1
|
Xin Y, Li N, Zhu HT, Li YZ, Xiang HZ, Shang JH, Zhang M, Zhang YJ. Widely targeted metabolomics analysis reveals dynamic changes in metabolites of 'Hass' avocado during postharvest ripening period. Food Chem 2025; 471:142844. [PMID: 39813831 DOI: 10.1016/j.foodchem.2025.142844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Avocado (Persea americana Mill) is a climacteric fruit harvested at the green stage that ripens postharvest to become edible. The 'Hass' cultivar, known for its rich, buttery flavor and pear-shaped appearance, was studied for metabolite changes during postharvest ripening using UPLC-MS/MS approach. The 16-day ripening period could be divided into three stages: evolution (days 1-9), edible ripe (days 10-15) and overripe (day 16). A total of 1397 metabolites were identified across 13 classes. Among them, amino acids transitioned from conjugated to free forms, while sugars converted to monosaccharides, enhancing savory and sweet tastes. The concentration of certain secondary metabolites like terpenes, coumarins, and alkaloids increased, likely supporting antimicrobial defense, alongside a substantial increase in lipid content. Additionally, 20 compounds were screened as markers for edible ripeness. This study provides valuable insights into avocado postharvest ripening and offers references for optimizing shelf-life.
Collapse
Affiliation(s)
- Ying Xin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; Chongqing Three Gorges Medical College, Chongqing 404120, PR China; University of Chinese Academy of Science, Beijing 100049, PR China
| | - Na Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Hong-Tao Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Ya-Zhi Li
- Economic Crop Workstation of Menglian County, Pu'er 665899, PR China
| | - Han-Zhang Xiang
- Economic Crop Workstation of Menglian County, Pu'er 665899, PR China
| | - Jia-Huan Shang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Man Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China.
| |
Collapse
|
2
|
Tian X, Bai X, Han Y, Ye Y, Peng M, Cui H, Li K. PPAR γ changing ALDH1A3 content to regulate lipid metabolism and inhibit lung cancer cell growth. Mol Genet Genomics 2025; 300:41. [PMID: 40198404 PMCID: PMC11978687 DOI: 10.1007/s00438-025-02243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/08/2025] [Indexed: 04/10/2025]
Abstract
PPAR γ, as a widely present receptor in tissues, plays a key role in lipid metabolism, energy balance, inflammatory response, and cell differentiation. It plays an important role in the occurrence and development of various tumors, including prostate cancer, gastric cancer, lung cancer, etc., by regulating lipid metabolism. However, the specific mechanism by which it affects lung cancer growth is not yet clear. To investigate how PPAR γ affects lung cancer cell growth by altering ALDH1A3 levels through its impact on lipid metabolism. Bioinformatics analysis was used to predict the correlation between PPAR γ, ALDH1A3 and lung cancer. Based on the results of bioinformatics analysis, PPAR γ activator (Pioglitazone, Pio) and ALDH1A3 inhibitor (diethylaminobenzaldehyde, DEAB) were used to act on lung cancer cells and observe their growth. After measuring the IC50 value of the drug in vitro experiments, lipid metabolomics analysis was conducted to identify the significant changes in differential metabolites and metabolic pathways under the combined influence of Pio and DEAB. Through bioinformatics analysis, it was found that there were significant differences in the levels of PPAR γ and ALDH1A3 between lung cancer and normal lung tissues, and ALDH1A3 was positively correlated with PPAR γ. AUC analysis found that PPAR γ and ALDH1A3 have good predictive value in the diagnosis and prognosis of lung cancer. GSEA enrichment analysis showed that PPAR γ and ALDH1A3 were significantly correlated with lipid oxidation. Combining relevant literature to demonstrate the inhibitory effect of PPAR γ receptors on lung cancer cells and the ability of PPAR γ activation to inhibit ALDH1A3 levels. Further in vitro CCK-8 and IC50 measurements of lung cancer cells A549 and H1299 were conducted, followed by non targeted lipidomics analysis. It was found that the metabolic pathways upregulated by activation of PPAR γ and inhibition of ALDH1A3 included glycerophospholipid metabolism, cholesterol metabolism, arachidonic acid metabolism, and fat digestion and absorption, with glycerophospholipid metabolism pathway accounting for the highest percentage. Conclusion: PPAR γ activation can inhibit the production of ALDH1A3, alter the glycerophospholipid metabolism pathway, and thus inhibit the proliferation of lung cancer cells. This study confirms that PPAR γ affects lung cancer proliferation by influencing the glycerophospholipid metabolism pathway.
Collapse
Affiliation(s)
- Xinyuan Tian
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, 010107, Inner Mongolia Autonomous Region, China
| | - Xiaoping Bai
- Department of Radiation Oncology, Baotou Cancer Hospital, Baotou, 014030, Inner Mongolia Autonomous Region, China
| | - Yunqi Han
- The Fourth Hospital of Inner Mongolia Autonomous Region, Hohhot, 010107, Inner Mongolia Autonomous Region, China
| | - Yu Ye
- Peking University Cancer Hospital (Inner Mongolia Campus) and Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010107, Inner Mongolia Autonomous Region, China
| | - Meiling Peng
- Hohhot First Hospital, Hohhot, 010107, Inner Mongolia Autonomous Region, China
| | - Hongwei Cui
- Peking University Cancer Hospital (Inner Mongolia Campus) and Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010107, Inner Mongolia Autonomous Region, China.
