1
|
Cheng Y, Zhai Y, Yuan Y, Wang Q, Li S, Sun H. The Contributions of Thrombospondin-1 to Epilepsy Formation. Neurosci Bull 2024; 40:658-672. [PMID: 38528256 PMCID: PMC11127911 DOI: 10.1007/s12264-024-01194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/27/2024] [Indexed: 03/27/2024] Open
Abstract
Epilepsy is a neural network disorder caused by uncontrolled neuronal hyperexcitability induced by an imbalance between excitatory and inhibitory networks. Abnormal synaptogenesis plays a vital role in the formation of overexcited networks. Recent evidence has confirmed that thrombospondin-1 (TSP-1), mainly secreted by astrocytes, is a critical cytokine that regulates synaptogenesis during epileptogenesis. Furthermore, numerous studies have reported that TSP-1 is also involved in other processes, such as angiogenesis, neuroinflammation, and regulation of Ca2+ homeostasis, which are closely associated with the occurrence and development of epilepsy. In this review, we summarize the potential contributions of TSP-1 to epilepsy development.
Collapse
Affiliation(s)
- Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Shucui Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
2
|
Kamalabadi-Farahani M, Atashi A, Jabbarpour Z, Aghayan SS. Expression of osteopontin-5 splice variant in the mouse primary and metastatic breast cancer cells. BMC Res Notes 2022; 15:286. [PMID: 36064446 PMCID: PMC9446537 DOI: 10.1186/s13104-022-06179-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Osteopontin (OPN) is a well-known glycoprotein involved in numerous pathobiological processes, including cancer. Despite having five splice variants for osteopontin in mice, the main focus of most studies has been on total OPN (tOPN). There are some studies on other splice variants, but the expression of osteopontin-5 (OPN5) has not been addressed in mouse cancer cells. Therefore, this study sought to evaluate OPN5 expression in mouse breast cancer cells. RESULTS The expression of OPN5 in primary and metastatic breast cancer cells of mice was confirmed in our study. These findings provided important insights regarding the OPN alternative splicing in mice for the first time. It is concluded that, like other OPN-SVs, OPN5 probably plays an essential role in tumor progression, which requires further investigation in different tumor models.
Collapse
Affiliation(s)
| | - Amir Atashi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Zahra Jabbarpour
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Sajjad Aghayan
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Tan Y, Zhao L, Yang YG, Liu W. The Role of Osteopontin in Tumor Progression Through Tumor-Associated Macrophages. Front Oncol 2022; 12:953283. [PMID: 35898884 PMCID: PMC9309262 DOI: 10.3389/fonc.2022.953283] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Osteopontin (OPN) is a multifunctional phosphorylated protein. It is widely involved in solid tumor progression, such as intensification of macrophage recruitment, inhibition of T-cell activity, aggravation of tumor interstitial fibrosis, promotion of tumor metastasis, chemotherapy resistance, and angiogenesis. Most of these pathologies are affected by tumor-associated macrophages (TAMs), an important component of the tumor microenvironment (TME). TAMs have been extensively characterized, including their subsets, phenotypes, activation status, and functions, and are considered a promising therapeutic target for cancer treatment. This review focuses on the interaction between OPN and TAMs in mediating tumor progression. We discuss the strategies for targeting OPN and TAMs to treat cancer and factors that may affect the therapeutic outcomes of blocking OPN or depleting TAMs. We also discuss the role of cancer cell- vs. TAM-derived OPN in tumorigenesis, the mechanisms of how OPN affects TAM recruitment and polarization, and why OPN could mediate anti-tumor and pro-tumor effects, as well as previously reported discrepancies.
