concentrations. The digestive gland of control and low-Cd exposed snails was processed for transcriptional analysis of the Metallothionein (MT) gene expression, and for determination of biomarkers for oxidative stress, toxicity and cellular stress. Digestive gland supernatants of high-Cd exposed snails were subjected to chromatography and subsequent analysis by spectrophotometry. It was shown that the MT system of L. stagnalis is functionally deficient, with a poor Cd responsiveness at both, the transcriptional and the protein expression levels. Instead, L. stagnalis appears to rely on alternative detoxification mechanisms such as Cd binding by phytochelatins and metal inactivation by compartmentalization within the lysosomal system. In spite of this, however, traces of Cd apparently leak out of the pre-determined detoxification pathways, leading to adverse effects, which is clearly indicated by biomarkers of oxidative and cellular stress.
Collapse
Affiliation(s)
- Lesya Gnatyshyna
- I.Ya. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine; Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | - Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | - Viktoria Martinyuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Tetyana Matskiv
- I.Ya. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine; Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | | | - Michael Niederwanger
- Institute of Zoology, University and Center of Molecular Biosciences, Innsbruck, Austria.
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | - Reinhard Dallinger
- Institute of Zoology, University and Center of Molecular Biosciences, Innsbruck, Austria.
| |
Collapse
|
3
|
Calatayud S, Garcia-Risco M, Palacios Ò, Capdevila M, Cañestro C, Albalat R. Tunicates Illuminate the Enigmatic Evolution of Chordate Metallothioneins by Gene Gains and Losses, Independent Modular Expansions, and Functional Convergences. Mol Biol Evol 2021; 38:4435-4448. [PMID: 34146103 PMCID: PMC8476144 DOI: 10.1093/molbev/msab184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To investigate novel patterns and processes of protein evolution, we have focused in the metallothioneins (MTs), a singular group of metal-binding, cysteine-rich proteins that, due to their high degree of sequence diversity, still represents a "black hole" in Evolutionary Biology. We have identified and analyzed more than 160 new MTs in nonvertebrate chordates (especially in 37 species of ascidians, 4 thaliaceans, and 3 appendicularians) showing that prototypic tunicate MTs are mono-modular proteins with a pervasive preference for cadmium ions, whereas vertebrate and cephalochordate MTs are bimodular proteins with diverse metal preferences. These structural and functional differences imply a complex evolutionary history of chordate MTs-including de novo emergence of genes and domains, processes of convergent evolution, events of gene gains and losses, and recurrent amplifications of functional domains-that would stand for an unprecedented case in the field of protein evolution.
Collapse
Affiliation(s)
- Sara Calatayud
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Mario Garcia-Risco
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Òscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Mercè Capdevila
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
4
|
Georgoulis I, Feidantsis K, Giantsis IA, Kakale A, Bock C, Pörtner HO, Sokolova IM, Michaelidis B. Heat hardening enhances mitochondrial potential for respiration and oxidative defence capacity in the mantle of thermally stressed Mytilus galloprovincialis. Sci Rep 2021; 11:17098. [PMID: 34429490 PMCID: PMC8384858 DOI: 10.1038/s41598-021-96617-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Ectotherms are exposed to a range of environmental temperatures and may face extremes beyond their upper thermal limits. Such temperature extremes can stimulate aerobic metabolism toward its maximum, a decline in aerobic substrate oxidation, and a parallel increase of anaerobic metabolism, combined with ROS generation and oxidative stress. Under these stressful conditions, marine organisms recruit several defensive strategies for their maintenance and survival. However, thermal tolerance of ectothermic organisms may be increased after a brief exposure to sub-lethal temperatures, a process known as "hardening". In our study, we examined the ability of M. galloprovincialis to increase its thermal tolerance under the effect of elevated temperatures (24, 26 and 28 °C) through the "hardening" process. Our results demonstrate that this process can increase the heat tolerance and antioxidant defense of heat hardened mussels through more efficient ETS activity when exposed to temperatures beyond 24 °C, compared to non-hardened individuals. Enhanced cell protection is reflected in better adaptive strategies of heat hardened mussels, and thus decreased mortality. Although hardening seems a promising process for the maintenance of aquacultured populations under increased seasonal temperatures, further investigation of the molecular and cellular mechanisms regulating mussels' heat resistance is required.