| | - Kai Li
- Department of Oncology, The Second Afliated Hospital of Baotou Medical College, Baotou, 014030, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
3
|
Inoue N, Gowda SGB, Gowda D, Sakurai T, Ikeda-Araki A, Bamai YA, Ketema RM, Kishi R, Chiba H, Hui SP. Determination of plasma lysophosphatidylethanolamines (lyso-PE) by LC-MS/MS revealed a possible relation between obesity and lyso-PE in Japanese preadolescent children: The Hokkaido study. Ann Clin Biochem 2025; 62:34-45. [PMID: 39167494 DOI: 10.1177/00045632241280352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
BACKGROUND Lysophosphatidylethanolamines (lyso-PEs) are the partial hydrolysis products of phosphatidylethanolamine. Although lyso-PEs are important biomarkers in various diseases, their determination is limited by the lack of simple and efficient quantification methods. This study aims to develop an improved quantitative method for the determination of lyso-PEs and its application to an epidemiological study. METHODS Single reaction monitoring channels by collision-induced dissociation for seven lyso-PEs were established using liquid chromatography-tandem mass spectrometry. Plasma lyso-PEs were extracted with a single-phase method using an isotopically labelled internal standard for quantification. The proposed method was adopted to define lyso-PEs in plasma samples of children aged 9-12 years living in Sapporo, Japan. RESULTS The limit of detection and limit of quantification for each lyso-PE ranged between 0.001-0.015 and 0.002-0.031 pmol/μL, respectively. Recoveries were found to be > 91% for all the species. The analysis results of children's plasma showed that the total lyso-PE concentrations in boys (n = 181) and girls (n = 161) were 11.53 and 11.00 pmol/μL (median), respectively. Participants were further classified by the percentage of overweight and subgrouped as underweight (n = 12), normal range (n = 292), or overweight (n = 38). Interestingly, the reduction of lyso-PE 16:0 and increased lyso-PE 22:6 were observed in overweight children compared with normal range (Fold change: 0.909 and 1.174, respectively). CONCLUSIONS This study successfully established a simple quantitative method to determine lyso-PE concentrations. Furthermore, our method revealed the possible relation between plasma lyso-PEs and overweight status.
Collapse
Affiliation(s)
- Nao Inoue
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Siddabasave Gowda B Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Graduate School of Global Food Resources, Hokkaido University, Sapporo, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | - Atsuko Ikeda-Araki
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Rahel Mesfin Ketema
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
An B, Shin CH, Kwon JW, Tran NL, Kim AH, Jeong H, Kim SH, Park K, Oh SJ. M1 macrophage-derived exosomal microRNA-29c-3p suppresses aggressiveness of melanoma cells via ENPP2. Cancer Cell Int 2024; 24:325. [PMID: 39342305 PMCID: PMC11438108 DOI: 10.1186/s12935-024-03512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
In the tumor microenvironment, macrophages play crucial roles resulting in tumor suppression and progression, depending on M1 and M2 macrophages, respectively. In particular, macrophage-derived exosomes modulate the gene expression of cancer cells by delivering miRNAs which downregulate specific genes. The communication between macrophages and cancer cells is especially important in immunogenic tumors such as melanoma, where the cancer pogression is significantly influenced by the surrounding immune cells. In this study, we identified that M1 macrophages secrete exosomal miR-29c-3p in the co-culture system with melanoma cells. Simultaneously, ENPP2, the target of miR-29c-3p, decreased in the melanoma cells which are co-cultured with M1 macrophages. Additionally, we observed that the reduction of ENPP2 alleviates melanoma cell migration and invasion, due to the changes of cholesterol metabolism and ECM remodeling. Based on these findings, we demonstrated that M1 macrophages suppress aggressiveness of melanoma cells via exosomal miR-29c-3p-mediated knock-down of ENPP2 in cancer cells.
Collapse
Affiliation(s)
- Byoungha An
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Cheol-Hee Shin
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae Won Kwon
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Na Ly Tran
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - A Hui Kim
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Hyeyeon Jeong
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Sang-Heon Kim
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Seung Ja Oh
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
5
|
Li SY, Tong MM, Li L, Hui F, Meng FZ, Zhao YL, Guo YM, Guo XY, Shi BL, Yan SM. Rectal microbiomes and serum metabolomics reveal the improved effect of Artemisia ordosica crude polysaccharides on the lactation performance, antioxidant status, and immune responses of lactating donkeys. J Dairy Sci 2024; 107:6696-6716. [PMID: 38608958 DOI: 10.3168/jds.2023-24570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/02/2024] [Indexed: 04/14/2024]
Abstract
This study is aimed at investigating the effects of dietary supplementation with Artemisia ordosica crude polysaccharides (AOCP) on lactation performance, antioxidant status, and immune status of lactating donkeys and analyzing rectal microbiomes and serum metabolomes. Fourteen lactating Dezhou donkeys with similar age (6.16 ± 0.67 yr of BW ± SD), weight (250.06 ± 25.18 kg), DIM (39.11 ± 7.42 d), and average parity of 3 were randomly allocated into 2 treatments: a control group (CON, basal diet) and an AOCP group (AOCP, basal diet with 1.0 g/kg DM AOCP). Ten weeks were allotted for the experiment, 2 wk for adaptation, and 8 wk for collecting data and samples. The results showed that supplementation of donkey diets with AOCP increased lactation performance, including DMI, milking yield, estimated milk yield, solids-corrected milk, ECM, milk fat yield, milk protein yield, milk lactose yield, milk TS yield, and milk SNF yield. The digestibility of DM, CP, ADF, and NDF was increased in the AOCP group compared with the CON group. The AOCP group increased the concentrations of IgA, IgG, and IgM, the activities of the superoxide dismutase, catalase, and total antioxidant capacity in the serum. Artemisia ordosica crude polysaccharides decreased the concentrations of tumor necrosis factor-α, nitric oxide, reactive oxygen species, and malondialdehyde in the serum. Compared with the CON group, AOCP increased propionate, butyrate, isovalerate, and total VFA concentrations in rectal feces (P < 0.05). The addition of AOCP to increased diversity (Shannon index) and altered structure of the rectal microflora. As a result of AOCP supplementation, there has been a significant improvement in the colonization of beneficial bacteria, including Lactobacillus, Unclassified_f_Prevotellacea, Ruminococcus, and Fibrobacter genera. In contrast, a decrease in the colonization of the Clostridium_sensu_stricto_1 bacterial genus and other pathogenic bacteria was observed. Meanwhile, metabolomics analysis found that AOCP supplementation upregulated metabolites l-tyrosine content while downregulating 9(S)-HODE, choline, sucrose, lysophosphatidylcholine (LysoPC) (18:0), LysoPC (18:1(9Z)), and LysoPC (20:2(11Z,14Z)) concentrations. These altered metabolites were involved in the PPAR signaling pathway, prolactin signaling pathway, glycerophospholipid metabolism, carbohydrate digestion and absorption, and tyrosine metabolism pathways, which were mainly related to antioxidant capacity, immune responses, and protein metabolism in the lactating donkeys. As a consequence of feeding AOCP diets, beneficial bacteria were abundant, and antioxidant and protein metabolism-related pathways were enriched, which may enhance lactation performance in donkeys. Therefore, supplementing AOCP diets is a desirable dietary strategy to improve donkey health and lactation performance.