Collapse
Affiliation(s)
- Yuying Tan
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National–Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Lei Zhao
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National–Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National–Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- *Correspondence: Yong-Guang Yang, ; Wentao Liu,
| | - Wentao Liu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National–Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
- *Correspondence: Yong-Guang Yang, ; Wentao Liu,
| |
Collapse
|
4
|
Gopinath P, Natarajan A, Sathyanarayanan A, Veluswami S, Gopisetty G. The multifaceted role of Matricellular Proteins in health and cancer, as biomarkers and therapeutic targets. Gene 2022; 815:146137. [PMID: 35007686 DOI: 10.1016/j.gene.2021.146137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is composed of a mesh of proteins, proteoglycans, growth factors, and other secretory components. It constitutes the tumor microenvironment along with the endothelial cells, cancer-associated fibroblasts, adipocytes, and immune cells. The proteins of ECM can be functionally classified as adhesive proteins and matricellular proteins (MCP). In the tumor milieu, the ECM plays a major role in tumorigenesis and therapeutic resistance. The current review encompasses thrombospondins, osteonectin, osteopontin, tenascin C, periostin, the CCN family, laminin, biglycan, decorin, mimecan, and galectins. The matrix metalloproteinases (MMPs) are also discussed as they are an integral part of the ECM with versatile functions in the tumor stroma. In this review, the role of these proteins in tumor initiation, growth, invasion and metastasis have been highlighted, with emphasis on their contribution to tumor therapeutic resistance. Further, their potential as biomarkers and therapeutic targets based on existing evidence are discussed. Owing to the recent advancements in protein targeting, the possibility of agents to modulate MCPs in cancer as therapeutic options are discussed.
Collapse
Affiliation(s)
- Prarthana Gopinath
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | - Aparna Natarajan
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | | | - Sridevi Veluswami
- Deaprtment of Surgical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India.
| |
Collapse
|
5
|
Li Y, Liu H, Zhao Y, Yue D, Chen C, Li C, Zhang Z, Wang C. Tumor-associated macrophages (TAMs)-derived osteopontin (OPN) upregulates PD-L1 expression and predicts poor prognosis in non-small cell lung cancer (NSCLC). Thorac Cancer 2021; 12:2698-2709. [PMID: 34423566 PMCID: PMC8520804 DOI: 10.1111/1759-7714.14108] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background Programmed cell death ligand 1 (PD‐L1) is widely known as an immune checkpoint molecule in tumor cells. Osteopontin (OPN) is expressed by both tumor cells and tumor‐associated macrophages (TAMs), and both autocrine and paracrine of OPN are considered to be involved in tumor metastasis, proliferation and immunosuppression. However, little is known about the relationship between OPN expressed in TAMs (TOPN) and PD‐L1 in non‐small cell lung cancer (NSCLC). Methods Tissue microarray was used to detect the expression of TOPN, TAMs and PD‐L1 by multiple quantitative fluorescence staining in 509 NSCLC patients undergoing complete pulmonary resection. The correlations between TOPN, PD‐L1 and clinicopathological data were analyzed. An in vitro coculture system was established to investigate the crosstalk between TOPN and neoplastic PD‐L1. In vivo, the intrinsic features of PD‐L1 in NSCLC xenografts were evaluated after being coinjected with OPN‐positive TAMs, and a series of key cytokines and chemokines were detected in the tumor microenvironment. Results A positive association between the TOPN and PD‐L1 expression in tumor tissues from 509 patients with NSCLC was verified. In addition, TOPN and PD‐L1 were independent prognostic factors for overall survival (OS) and disease‐free survival (DFS) of NSCLC patients. Moreover, TOPN upregulated PD‐L1 expression in NSCLC cells through the nuclear factor‐κB (NF‐κB) pathway in vitro TOPN induced the PD‐L1 expression promoted the tumor growth in tumor‐bearing mice, altering immune‐related cytokines and chemokines. Conclusions TOPN regulates PD‐L1 expression through the NF‐κB pathway in NSCLS, which is a potential independent biomarker and target for prognosis as well as immunotherapy.