Collapse
Affiliation(s)
- Ioannis Georgoulis
- grid.4793.90000000109457005Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- grid.4793.90000000109457005Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis A. Giantsis
- grid.184212.c0000 0000 9364 8877Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Asimina Kakale
- grid.4793.90000000109457005Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christian Bock
- grid.10894.340000 0001 1033 7684Alfred-Wegener-Institut, Helmholtz-Center for Polar and Marine Research, Integrative Ecophysiology, Postfach 120161, 27515 Bremerhaven, Germany
| | - Hans O. Pörtner
- grid.10894.340000 0001 1033 7684Alfred-Wegener-Institut, Helmholtz-Center for Polar and Marine Research, Integrative Ecophysiology, Postfach 120161, 27515 Bremerhaven, Germany
| | - Inna M. Sokolova
- grid.10493.3f0000000121858338Department of Marine Biology, Institute for Biological Sciences, University of Rostock, A.-Einstein Str., 3, 18055 Rostock, Germany
| | - Basile Michaelidis
- grid.4793.90000000109457005Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
5
|
Calatayud S, Garcia-Risco M, Pedrini-Martha V, Eernisse DJ, Dallinger R, Palacios Ò, Capdevila M, Albalat R. Modularity in Protein Evolution: Modular Organization and De Novo Domain Evolution in Mollusk Metallothioneins. Mol Biol Evol 2021; 38:424-436. [PMID: 32915992 PMCID: PMC7826182 DOI: 10.1093/molbev/msaa230] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Metallothioneins (MTs) are proteins devoted to the control of metal homeostasis and detoxification, and therefore, MTs have been crucial for the adaptation of the living beings to variable situations of metal bioavailability. The evolution of MTs is, however, not yet fully understood, and to provide new insights into it, we have investigated the MTs in the diverse classes of Mollusks. We have shown that most molluskan MTs are bimodular proteins that combine six domains-α, β1, β2, β3, γ, and δ-in a lineage-specific manner. We have functionally characterized the Neritimorpha β3β1 and the Patellogastropoda γβ1 MTs, demonstrating the metal-binding capacity of the new γ domain. Our results have revealed a modular organization of mollusk MT, whose evolution has been impacted by duplication, loss, and de novo emergence of domains. MTs represent a paradigmatic example of modular evolution probably driven by the structural and functional requirements of metal binding.
Collapse
Affiliation(s)
- Sara Calatayud
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Mario Garcia-Risco
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Veronika Pedrini-Martha
- Department of Zoology and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Douglas J Eernisse
- Department of Biological Science, California State University Fullerton, Fullerton, CA
| | - Reinhard Dallinger
- Department of Zoology and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Òscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Mercè Capdevila
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
Gnatyshyna L, Falfushynska H, Stoliar O, Dallinger R. Preliminary Study of Multiple Stress Response Reactions in the Pond Snail Lymnaea stagnalis Exposed to Trace Metals and a Thiocarbamate Fungicide at Environmentally Relevant Concentrations. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:89-100. [PMID: 32274555 DOI: 10.1007/s00244-020-00728-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/23/2020] [Indexed: 05/24/2023]
Abstract
Gastropod mollusks have achieved an eminent importance as biological indicators of environmental quality. In the present study, we applied a multibiomarker approach to evaluate its applicability for the pond snail Lymnaea stagnalis, exposed to common industrial and agricultural pollutants at environmentally relevant concentrations. The snails were exposed to copper (Cu2+, 10 µg L-1), zinc (Zn2+, 130 µg L-1), cadmium (Cd2+, 15 µg L-1), or the thiocarbamate fungicide "Tattoo" (91 µg L-1) during 14 days. Metal treatment and exposure to "Tattoo" caused variable patterns of increase or decrease of metal levels in the digestive gland, with a clear accumulation of only Cd and Zn after respective metal exposure. Treatment with Cu and "Tattoo" caused an increase of cytochrome P450-related EROD activity. Glutathione S-transferase was inhibited by exposure to Cu, Zn, and "Tattoo." Treatment with the "Tattoo" led to an inhibition of cholinesterase activity, whereas Cu and Cd increased its activity. Caspase-3 activity was enhanced by up to 3.3 times in all treatments. A nearly uniform inhibitory effect for oxidative stress response parameters was observed in all kinds of exposure, revealing an inhibition of superoxide dismutase (Mn-SOD) activity, a depression of glutathione (GSH and GSSG) and of protein carbonyl levels. Pollutant-specific effects were observed for the catalase activity, superoxide anion production, and lipid peroxidation levels. Due to the high response sensitivity of Lymnaea stagnalis to chemical impacts, we suggest our study as a contribution for biomarker studies with this species under field conditions.