Collapse
Affiliation(s)
- S Y Li
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - M M Tong
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - L Li
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - F Hui
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - F Z Meng
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Y L Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Y M Guo
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - X Y Guo
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - B L Shi
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - S M Yan
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China.
| |
Collapse
|
6
|
Yan R, Song A, Zhang C. The Pathological Mechanisms and Therapeutic Molecular Targets in Arteriovenous Fistula Dysfunction. Int J Mol Sci 2024; 25:9519. [PMID: 39273465 PMCID: PMC11395150 DOI: 10.3390/ijms25179519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
The number of patients with end-stage renal disease (ESRD) requiring hemodialysis is increasing worldwide. Although arteriovenous fistula (AVF) is the best and most important vascular access (VA) for hemodialysis, its primary maturation failure rate is as high as 60%, which seriously endangers the prognosis of hemodialysis patients. After AVF establishment, the venous outflow tract undergoes hemodynamic changes, which are translated into intracellular signaling pathway cascades, resulting in an outward and inward remodeling of the vessel wall. Outward remodeling refers to the thickening of the vessel wall and the dilation of the lumen to accommodate the high blood flow in the AVF, while inward remodeling is mainly characterized by intimal hyperplasia. More and more studies have shown that the two types of remodeling are closely related in the occurrence and development of, and jointly determining the final fate of, AVF. Therefore, it is essential to investigate the underlying mechanisms involved in outward and inward remodeling for identifying the key targets in alleviating AVF dysfunction. In this review, we summarize the current clinical diagnosis, monitoring, and treatment techniques for AVF dysfunction and discuss the possible pathological mechanisms related to improper outward and inward remodeling in AVF dysfunction, as well as summarize the similarities and differences between the two remodeling types in molecular mechanisms. Finally, the representative therapeutic targets of potential clinical values are summarized.
Collapse
Affiliation(s)
- Ruiwei Yan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anni Song
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Zhao M, Wang P, Sun X, Yang D, Zhang S, Meng X, Zhang M, Gao X. Detrimental Impacts of Pharmaceutical Excipient PEG400 on Gut Microbiota and Metabolome in Healthy Mice. Molecules 2023; 28:7562. [PMID: 38005284 PMCID: PMC10673170 DOI: 10.3390/molecules28227562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Polyethylene glycol 400 (PEG400) is a widely used pharmaceutical excipient in the field of medicine. It not only enhances the dispersion stability of the main drug but also facilitates the absorption of multiple drugs. Our previous study found that the long-term application of PEG400 as an adjuvant in traditional Chinese medicine preparations resulted in wasting and weight loss in animals, which aroused our concern. In this study, 16S rRNA high-throughput sequencing technology was used to analyze the diversity of gut microbiota, and LC-MS/MS Q-Exactive Orbtriap metabolomics technology was used to analyze the effect of PEG400 on the metabolome of healthy mice, combined with intestinal pathological analysis, aiming to investigate the effects of PEG400 on healthy mice. These results showed that PEG400 significantly altered the structure of gut microbiota, reduced the richness and diversity of intestinal flora, greatly increased the abundance of Akkermansia muciniphila (A. muciniphila), increased the proportion of Bacteroidetes to Firmicutes, and reduced the abundance of many beneficial bacteria. Moreover, PEG400 changed the characteristics of fecal metabolome in mice and induced disorders in lipid and energy metabolism, thus leading to diarrhea, weight loss, and intestinal inflammation in mice. Collectively, these findings provide new evidence for the potential effect of PEG400 ingestion on a healthy host.
Collapse
Affiliation(s)
- Mei Zhao
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China;
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (P.W.); (X.S.); (D.Y.); (S.Z.); (X.M.)
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Medical University, Guiyang 550025, China
| | - Pengjiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (P.W.); (X.S.); (D.Y.); (S.Z.); (X.M.)
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Medical University, Guiyang 550025, China
| | - Xiaodong Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (P.W.); (X.S.); (D.Y.); (S.Z.); (X.M.)
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Medical University, Guiyang 550025, China
| | - Dan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (P.W.); (X.S.); (D.Y.); (S.Z.); (X.M.)
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Medical University, Guiyang 550025, China
| | - Shuo Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (P.W.); (X.S.); (D.Y.); (S.Z.); (X.M.)
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Medical University, Guiyang 550025, China
- Experimental Animal Center, Guizhou Medical University, Guiyang 550025, China
| | - Xiaoxia Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (P.W.); (X.S.); (D.Y.); (S.Z.); (X.M.)
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Medical University, Guiyang 550025, China
- School of Medicine and Health Management, Guizhou Medical University, Guiyang 550025, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (P.W.); (X.S.); (D.Y.); (S.Z.); (X.M.)
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Medical University, Guiyang 550025, China
| | - Xiuli Gao
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China;
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (P.W.); (X.S.); (D.Y.); (S.Z.); (X.M.)