Collapse
Affiliation(s)
- Yue Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Hailin Liu
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Yujie Zhao
- YuceBio Technology Co., Ltd., Shenzhen, China
| | - Dongsheng Yue
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Chen Chen
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Chenguang Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Changli Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| |
Collapse
|
6
|
Differences in Extracellular Vesicle Protein Cargo Are Dependent on Head and Neck Squamous Cell Carcinoma Cell of Origin and Human Papillomavirus Status. Cancers (Basel) 2021; 13:cancers13153714. [PMID: 34359613 PMCID: PMC8345072 DOI: 10.3390/cancers13153714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
To identify potential extracellular vesicle (EV) biomarkers in head and neck squamous cell carcinoma (HNSCC), we evaluated EV protein cargo and whole cell lysates (WCL) from HPV-positive and -negative HNSCC cell lines, as well as normal oral keratinocytes and HPV16-transformed cells. EVs were isolated from serum-depleted, conditioned cell culture media by polyethylene glycol (PEG) precipitation/ultracentrifugation. EV and WCL preparations were analyzed by LC-MS/MS. Candidate proteins detected at significantly higher levels in EV compared with WCL, or compared with EV from normal oral keratinocytes, were identified and confirmed by Wes Simple Western protein analysis. Our findings suggest that these proteins may be potential HNSCC EV markers as proteins that may be (1) selectively included in EV cargo for export from the cell as a strategy for metastasis, tumor cell survival, or modification of tumor microenvironment, or (2) representative of originating cell composition, which may be developed for diagnostic or prognostic use in clinical liquid biopsy applications. This work demonstrates that our method can be used to reliably detect EV proteins from HNSCC, normal keratinocyte, and transformed cell lines. Furthermore, this work has identified HNSCC EV protein candidates for continued evaluation, specifically tenascin-C, HLA-A, E-cadherin, EGFR, EPHA2, and cytokeratin 19.
Collapse
|
7
|
Zheng Y, Hao S, Xiang C, Han Y, Shang Y, Zhen Q, Zhao Y, Zhang M, Zhang Y. The Correlation Between SPP1 and Immune Escape of EGFR Mutant Lung Adenocarcinoma Was Explored by Bioinformatics Analysis. Front Oncol 2021; 11:592854. [PMID: 34178613 PMCID: PMC8222997 DOI: 10.3389/fonc.2021.592854] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Background Immune checkpoint inhibitors have achieved breakthrough efficacy in treating lung adenocarcinoma (LUAD) with wild-type epidermal growth factor receptor (EGFR), leading to the revision of the treatment guidelines. However, most patients with EGFR mutation are resistant to immunotherapy. It is particularly important to study the differences in tumor microenvironment (TME) between patients with and without EGFR mutation. However, relevant research has not been reported. Our previous study showed that secreted phosphoprotein 1 (SPP1) promotes macrophage M2 polarization and PD-L1 expression in LUAD, which may influence response to immunotherapy. Here, we assessed the role of SPP1 in different populations and its effects on the TME. Methods We compared the expression of SPP1 in LUAD tumor and normal tissues, and in samples with wild-type and mutant EGFR. We also evaluated the influence of SPP1 on survival. The LUAD data sets were downloaded from TCGA and CPTAC databases. Clinicopathologic characteristics associated with overall survival in TCGA were assessed using Cox regression analysis. GSEA revealed that several fundamental signaling pathways were enriched in the high SPP1 expression group. We applied CIBERSORT and xCell to calculate the proportion and abundance of tumor-infiltrating immune cells (TICs) in LUAD, and compared the differences in patients with high or low SPP1 expression and wild-type or mutant EGFR. In addition, we explored the correlation between SPP1 and CD276 for different groups. Results SPP1 expression was higher in LUAD tumor tissues and in people with EGFR mutation. High SPP1 expression was associated with poor prognosis. Univariate and multivariate cox analysis revealed that up-regulated SPP1 expression was independent indicator of poor prognosis. GSEA showed that the SPP1 high expression group was mainly enriched in immunosuppressed pathways. In the SPP1 high expression group, the infiltration of CD8+ T cells was lower and M2-type macrophages was higher. These results were also observed in patients with EGFR mutation. Furthermore, we found that the SPP1 expression was positively correlated with CD276, especially in patients with EGFR mutation. Conclusion SPP1 levels might be a useful marker of immunosuppression in patients with EGFR mutation, and could offer insight for therapeutics.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Oncology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Shiying Hao