Collapse
Affiliation(s)
- Lesya Gnatyshyna
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine.
| | - Halina Falfushynska
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | | |
Collapse
|
7
|
Cai Z, Xian P, Wang H, Lin R, Lian T, Cheng Y, Ma Q, Nian H. Transcription Factor GmWRKY142 Confers Cadmium Resistance by Up-Regulating the Cadmium Tolerance 1-Like Genes. FRONTIERS IN PLANT SCIENCE 2020; 11:724. [PMID: 32582254 PMCID: PMC7283499 DOI: 10.3389/fpls.2020.00724] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/06/2020] [Indexed: 05/23/2023]
Abstract
Cadmium (Cd) is a widespread pollutant that is toxic to living organisms. Previous studies have identified certain WRKY transcription factors, which confer Cd tolerance in different plant species. In the present study, we have identified 29 Cd-responsive WRKY genes in Soybean [Glycine max (L.) Merr.], and confirmed that 26 of those GmWRKY genes were up-regulated, while 3 were down-regulated. We have also cloned the novel, positively regulated GmWRKY142 gene from soybean and investigated its regulatory mechanism in Cd tolerance. GmWRKY142 was highly expressed in the root, drastically up-regulated by Cd, localized in the nucleus, and displayed transcriptional activity. The overexpression of GmWRKY142 in Arabidopsis thaliana and soybean hairy roots significantly enhanced Cd tolerance and lead to extensive transcriptional reprogramming of stress-responsive genes. ATCDT1, GmCDT1-1, and GmCDT1-2 encoding cadmium tolerance 1 were induced in overexpression lines. Further analysis showed that GmWRKY142 activated the transcription of ATCDT1, GmCDT1-1, and GmCDT1-2 by directly binding to the W-box element in their promoters. In addition, the functions of GmCDT1-1 and GmCDT1-2, responsible for decreasing Cd uptake, were validated by heterologous expression in A. thaliana. Our combined results have determined GmWRKYs to be newly discovered participants in response to Cd stress, and have confirmed that GmWRKY142 directly targets ATCDT1, GmCDT1-1, and GmCDT1-2 to decrease Cd uptake and positively regulate Cd tolerance. The GmWRKY142-GmCDT1-1/2 cascade module provides a potential strategy to lower Cd accumulation in soybean.