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
8
|
Tsukahara T, Imamura S, Morohoshi T. A Review of Cyclic Phosphatidic Acid and Other Potential Therapeutic Targets for Treating Osteoarthritis. Biomedicines 2023; 11:2790. [PMID: 37893163 PMCID: PMC10603845 DOI: 10.3390/biomedicines11102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Osteoarthritis (OA), a chronic degenerative joint disease, is the most common form of arthritis. OA occurs when the protective cartilage that cushions the ends of bones gradually breaks down. This leads to the rubbing of bones against each other, resulting in pain and stiffness. Cyclic phosphatidic acid (cPA) shows promise as a treatment for OA. In this article, we review the most recent findings regarding the biological functions of cPA signaling in mammalian systems, specifically in relation to OA. cPA is a naturally occurring phospholipid mediator with unique cyclic phosphate rings at the sn-2 and sn-3 positions in the glycerol backbone. cPA promotes various responses, including cell proliferation, migration, and survival. cPA possesses physiological activities that are distinct from those elicited by lysophosphatidic acid; however, its biochemical origin has rarely been studied. Although there is currently no cure for OA, advances in medical research may lead to new therapies or strategies in the future, and cPA has potential therapeutic applications.
Collapse
Affiliation(s)
- Tamotsu Tsukahara
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan
| | | | | |
Collapse
|
9
|
Prakash E, Pavithra S, Kishor Kumar DG, Panigrahi M, Singh TU, Kumar D, Parida S. TXA2 mediates LPA1-stimulated uterine contraction in late pregnant mouse. Prostaglandins Other Lipid Mediat 2023; 167:106736. [PMID: 37062326 DOI: 10.1016/j.prostaglandins.2023.106736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Lysophosphatidic acid (LPA) is known to increase uterine contraction in the estrus cycle and early pregnancy, however, the effect of LPA in late pregnant uterus and its mechanisms are not clear. In the present study, we show the LPA receptor subtypes expressed and the mechanism of LPA-induced contractions in late pregnant mouse uterus. We determined the relative mRNA expression of LPA receptor genes by quantitative PCR and elicited log concentration-response curves to oleoyl-L-α-LPA by performing tension experiments in the presence and absence of nonselective and selective receptor antagonists and inhibitors of the TXA2 pathway. LPA1 was the most highly expressed receptor subtype in the late pregnant mouse uterus and LPA1/2/3 agonist (Oleoyl-L-α LPA) elicited increased contractions in this tissue that had lesser efficacy compared to oxytocin. LPA1/3 antagonist, Ki-16425, and a potent LPA1 antagonist (AM-095) significantly inhibited the LPA-induced contractions. Further, the nonselective COX inhibitor, indomethacin, and potent thromboxane A2 synthase inhibitor, furegrelate significantly impaired LPA-induced contractions. Moreover, selective thromboxane receptor (TP) antagonist, SQ-29548, and Rho kinase inhibitor, Y-27632 almost eliminated LPA-induced uterine contractions. LPA1 stimulation elicits contractions in the late pregnant mouse uterus using the contractile prostanoid, TXA2 and may be targeted to induce labor in uterine dysfunctions/ dystocia.
Collapse
Affiliation(s)
- E Prakash
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - S Pavithra
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - D G Kishor Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Manjit Panigrahi
- Division of Animal Genetics and Breeding, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India.
| |
Collapse
|
10
|
Guo M, Liu D, Jiang Y, Chen W, Zhao L, Bao D, Li Y, Distler JHW, Zhu H. Serum metabolomic profiling reveals potential biomarkers in systemic sclerosis. Metabolism 2023; 144:155587. [PMID: 37156409 DOI: 10.1016/j.metabol.2023.155587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a chronic and systemic autoimmune disease marked by the skin and visceral fibrosis. Metabolic alterations have been found in SSc patients; however, serum metabolomic profiling has not been thoroughly conducted. Our study aimed to identify alterations in the metabolic profile in both SSc patients before and during treatment, as well as in mouse models of fibrosis. Furthermore, the associations between metabolites and clinical parameters and disease progression were explored. METHODS High-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS)/MS was performed in the serum of 326 human samples and 33 mouse samples. Human samples were collected from 142 healthy controls (HC), 127 newly diagnosed SSc patients without treatment (SSc baseline), and 57 treated SSc patients (SSc treatment). Mouse serum samples were collected from 11 control mice (NaCl), 11 mice with bleomycin (BLM)-induced fibrosis and 11 mice with hypochlorous acid (HOCl)-induced fibrosis. Both univariate analysis and multivariate analysis (orthogonal partial least-squares discriminate analysis (OPLS-DA)) were conducted to unravel differently expressed metabolites. KEGG pathway enrichment analysis was performed to characterize the dysregulated metabolic pathways in SSc. Associations between metabolites and clinical parameters of SSc patients were identified by Pearson's or Spearman's correlation analysis. Machine learning (ML) algorithms were applied to identify the important metabolites that have the potential to predict the progression of skin fibrosis. RESULTS The newly diagnosed SSc patients without treatment showed a unique serum metabolic profile compared to HC. Treatment partially corrected the metabolic changes in SSc. Some metabolites (phloretin 2'-O-glucuronide, retinoyl b-glucuronide, all-trans-retinoic acid, and betaine) and metabolic pathways (starch and sucrose metabolism, proline metabolism, androgen and estrogen metabolism, and tryptophan metabolism) were dysregulated in new-onset SSc, but restored upon treatment. Some metabolic changes were associated with treatment response in SSc patients. Metabolic changes observed in SSc patients were mimicked in murine models of SSc, indicating that they may reflect general metabolic changes associated with fibrotic tissue remodeling. Several metabolic changes were associated with SSc clinical parameters. The levels of allysine and all-trans-retinoic acid were negatively correlated, while D-glucuronic acid and hexanoyl carnitine were positively correlated with modified Rodnan skin score (mRSS). In addition, a panel of metabolites including proline betaine, phloretin 2'-O-glucuronide, gamma-linolenic acid and L-cystathionine were associated with the presence of interstitial lung disease (ILD) in SSc. Specific metabolites identified by ML algorithms, such as medicagenic acid 3-O-b-D-glucuronide, 4'-O-methyl-(-)-epicatechin-3'-O-beta-glucuronide, valproic acid glucuronide, have the potential to predict the progression of skin fibrosis. CONCLUSIONS Serum of SSc patients demonstrates profound metabolic changes. Treatment partially restored the metabolic changes in SSc. Moreover, certain metabolic changes were associated with clinical manifestations such as skin fibrosis and ILD, and could predict the progression of skin fibrosis.