- Department of Cardiothoracic Surgery, Standford University, Stanford, CA, United States
| | - Cheng Xiang
- Department of Oncology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yaguang Han
- Department of Oncology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yanhong Shang
- Department of Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Qiang Zhen
- Department of Oncology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yiyi Zhao
- Department of Oncology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Miao Zhang
- Department of Oncology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yan Zhang
- Department of Oncology, Shijiazhuang People's Hospital, Shijiazhuang, China
| |
Collapse
|
8
|
Vats A, Trejo-Cerro O, Thomas M, Banks L. Human papillomavirus E6 and E7: What remains? Tumour Virus Res 2021; 11:200213. [PMID: 33716206 PMCID: PMC7972986 DOI: 10.1016/j.tvr.2021.200213] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Decades of research on the human papillomavirus oncogenes, E6 and E7, have given us huge amounts of data on their expression, functions and structures. We know much about the very many cellular proteins and pathways that they influence in one way or another. However, much of this information is quite discrete, referring to one activity examined under one condition. It is now time to join the dots to try to understand a larger picture: how, where and when do all these interactions occur... and why? Examining these questions will also show how many of the yet obscure cellular processes work together for cellular and tissue homeostasis in health and disease.
Collapse
Affiliation(s)
- Arushi Vats
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Oscar Trejo-Cerro
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Miranda Thomas
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy.
| | - Lawrence Banks
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| |
Collapse
|
9
|
Wang D, Tong X, Wang L, Zhang S, Huang J, Zhang L, Fan H. The association between osteopontin and tuberculosis: A systematic review and meta-analysis. PLoS One 2020; 15:e0242702. [PMID: 33264357 PMCID: PMC7710079 DOI: 10.1371/journal.pone.0242702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/08/2020] [Indexed: 02/05/2023] Open
Abstract
Objective We examined the data reported in the studies for comparison of osteopontin (OPN) levels in tuberculosis and healthy participants, and to discuss whether OPN could be extended to disease diagnosis, severity assessment and therapeutic effect monitering. Methods A systematic literature search was conducted in PubMed, EMBASE, Scopus, the Cochrane Library, Web of Science, the China National Knowledge Infrastructure (CNKI) and WanFang databases. The pooled risk estimates were shown in standardized mean difference (SMD) with 95% confidence interval (CI) for OPN levels. The random effect model was used according to the test of heterogeneity among studies. Subgroup analyses and meta-regression models were performed to identify the possible sources of heterogeneity. Results 17 retrospective studies with 933 tuberculosis participants and 786 healthy controls were finally included in this article. In the primary meta-analysis, higher serum/plasma OPN levels were found in tuberculosis patients (SMD = 2.58, 95%CI = 2.09~3.08, P<0.001). Besides, pooled results from positive acid-fast bacilli (AFB) staining and imaging-severe tuberculosis group demonstrated higher OPN concentrations (SMD = 0.90, 95%CI = 0.58~1.21, P<0.001; SMD = 1.11, 95%CI = 0.90~1.33, P<0.001; respectively), and OPN levels decreased after two months of standard anti-tuberculosis therapy (SMD = 2.10, 95%CI = 1.36~2.85, P<0.001). Conclusions Elevated serum/plasma OPN levels may be associated with an increased risk of tuberculosis, while further well-designed studies are needed. Moreover, OPN could be considered as a potential biomarker for tuberculosis surveillance and severity assessment.