Collapse
Affiliation(s)
- Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Peiqi Xian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Huan Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Rongbin Lin
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Liu HL, Chuang HY, Hsu CN, Lee SS, Yang CC, Liu KT. Effects of Vitamin D Receptor, Metallothionein 1A, and 2A Gene Polymorphisms on Toxicity of the Peripheral Nervous System in Chronically Lead-Exposed Workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2909. [PMID: 32340109 PMCID: PMC7215364 DOI: 10.3390/ijerph17082909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/23/2023]
Abstract
Chronic exposure to lead is neurotoxic to the human peripheral sensory system. Variant vitamin D receptor (VDR) genes and polymorphisms of metallothioneins (MTs) are associated with different outcomes following lead toxicity. However, no evidence of a relationship between lead neurotoxicity and polymorphisms has previously been presented. In this study, we investigated the relationship between the polymorphisms of VDR, MT1A, and MT2A genes and lead toxicity following chronic occupational lead exposure. We measured vibration perception thresholds (VPT) and current perception thresholds (CPT) in 181 workers annually for five years. The outcome variables were correlated to the subject's index of long-term lead exposure. Polymorphisms of VDR, MT1A, and MT2A were defined. The potential confounders, including age, sex, height, smoking, alcohol consumption, and working life span, were also collected and analyzed using linear regression. The regression coefficients of some gene polymorphisms were at least 20 times larger than regression coefficients of time-weighted index of cumulative blood lead (TWICL) measures. All regression coefficients of TWICL increased slightly. MT1A rs11640851 (AA/CC) was associated with a statistically significant difference in all neurological outcomes except hand and foot VPT. MT1A rs8052394 was associated with statistically significant differences in hand and foot CPT 2000 Hz. In MT2A rs10636, those with the C allele showed a greater effect on hand CPT than those with the G allele. Among the VDR gene polymorphisms, the Apa rs7975232 (CC/AA) single nucleotide polymorphism was associated with the greatest difference in hand CPT. MT2A rs28366003 appeared to have a neural protective effect, whereas Apa (rs7975232) of VDR and MT2A rs10636 increased the neurotoxicity as measured by CPT in the hands. MT1A rs8052394 had a protective effect on large myelinated nerves. MT1A rs11640851 was associated with susceptibility to neurotoxicity.
Collapse
Affiliation(s)
- Hsin-Liang Liu
- Division of Internal Medicine, Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Hung-Yi Chuang
- Department of Public Health, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Environmental and Occupational Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Chien-Ning Hsu
- Department of Pharmacy in Kaohsiung Chang Gung Memorial Hospital, and School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Su-Shin Lee
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Chen-Cheng Yang
- Department of Environmental and Occupational Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Kuan-Ting Liu
- Division of Internal Medicine, Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
9
|
Cadmium Uptake, MT Gene Activation and Structure of Large-Sized Multi-Domain Metallothioneins in the Terrestrial Door Snail Alinda biplicata (Gastropoda, Clausiliidae). Int J Mol Sci 2020; 21:ijms21051631. [PMID: 32120996 PMCID: PMC7084494 DOI: 10.3390/ijms21051631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Terrestrial snails (Gastropoda) possess Cd-selective metallothioneins (CdMTs) that inactivate Cd2+ with high affinity. Most of these MTs are small Cysteine-rich proteins that bind 6 Cd2+ equivalents within two distinct metal-binding domains, with a binding stoichiometry of 3 Cd2+ ions per domain. Recently, unusually large, so-called multi-domain MTs (md-MTs) were discovered in the terrestrial door snail Alinda biplicata (A.b.). The aim of this study is to evaluate the ability of A.b. to cope with Cd stress and the potential involvement of md-MTs in its detoxification. Snails were exposed to increasing Cd concentrations, and Cd-tissue concentrations were quantified. The gene structure of two md-MTs (9md-MT and 10md-MT) was characterized, and the impact of Cd exposure on MT gene transcription was quantified via qRT PCR. A.b. efficiently accumulates Cd at moderately elevated concentrations in the feed, but avoids food uptake at excessively high Cd levels. The structure and expression of the long md-MT genes of A.b. were characterized. Although both genes are intronless, they are still transcribed, being significantly upregulated upon Cd exposure. Overall, our results contribute new knowledge regarding the metal handling of Alinda biplicata in particular, and the potential role of md-MTs in Cd detoxification of terrestrial snails, in general.