Collapse
Affiliation(s)
- Muyao Guo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Di Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yu Jiang
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Weilin Chen
- Department of Nephrology and Rheumatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lijuan Zhao
- Department of Nephrology and Rheumatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ding Bao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yisha Li
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jörg H W Distler
- Clinic for Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, 40225 Düsseldorf, Germany; Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Honglin Zhu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Ibarz A, Sanahuja I, Nuez-Ortín WG, Martínez-Rubio L, Fernández-Alacid L. Physiological Benefits of Dietary Lysophospholipid Supplementation in a Marine Fish Model: Deep Analyses of Modes of Action. Animals (Basel) 2023; 13:ani13081381. [PMID: 37106944 PMCID: PMC10135010 DOI: 10.3390/ani13081381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Given the hydrophilic structure of lysophospholipids (LPLs), their dietary inclusion translates into a better emulsifying capacity of the dietary components. The present study aimed to understand the mechanisms underlying the growth-promoting effect of LPL supplementation by undertaking deep analyses of the proximal intestine and liver interactomes. The Atlantic salmon (Salmo salar) was selected as the main aquaculture species model. The animals were divided into two groups: one was fed a control diet (C-diet) and the other a feed (LPL-diet) supplemented with an LPL-based digestive enhancer (0.1% AQUALYSO®, Adisseo). The LPL-diet had a positive effect on the fish by increasing the final weight by 5% and reducing total serum lipids, mainly due to a decrease in the plasma phospholipid (p < 0.05). In the intestine, the upregulated interactome suggests a more robust digestive capacity, improving vesicle-trafficking-related proteins, complex sugar hydrolysis, and lipid metabolism. In the liver, the LPL-diet promotes better nutrients, increasing several metabolic pathways. The downregulation of the responses to stress and stimuli could be related to a reduced proinflammatory state. This study on the benefits and modes of action of dietary LPLs opens a new window into fish nutrition and could be extended to other productive species.
Collapse
Affiliation(s)
- Antoni Ibarz
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Ignasi Sanahuja
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- IRTA, Centre de La Ràpita, Aquaculture Program, 43540 La Ràpita, Spain
| | - Waldo G Nuez-Ortín
- Adisseo, Polígono Industrial, Valle del Cinca, 8A, 22300 Barbastro, Spain
| | | | - Laura Fernández-Alacid
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Wei XF, Liu YJ, Li SW, Ding L, Han SC, Chen ZX, Lu H, Wang P, Sun YC. Stress response and tolerance mechanisms of NaHCO 3 exposure based on biochemical assays and multi-omics approach in the liver of crucian carp (Carassius auratus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114633. [PMID: 36889228 DOI: 10.1016/j.ecoenv.2023.114633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The development and utilization of saline-alkaline water, an important backup resource, has received widespread attention. However, the underuse of saline-alkaline water, threatened by the single species of saline-alkaline aquaculture, seriously affects the development of the fishery economy. In this work, a 30-day NaHCO3 stress experimental study combined with analyses of untargeted metabolomics, transcriptome, and biochemical approaches was conducted on crucian carp to provide a better understanding of the saline-alkaline stress response mechanism in freshwater fish. This work revealed the relationships among the biochemical parameters, endogenous differentially expressed metabolites (DEMs), and differentially expressed genes (DEGs) in the crucian carp livers. The biochemical analysis showed that NaHCO3 exposure changed the levels of several physiological parameters associated with the liver, including antioxidant enzymes (SOD, CAT, GSH-Px), MDA, AKP, and CPS. According to the metabolomics study, 90 DEMs are involved in various metabolic pathways such as ketone synthesis and degradation metabolism, glycerophospholipid metabolism, arachidonic acid metabolism, and linoleic acid metabolism. In addition, transcriptomics data analysis showed that a total of 301 DEGs were screened between the control group and the high NaHCO3 concentration group, of which 129 up-regulated genes and 172 down-regulated genes. Overall, NaHCO3 exposure could cause lipid metabolism disorders and induce energy metabolism imbalance in the crucian carp liver. Simultaneously, crucian carp might regulate its saline-alkaline resistance mechanism by enhancing the synthesis of glycerophospholipid metabolism, ketone bodies, and degradation metabolism, at the same time increasing the vitality of antioxidant enzymes (SOD, CAT, GSH-Px) and nonspecific immune enzyme (AKP). Herein, all results will provide new insights into the molecular mechanisms underlying the stress responses and tolerance to saline-alkaline exposure in crucian carp.
Collapse
Affiliation(s)
- Xiao-Feng Wei
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Ying-Jie Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shan-Wei Li
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lu Ding
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shi-Cheng Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Zhong-Xiang Chen
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Hang Lu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Peng Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China.