Collapse
Affiliation(s)
- Dongguang Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lian Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shijie Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jizhen Huang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
10
|
Ye X, Gao Q, Wu J, Zhou L, Tao M. Identification of significant genes in non-small cell lung cancer by bioinformatics analyses. Transl Cancer Res 2020; 9:4330-4340. [PMID: 35117799 PMCID: PMC8799091 DOI: 10.21037/tcr-19-2596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/28/2020] [Indexed: 01/10/2023]
Abstract
Background Lung cancer is the most malignant cancer featured with undesirable prognosis. It is urgent to identify novel biomarkers to improve both diagnosis and prognosis. The purpose of the study was to identify significant genes involved in lung cancer through bioinformatic methods and reveal potential underlying mechanisms. Methods Three datasets GSE19188, GSE27262, GSE118375, containing 122 lung cancer and 96 normal tissues, were available from GEO database. GEO2R and Venn diagram online software were applied to pick out differentially expressed genes (DEGs). Next, we used the Database for Annotation, Visualization and Integrated Discovery (DAVID) to analyze Kyoto Encyclopedia of Gene and Genome (KEGG) pathway and gene ontology (GO) enrichment, followed by protein-protein interaction (PPI) of these DEGs visualized by cytoscape. The MCODE plug-in was performed to construct a module complex of DEGs. In addition, Kaplan-Meier analysis was implemented for analysis of overall survival. To further validate the expression of these genes, Gene Expression Profiling Interactive Analysis (GEPIA) was used. Results A total of 149 DEGs were identified, including 127 downregulated genes and 22 upregulated genes. KEGG analysis revealed that the DEGs were mainly enriched in ECM-receptor interaction, Vascular smooth muscle contraction, and PPAR signaling pathway. GO analysis of DEGs showed that significant functional enrichment of angiogenesis, cell adhesion, and vasculogenesis. 13 genes were selected as hub genes based on MCODE, and 11 of 13 genes had a significance. The results of GEPIA were consistent with survival analysis. Furthermore, reanalysis of these genes found they were significantly enriched in ECM-receptor interaction and PI3K-Akt signaling pathway. Conclusions We have identified several key genes, which could be potential diagnostic and prognostic biomarker as well as therapy targets.
Collapse
Affiliation(s)
- Xia Ye
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian Gao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lin Zhou
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
De Gregorio V, Urciuolo F, Netti PA, Imparato G. In Vitro Organotypic Systems to Model Tumor Microenvironment in Human Papillomavirus (HPV)-Related Cancers. Cancers (Basel) 2020; 12:E1150. [PMID: 32375253 PMCID: PMC7281263 DOI: 10.3390/cancers12051150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/16/2022] Open
Abstract
Despite the well-known role of chronic human papillomavirus (HPV) infections in causing tumors (i.e., all cervical cancers and other human malignancies from the mucosal squamous epithelia, including anogenital and oropharyngeal cavity), its persistence is not sufficient for cancer development. Other co-factors contribute to the carcinogenesis process. Recently, the critical role of the underlying stroma during the HPV life cycle and HPV-induced disease have been investigated. The tumor stroma is a key component of the tumor microenvironment (TME), which is a specialized entity. The TME is dynamic, interactive, and constantly changing-able to trigger, support, and drive tumor initiation, progression, and metastasis. In previous years, in vitro organotypic raft cultures and in vivo genetically engineered mouse models have provided researchers with important information on the interactions between HPVs and the epithelium. Further development for an in-depth understanding of the interaction between HPV-infected tissue and the surrounding microenvironment is strongly required. In this review, we critically describe the HPV-related cancers modeled in vitro from the simplified 'raft culture' to complex three-dimensional (3D) organotypic models, focusing on HPV-associated cervical cancer disease platforms. In addition, we review the latest knowledge in the field of in vitro culture systems of HPV-associated malignancies of other mucosal squamous epithelia (anogenital and oropharynx), as well as rare cutaneous non-melanoma associated cancer.
Collapse
Affiliation(s)
- Vincenza De Gregorio
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80125 Naples, Italy; (F.U.); (P.A.N.)
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Francesco Urciuolo
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80125 Naples, Italy; (F.U.); (P.A.N.)
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80125 Naples, Italy; (F.U.); (P.A.N.)