Collapse
|
10
|
Dallinger R, Zerbe O, Baumann C, Egger B, Capdevila M, Palacios Ò, Albalat R, Calatayud S, Ladurner P, Schlick-Steiner BC, Steiner FM, Pedrini-Martha V, Lackner R, Lindner H, Dvorak M, Niederwanger M, Schnegg R, Atrian S. Metallomics reveals a persisting impact of cadmium on the evolution of metal-selective snail metallothioneins. Metallomics 2020; 12:702-720. [DOI: 10.1039/c9mt00259f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The tiny contribution of cadmium (Cd) to the composition of the earth's crust contrasts with its high biological significance. We suggest that in gastropod clades, the protein family of metallothioneins (MTs) has evolved to specifically detoxify Cd.
Collapse
Affiliation(s)
- Reinhard Dallinger
- Department of Zoology
- University of Innsbruck
- Austria
- Center for Molecular Biosciences Innsbruck
- Austria
| | - Oliver Zerbe
- Department of Chemistry
- University of Zürich
- Switzerland
| | | | | | - Mercé Capdevila
- Departament de Química
- Universitat Autònoma de Barcelona
- Spain
| | - Òscar Palacios
- Departament de Química
- Universitat Autònoma de Barcelona
- Spain
| | | | | | - Peter Ladurner
- Department of Zoology
- University of Innsbruck
- Austria
- Center for Molecular Biosciences Innsbruck
- Austria
| | | | | | | | | | - Herbert Lindner
- Division of Clinical Biochemistry
- Innsbruck Medical University
- Austria
| | | | | | | | | |
Collapse
|
11
|
Dvorak M, Schnegg R, Niederwanger M, Pedrini-Martha V, Ladurner P, Lindner H, Kremser L, Lackner R, Dallinger R. Cadmium Pathways in Snails Follow a Complementary Strategy between Metallothionein Detoxification and Auxiliary Inactivation by Phytochelatins. Int J Mol Sci 2019; 21:ijms21010007. [PMID: 31861343 PMCID: PMC6981842 DOI: 10.3390/ijms21010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/02/2019] [Accepted: 12/14/2019] [Indexed: 11/16/2022] Open
Abstract
Metal detoxification is crucial for animals to cope with environmental exposure. In snails, a pivotal role in protection against cadmium (Cd) is attributed to metallothioneins (MTs). Some gastropod species express, in a lineage-specific manner, Cd-selective MTs devoted exclusively to the binding and detoxification of this single metal, whereas other species of snails possess non-selective MTs, but still show a high tolerance against Cd. An explanation for this may be that invertebrates and in particular snails may also synthetize phytochelatins (PCs), originally known to be produced by plants, to provide protection against metal or metalloid toxicity. Here we demonstrate that despite the fact that similar mechanisms for Cd inactivation exist in snail species through binding of the metal to MTs, the actual detoxification pathways for this metal may follow different traits in a species-specific manner. In particular, this depends on the detoxification capacity of MTs due to their Cd-selective or non-specific binding features. In the terrestrial slug Arion vulgaris, for example, Cd is solely detoxified by a Cd-selective MT isoform (AvMT1). In contrast, the freshwater snail Biomphalaria glabrata activates an additional pathway for metal inactivation by synthesizing phytochelatins, which compensate for the insufficient capacity of its non-selective MT system to detoxify Cd. We hypothesize that in other snails and invertebrate species, too, an alternative inactivation of the metal by PCs may occur, if their MT system is not Cd-selective enough, or its Cd loading capacity is exhausted.
Collapse
Affiliation(s)
- Martin Dvorak
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Raimund Schnegg
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Michael Niederwanger
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Veronika Pedrini-Martha
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Peter Ladurner
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Herbert Lindner
- Institute of Clinical Biochemistry, Innsbruck Medical University, Biocenter, Innrain 80, A-6020 Innsbruck, Austria
| | - Leopold Kremser
- Institute of Clinical Biochemistry, Innsbruck Medical University, Biocenter, Innrain 80, A-6020 Innsbruck, Austria
| | - Reinhard Lackner
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
- Correspondence: (R.L.); (R.D.)
| | - Reinhard Dallinger
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
- Correspondence: (R.L.); (R.D.)