| | - Yan-Chun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
13
|
Chen Y, Yan X, Wang T, Deng H, Deng X, Xu F, Liang H. PNPLA3 148M/M Is More Susceptible to Palmitic Acid-Induced Endoplasmic Reticulum Stress-Associated Apoptosis in HepG2 Cells. Int J Endocrinol 2023; 2023:2872408. [PMID: 36825197 PMCID: PMC9943609 DOI: 10.1155/2023/2872408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Patatin-like phospholipase domain-containing 3 (PNPLA3) is a major susceptibility gene for nonalcoholic fatty liver disease (NAFLD), and its rs738409 (I148M) polymorphism is associated with the occurrence and progression of NAFLD. Endoplasmic reticulum (ER) stress-related hepatocyte lipoapoptosis contributes to the progress of NAFLD. PNPLA3 is also known as a member of the calcium-independent phospholipase A2ε family, which can hydrolyze fatty acids to generate lysophosphatidylcholine (LPC) that induces ER stress-related hepatocyte lipoapoptosis. Whether the PNPLA3 risk genotype 148M/M is involved in more severe ER stress-associated lipoapoptosis is unclear. METHODS A PNPLA3148I knock-in HepG2 cell model was constructed based on HepG2 expressing PNPLA3 148M/M using the Cas9/sgRNA system. PNPLA3 148M/M, I/M, and I/I cells were treated with 0.3 mM palmitic acid (PA) for 24 h to induce lipid deposition. Cellular lipid deposition was detected by oil red staining. Apoptosis was observed by TUNEL. LPC was determined by ELISA, and the expression of PNPLA3, the ER stress marker Bip, molecules involved in the ER stress PERK/elF-2a pathway, and its downstream C/EBP homologous protein (CHOP)-mediated apoptotic pathway were detected by western blot. RESULTS The results showed no difference in PNPLA3 basal expression and basal hepatocyte lipid content between the three genotypes of cells. Lipid deposition and apoptosis were more severe in PNPLA3 148M/M and 148I/M cells than in I/I cells after PA treatment. PA-induced upregulation of protein expression of Bip, ER stress-responsive PERK pathway molecules p-PERK, p-eIF2α, CHOP, and CHOP-associated apoptotic molecules PUMA and Bax were more pronounced in PNPLA3 148M/M cells than in PNPLA3 148I/I cells. The basal LPC levels and the PA-treated increase of LPC levels in the cell culture supernatants did not differ between the three genotypic cells. CONCLUSION PNPLA3 148M/M cells were more susceptible to PA-induced lipid deposition and ER stress-related apoptosis than 148I/I cells, and the proapoptotic susceptibility of PNPLA3 148M/M is independent of LPC.
Collapse
Affiliation(s)
- Yunzhi Chen
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
- Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Xuemei Yan
- Department of Endocrinology and Metabolism, Joint Service Support Force 903 Hospital, Hangzhou 310005, China
| | - Tian Wang
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Hongrong Deng
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Xiaojie Deng
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Fen Xu
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Hua Liang
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| |
Collapse
|
14
|
Structural identification of lysophosphatidylcholines as activating ligands for orphan receptor GPR119. Nat Struct Mol Biol 2022; 29:863-870. [PMID: 35970999 DOI: 10.1038/s41594-022-00816-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/04/2022] [Indexed: 12/16/2022]
Abstract
Lysophosphatidylcholine (LPC) is an essential mediator in human lipid metabolism and is associated with a variety of diseases, but the exact identity of LPC receptors remains controversial. Through extensive biochemical and structural analyses, we have identified the orphan receptor GPR119 as the receptor for LPC. The structure of the GPR119-G-protein complex without any added ligands reveals a density map that fits well with LPC, which is further confirmed by mass spectrometry and functional studies. As LPCs are abundant on the cell membrane, their preoccupancy in the receptor may lead to 'constitutive activity' of GPR119. The structure of GPR119 bound to APD668, a clinical drug candidate for type 2 diabetes, reveals an exceedingly similar binding mode to LPC. Together, these data highlight structural evidence for LPC function in regulating glucose-dependent insulin secretion through direct binding and activation of GPR119, and provide structural templates for drug design targeting GPR119.
Collapse
|
15
|
Xue M, Zhang T, Cheng ZJ, Guo B, Zeng Y, Lin R, Zheng P, Liu M, Hu F, Li F, Zhang W, Li L, Zhao Q, Sun B, Tang X. Effect of a Functional Phospholipid Metabolome-Protein Association Pathway on the Mechanism of COVID-19 Disease Progression. Int J Biol Sci 2022; 18:4618-4628. [PMID: 35874944 PMCID: PMC9305269 DOI: 10.7150/ijbs.72450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
This study aimed to explore the clinical practice of phospholipid metabolic pathways in COVID-19. In this study, 48 COVID-19 patients and 17 healthy controls were included. Patients were divided into mild (n=40) and severe (n=8) according to their severity. Phospholipid metabolites, TCA circulating metabolites, eicosanoid metabolites, and closely associated enzymes and transfer proteins were detected in the plasma of all individuals using metabolomics and proteomics assays, respectively. 30 of the 33 metabolites found differed significantly (P<0.05) between patients and healthy controls (P<0.05), with D-dimmer significantly correlated with all of the lysophospholipid metabolites (LysoPE, LysoPC, LysoPI and LPA). In particular, we found that phosphatidylinositol (PI) and phosphatidylcholine (PC) could identify patients from healthy controls (AUC 0.771 and 0.745, respectively) and that the severity of the patients could be determined (AUC 0.663 and 0.809, respectively). The last measurement before discharge also revealed significant changes in both PI and PC. For the first time, our study explores the significance of the phospholipid metabolic system in COVID-19 patients. Based on molecular pathway mechanisms, three important phospholipid pathways related to Ceramide-Malate acid (Cer-SM), Lysophospholipid (LPs), and membrane function were established. Clinical values discovered included the role of Cer in maintaining the inflammatory internal environment, the modulation of procoagulant LPA by upstream fibrinolytic metabolites, and the role of PI and PC in predicting disease aggravation.