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) University of Naples Federico II, 80125 Naples, Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| |
Collapse
|
12
|
Lamort AS, Giopanou I, Psallidas I, Stathopoulos GT. Osteopontin as a Link between Inflammation and Cancer: The Thorax in the Spotlight. Cells 2019; 8:cells8080815. [PMID: 31382483 PMCID: PMC6721491 DOI: 10.3390/cells8080815] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022] Open
Abstract
The glycoprotein osteopontin (OPN) possesses multiple functions in health and disease. To this end, osteopontin has beneficial roles in wound healing, bone homeostasis, and extracellular matrix (ECM) function. On the contrary, osteopontin can be deleterious for the human body during disease. Indeed, osteopontin is a cardinal mediator of tumor-associated inflammation and facilitates metastasis. The purpose of this review is to highlight the importance of osteopontin in malignant processes, focusing on lung and pleural tumors as examples.
Collapse
Affiliation(s)
- Anne-Sophie Lamort
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University of Munich and Helmholtz Center Munich, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377 Munich, Bavaria, Germany.
| | - Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Biomedical Sciences Research Center, 1 Asklepiou Str., University Campus, 26504 Rio, Achaia, Greece
| | - Ioannis Psallidas
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E6BT, UK
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University of Munich and Helmholtz Center Munich, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377 Munich, Bavaria, Germany.
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Biomedical Sciences Research Center, 1 Asklepiou Str., University Campus, 26504 Rio, Achaia, Greece.
| |
Collapse
|
13
|
Bai G, Motoda H, Ozuru R, Chagan-Yasutan H, Hattori T, Matsuba T. Synthesis of a Cleaved Form of Osteopontin by THP-1 Cells and Its Alteration by Phorbol 12-Myristate 13-Acetate and BCG Infection. Int J Mol Sci 2018; 19:E418. [PMID: 29385060 PMCID: PMC5855640 DOI: 10.3390/ijms19020418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 11/23/2022] Open
Abstract
The protease-cleaved osteopontin (OPN) was proposed to enhance the migration of memory T cells to granulomas in tuberculosis. Various forms of OPN were identified in human monocytic THP-1 cells stimulated by phorbol 12-myristate 13-acetate (PMA). Antibodies O-17, 10A16 and 34E3, which recognize N-terminus, the C-half, and thrombin-cleaved site of OPN, respectively, all detected distinct bands on Western blots following PMA stimulation. Bands corresponding to 18 and 30 kD were detected by antibodies 34E3 and 10A16, indicating that OPN cleavage occurred by endogenous proteases in the PMA-stimulated THP-1 cells. In immune-fluorescence (IF) assay, 34E3 positive signals were detected in intracellular space of non-infected and bacillus Calmette-Guérin (BCG)-infected cells; however, 10A16 positive signals were confirmed in extracellular area in PMA-stimulated cells followed by BCG infection. Small amounts of full-length (FL) and thrombin-cleaved (Tr) OPN were detected by ELISA in the supernatants of non-PMA-stimulated cells, and increased levels of all forms, including undefined (Ud) OPN, in PMA-stimulated cells. ELISA showed a decrease in OPN synthesis during BCG infection. To our knowledge, this is the first report of OPN cleavage in THP-1 macrophages after PMA stimulation, and of enhanced cleavage induced by BCG infection.
Collapse
Affiliation(s)
- Gaowa Bai
- Department of Health Science and Social Welfare, Kibi International University, 8 Igamachi, Takahashi 716-8508, Japan.
| | - Hirotoshi Motoda
- Department of Health Science and Social Welfare, Kibi International University, 8 Igamachi, Takahashi 716-8508, Japan.
| | - Ryo Ozuru
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| | - Haorile Chagan-Yasutan
- Department of Health Science and Social Welfare, Kibi International University, 8 Igamachi, Takahashi 716-8508, Japan.
- Mongolian Psychosomatic Medicine Department, International Mongolian Medicine Hospital of Inner Mongolia, Huhhot 010065, China.
| | - Toshio Hattori
- Department of Health Science and Social Welfare, Kibi International University, 8 Igamachi, Takahashi 716-8508, Japan.
| | - Takashi Matsuba
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| |
Collapse
|