| |
Collapse
|
12
|
Effects of AgNPs on the Snail Biomphalaria glabrata: Survival, Reproduction and Silver Accumulation. TOXICS 2019; 7:toxics7010012. [PMID: 30832222 PMCID: PMC6468862 DOI: 10.3390/toxics7010012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/15/2023]
Abstract
Silver nanoparticles (AgNPs) are used intensively in medical and industrial applications. Environmental concerns have arisen from the potential release of this material into aquatic ecosystems. The aims of this research were to evaluate the potential accumulation of silver in the whole body of organisms and analyze the effects of AgNPs on the survival and reproduction of the snail Biomphalaria glabrata. Results show slow acute toxicity with a 10-day LC50 of 18.57 mg/L and an effective decrease in the eggs and egg clutches per organism exposed to tested concentrations. Based on these data, the No Observed Effect Concentration (NOEC) observed was <1 mg/L for snail reproduction. For silver accumulation, we observed that uptake was faster than elimination, which was very slow and still incomplete 35 days after the end of the experiment. However, the observed accumulation was not connected with a concentration/response relationship, since the amount of silver was not equivalent to a higher reproductive effect. The data observed show that AgNPs are toxic to B. glabrata, and suggest that the snail has internal mechanisms to combat the presence of Ag in its body, ensuring survival and reduced reproduction and showing that the species seems to be a potential indicator for Ag presence in contaminated aquatic ecosystems.
Collapse
|
13
|
Qin W, Zhao J, Yu X, Liu X, Chu X, Tian J, Wu N. Improving Cadmium Resistance in Escherichia coli Through Continuous Genome Evolution. Front Microbiol 2019; 10:278. [PMID: 30842762 PMCID: PMC6391850 DOI: 10.3389/fmicb.2019.00278] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/04/2019] [Indexed: 01/29/2023] Open
Abstract
Cadmium (Cd) is a heavy metal that is extremely toxic to many organisms; however, microbes are highly adaptable to extreme conditions, including heavy metal contamination. Bacteria can evolve in the natural environment, generating resistant strains that can be studied to understand heavy-metal resistance mechanisms, but obtaining such adaptive strains usually takes a long time. In this study, the genome replication engineering assisted continuous evolution (GREACE) method was used to accelerate the evolutionary rate of the Escherichia coli genome to screen for E. coli mutants with high resistance to cadmium. As a result, a mutant (8mM-CRAA) with a minimum inhibitory concentration (MIC) of 8 mM cadmium was generated; this MIC value was approximately eightfold higher than that of the E. coli BL21(DE3) wild-type strain. Sequencing revealed 329 single nucleotide polymorphisms (SNPs) in the genome of the E. coli mutant 8mM-CRAA. These SNPs as well as RNA-Seq data on gene expression induced by cadmium were used to analyze the genes related to cadmium resistance. Overexpression, knockout and mutation of the htpX (which encodes an integral membrane heat shock protein) and gor (which encodes glutathione reductase) genes revealed that these two genes contribute positively to cadmium resistance in E. coli. Therefore, in addition to the previously identified cadmium resistance genes zntA and capB, many other genes are also involved in bacterial cadmium resistance. This study assists us in understanding the mechanism of microbial cadmium resistance and facilitating the application of heavy-metal remediation.
Collapse
Affiliation(s)
- Weitong Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jintong Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoxia Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyu Chu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Calatayud S, Garcia-Risco M, Rojas NS, Espinosa-Sánchez L, Artime S, Palacios Ò, Cañestro C, Albalat R. Metallothioneins of the urochordate Oikopleura dioica have Cys-rich tandem repeats, large size and cadmium-binding preference. Metallomics 2018; 10:1585-1594. [DOI: 10.1039/c8mt00177d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oikopleura dioica has the longest metallothionein described so far, made of repeats generated by a modular and step-wise evolution.