Collapse
Affiliation(s)
- Mingshan Xue
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China.,Guangzhou Laboratory, XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Teng Zhang
- MoE Frontiers Science Center for Precision Oncology, Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau. Taipa, Macau, China
| | - Zhangkai J Cheng
- Guangzhou Laboratory, XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Baojun Guo
- Guangzhou Laboratory, XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Yifeng Zeng
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Runpei Lin
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Peiyan Zheng
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Mingtao Liu
- Guangzhou Laboratory, XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Fengyu Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China
| | - Wensheng Zhang
- Institue of automation Chinese Academy of Sciences, Beijing, China
| | - Lu Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China
| | - Qi Zhao
- MoE Frontiers Science Center for Precision Oncology, Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau. Taipa, Macau, China
| | - Baoqing Sun
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Xiaoping Tang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China.,Guangzhou Laboratory, XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| |
Collapse
|
16
|
Multi-omic Profiling Reveals that Intra-abdominal-Hypertension-Induced Intestinal Damage Can Be Prevented by Microbiome and Metabolic Modulations with 5-Hydroxyindoleacetic Acid as a Diagnostic Marker. mSystems 2022; 7:e0120421. [PMID: 35574681 PMCID: PMC9238425 DOI: 10.1128/msystems.01204-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Emerging evidence shows that modulation of the microbiome can suppress intra-abdominal hypertension (IAH)-induced intestinal barrier damage through the regulation of amino acid (AA) biosynthesis. Here, we investigated the protective effects of orally gavaged Lactobacillus acidophilus L-92 (L92) and a mixture of AA in rats with induced IAH. The results showed that both L92 and AA pretreatments effectively mitigated IAH-induced intestinal damage. Interestingly, L92 but not AA prevented metagenomic changes induced by IAH. Bacteroides fragilis, Bacteroides eggerthii, Bacteroides ovatus, Faecalibacterium prausnitzii, Prevotella, and extensively altered functional pathways were associated with L92-mediated host protection. Metabolomic profiling revealed that tryptophan metabolism was involved in both L92- and AA-mediated gut protection. The tryptophan metabolite 5-hydroxyindoleacetic acid (5-HIAA) is a sensitive biomarker for IAH in rats and patients with either gut-derived sepsis (n = 41) or all-source sepsis (n = 293). In conclusion, we show that microbiome and metabolic modulations can effectively prevent IAH-induced intestinal damage and that 5-HIAA is a potential metabolic marker for IAH and sepsis. IMPORTANCE Gut protection through modulation of the microbiome for critically ill patients has been gaining much attention recently. Intra-abdominal hypertension (IAH) is a prevailing clinical feature of acute gastrointestinal injuries in critically ill patients, characterized by nonspecific intestinal barrier damage. Prolonged IAH can induce or aggravate the development of sepsis and multiorgan dysfunctions. Therefore, the prevention of IAH-induced damage in rats through microbiome and metabolic interventions by commercially available L92 and AA treatments and the identification of 5-HIAA as an important marker for IAH/sepsis have important clinical implications for the treatment and early diagnosis of critically ill patients.
Collapse
|
17
|
Zheng L, Mingxue Z, Zeng L, Yushi Z, Yuhan A, Yi Y, Botong L. A Landscape of Metabonomics for Intermingled Phlegm and Blood Stasis and Its Concurrent Syndromes in Stable Angina Pectoris of Coronary Heart Disease. Front Cardiovasc Med 2022; 9:871142. [PMID: 35647058 PMCID: PMC9136041 DOI: 10.3389/fcvm.2022.871142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives In this study, we analyzed the metabonomics of intermingled phlegm and blood stasis (IPBS) and its three concurrent syndromes in patients with stable angina pectoris of coronary heart disease. Methods A total of 164 sera of separated outpatients from 12 national tradition Chinese medicine clinical research centers with IPBS or concurrent syndromes were collected for the study and assessed with LC-ESI-MS/MS (liquid chromatography—electrospray ionization tandem—mass spectrometry)-based metabolomics and multivariate statistical analysis. Results Non-differential metabolites between IPBS and its separate syndrome combined with the top 100 most abundant metabolites in four groups were screened to reflect the essence of IPBS. Amino acid and its metabolomics and glycerol phospholipids were screened for common metabolites, and these metabolites were mainly enriched in valine, leucine, and isoleucine metabolism and glycerophospholipid metabolism. Principal component analysis revealed that the difference between IPBS and its separate concurrent syndromes was not distinct. Compared with IPBS, anserine, cytidine 5′-diphosphocholine, and 7,8-dihydro-L-biopterin separately significant increase in phlegm stasis and toxin (PST), phlegm stasis and Qi stagnation (PQS), and phlegm stasis and Qi deficiency (PQD). While these different metabolites were associated with histidine metabolism, beta-alanine metabolism, glycerophospholipid metabolism, and folate biosynthesis. Three accurate identification models were obtained to identify the difference between IPBS and its concurrent syndromes. Conclusion Our study indicated that valine, leucine, and isoleucine metabolism and glycerophospholipid metabolism could represent the essence of IPBS; dysregulated metabolites were valuable in identifying PST from IPBS.
Collapse
|
18
|
O'Donnell VB. New appreciation for an old pathway: the Lands Cycle moves into new arenas in health and disease. Biochem Soc Trans 2022; 50:1-11. [PMID: 35225335 PMCID: PMC9022965 DOI: 10.1042/bst20210579] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
Abstract
The Lands Pathway is a fundamental biochemical process named for its discovery by William EM Lands and revealed in a series of seminal papers published in the Journal of Biological Chemistry between 1958-65. It describes the selective placement in phospholipids of acyl chains, by phospholipid acyltransferases. This pathway has formed a core component of our knowledge of phospholipid and also diglyceride metabolism in mammalian tissues for over 60 years now. Our understanding of how the Lands pathways are enzymatically mediated via large families of related gene products that display both substrate and tissue specificity has grown exponentially since. Recent studies building on this are starting to reveal key roles for the Lands pathway in specific scenarios, in particular inflammation, immunity and inflammation. This review will cover the Lands cycle from historical perspectives first, then present new information on how this important cycle forms a central regulatory node connecting fatty acyl and phospholipid metabolism and how its altered regulation may present new opportunities for therapeutic intervention in human disease.
Collapse
Affiliation(s)
- Valerie B. O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4SN, U.K
| |
Collapse
|
19
|
Gogulska Z, Smolenska Z, Turyn J, Mika A, Zdrojewski Z. Lipid Alterations in Systemic Sclerosis. Front Mol Biosci 2022; 8:761721. [PMID: 34993231 PMCID: PMC8724564 DOI: 10.3389/fmolb.2021.761721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Systemic sclerosis (SSc) is an autoimmune disease with an elusive etiology and poor prognosis. Due to its diverse clinical presentation, a personalized approach is obligatory and needs to be based on a comprehensive biomarker panel. Therefore, particular metabolomic studies are necessary. Lipidomics addressed these issues and found disturbances in several crucial metabolic pathways. Aim of Review: The review aims to briefly summarize current knowledge related to lipid alterations in systemic sclerosis, highlight its importance, and encourage further research in this field. Key Scientific Concepts of Review: In this review, we summarized the studies on the lipidomic pattern, fatty acids, lipoproteins, cholesterol, eicosanoids, prostaglandins, leukotrienes, lysophospholipids, and sphingolipids in systemic sclerosis. Researchers demonstrated several alternate aspects of lipid metabolism. As we aimed to present our findings in a comprehensive view, we decided to divide our findings into three major groups: “serum lipoproteins,” “fatty acids and derivatives,” and “cellular membrane components,” as we do believe they play a prominent role in SSc pathology.