Collapse
Affiliation(s)
- Sara Calatayud
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| | - Mario Garcia-Risco
- Departament de Química
- Facultat de Ciències
- Universitat Autònoma de Barcelona
- E-08193 Cerdanyola del Vallès
- Spain
| | - Natalia S. Rojas
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| | - Lizethe Espinosa-Sánchez
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| | - Sebastián Artime
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| | - Òscar Palacios
- Departament de Química
- Facultat de Ciències
- Universitat Autònoma de Barcelona
- E-08193 Cerdanyola del Vallès
- Spain
| | - Cristian Cañestro
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| | - Ricard Albalat
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| |
Collapse
|
15
|
de Francisco P, Martín-González A, Turkewitz AP, Gutiérrez JC. Extreme metal adapted, knockout and knockdown strains reveal a coordinated gene expression among different Tetrahymena thermophila metallothionein isoforms. PLoS One 2017; 12:e0189076. [PMID: 29206858 PMCID: PMC5716537 DOI: 10.1371/journal.pone.0189076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/17/2017] [Indexed: 01/01/2023] Open
Abstract
Metallothioneins (MT) constitute a superfamily of small cytosolic proteins that are able to bind metal cations through numerous cysteine (Cys) residues. Like other organisms the ciliate Tetrahymena thermophila presents several MT isoforms, which have been classified into two subfamilies (Cd- and Cu-metallothioneins). The main aim of this study was to examine the specific functions and transcriptional regulation of the five MT isoforms present in T. thermophila, by using several strains of this ciliate. After a laboratory evolution experiment over more than two years, three different T. thermophila strains adapted to extreme metal stress (Cd2+, Cu2+ or Pb2+) were obtained. In addition, three knockout and/or knockdown strains for different metallothionein (MT) genes were generated. These strains were then analyzed for expression of the individual MT isoforms. Our results provide a strong basis for assigning differential roles to the set of MT isoforms. MTT1 appears to have a key role in adaptation to Cd. In contrast, MTT2/4 are crucial for Cu-adaptation and MTT5 appears to be important for Pb-adaptation and might be considered as an “alarm” MT gene for responding to metal stress. Moreover, results indicate that likely a coordinated transcriptional regulation exists between the MT genes, particularly among MTT1, MTT5 and MTT2/4. MTT5 appears to be an essential gene, a first such report in any organism of an essential MT gene.
Collapse
Affiliation(s)
- Patricia de Francisco
- Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Ana Martín-González
- Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Aaron P. Turkewitz
- Department of Molecular Genetics and Cell Biology, Cummings Life Sciences Center, University of Chicago, Chicago, Illinois, United States of America
| | - Juan Carlos Gutiérrez
- Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense de Madrid (UCM), Madrid, Spain
- * E-mail:
| |
Collapse
|
16
|
Biomphalaria glabrata Metallothionein: Lacking Metal Specificity of the Protein and Missing Gene Upregulation Suggest Metal Sequestration by Exchange Instead of through Selective Binding. Int J Mol Sci 2017; 18:ijms18071457. [PMID: 28684706 PMCID: PMC5535948 DOI: 10.3390/ijms18071457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 11/17/2022] Open
Abstract
The wild-type metallothionein (MT) of the freshwater snail Biomphalaria glabrata and a natural allelic mutant of it in which a lysine residue was replaced by an asparagine residue, were recombinantly expressed and analyzed for their metal-binding features with respect to Cd2+, Zn2+ and Cu⁺, applying spectroscopic and mass-spectrometric methods. In addition, the upregulation of the Biomphalaria glabrataMT gene was assessed by quantitative real-time detection PCR. The two recombinant proteins revealed to be very similar in most of their metal binding features. They lacked a clear metal-binding preference for any of the three metal ions assayed-which, to this degree, is clearly unprecedented in the world of Gastropoda MTs. There were, however, slight differences in copper-binding abilities between the two allelic variants. Overall, the missing metal specificity of the two recombinant MTs goes hand in hand with lacking upregulation of the respective MT gene. This suggests that in vivo, the Biomphalaria glabrata MT may be more important for metal replacement reactions through a constitutively abundant form, rather than for metal sequestration by high binding specificity. There are indications that the MT of Biomphalaria glabrata may share its unspecific features with MTs from other freshwater snails of the Hygrophila family.
Collapse
|