Collapse
Affiliation(s)
- Zuzanna Gogulska
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdansk, Gdansk, Poland
| | - Zaneta Smolenska
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdansk, Gdansk, Poland
| | - Jacek Turyn
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Zbigniew Zdrojewski
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
20
|
Bhattarai S, Sharma S, Ara H, Subedi U, Sun G, Li C, Bhuiyan MS, Kevil C, Armstrong WP, Minvielle MT, Miriyala S, Panchatcharam M. Disrupted Blood-Brain Barrier and Mitochondrial Impairment by Autotaxin-Lysophosphatidic Acid Axis in Postischemic Stroke. J Am Heart Assoc 2021; 10:e021511. [PMID: 34514847 PMCID: PMC8649548 DOI: 10.1161/jaha.121.021511] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022]
Abstract
Background The loss of endothelial integrity increases the risk of intracerebral hemorrhage during ischemic stroke. Adjunct therapeutic targets for reperfusion in ischemic stroke are in need to prevent blood-brain barrier disruption. Recently, we have shown that endothelial permeability is mediated by lysophosphatidic acid (LPA), but the role of autotaxin, which produces LPA, remains unclear in stroke. We investigate whether autotaxin/LPA axis regulates blood-brain barrier integrity after cerebral ischemia. Methods and Results Ischemic stroke was induced in mice by middle cerebral artery occlusion for 90 minutes, followed by 24-hour reperfusion. The therapeutic efficacy of autotaxin/LPA receptor blockade was evaluated using triphenyl tetrazolium chloride staining, Evans blue permeability, infrared imaging, mass spectrometry, and XF24 analyzer to evaluate blood-brain barrier integrity, autotaxin activity, and mitochondrial bioenergetics. In our mouse model of ischemic stroke, the mRNA levels of autotaxin were elevated 1.7-fold following the cerebral ischemia and reperfusion (I/R) group compared with the sham. The enzymatic activity of autotaxin was augmented by 4-fold in the I/R group compared with the sham. Plasma and brain tissues in I/R group showed elevated LPA levels. The I/R group also demonstrated mitochondrial dysfunction, as evidenced by decreased (P<0.01) basal oxygen consumption rate, mitochondrial ATP production, and spare respiratory capacity. Treatment with autotaxin inhibitors (HA130 or PF8380) or autotaxin/LPA receptor inhibitor (BrP-LPA) rescued endothelial permeability and mitochondrial dysfunction in I/R group. Conclusions Autotaxin-LPA signaling blockade attenuates blood-brain barrier disruption and mitochondrial function following I/R, suggesting targeting this axis could be a new therapeutic approach toward treating ischemic stroke.
Collapse
Affiliation(s)
- Susmita Bhattarai
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Sudha Sharma
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Hosne Ara
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Utsab Subedi
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Grace Sun
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Chun Li
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Md. Shenuarin Bhuiyan
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Christopher Kevil
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | | | - Miles T. Minvielle
- School of MedicineLouisiana State University Health Sciences CenterShreveportLA
| | - Sumitra Miriyala
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
- Division of CardiologyDepartment of Internal MedicineLouisiana State University Health Sciences CenterShreveportLA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
- Division of CardiologyDepartment of Internal MedicineLouisiana State University Health Sciences CenterShreveportLA
| |
Collapse
|
21
|
Liu TT, Pang SJ, Jia SS, Man QQ, Li YQ, Song S, Zhang J. Association of Plasma Phospholipids with Age-Related Cognitive Impairment: Results from a Cross-Sectional Study. Nutrients 2021; 13:2185. [PMID: 34201969 PMCID: PMC8308406 DOI: 10.3390/nu13072185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 01/14/2023] Open
Abstract
Decreased concentration of phospholipids were observed in brain tissue from individuals with dementia compared with controls, indicating phospholipids might be a key variable in development of age-related cognitive impairment. The reflection of these phospholipid changes in blood might provide both reference for diagnosis/monitoring and potential targets for intervention through peripheral circulation. Using a full-scale targeted phospholipidomic approach, 229 molecular species of plasma phospholipid were identified and quantified among 626 senile residents; the association of plasma phospholipids with MoCA score was also comprehensively discussed. Significant association was confirmed between phospholipid matrix and MoCA score by a distance-based linear model. Additionally, the network analysis further observed that two modules containing PEs were positively associated with MoCA score, and one module containing LPLs had a trend of negative correlation with MoCA score. Furthermore, 23 phospholipid molecular species were found to be significantly associated with MoCA score independent of fasting glucose, lipidemia, lipoproteins, inflammatory variables and homocysteine. Thus, the decreased levels of pPEs containing LC-PUFA and the augmented levels of LPLs were the most prominent plasma phospholipid changes correlated with the cognitive decline, while alterations in plasma PC, PS and SM levels accompanying cognitive decline might be due to variation of lipidemia and inflammatory levels.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing 100050, China; (T.-T.L.); (S.-S.J.); (Q.-Q.M.); (Y.-Q.L.); (J.Z.)
| | - Shao-Jie Pang
- Institute of Grain Quality and Nutrition Research, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China;
| | - Shan-Shan Jia
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing 100050, China; (T.-T.L.); (S.-S.J.); (Q.-Q.M.); (Y.-Q.L.); (J.Z.)
| | - Qing-Qing Man
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing 100050, China; (T.-T.L.); (S.-S.J.); (Q.-Q.M.); (Y.-Q.L.); (J.Z.)
| | - Yu-Qian Li
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing 100050, China; (T.-T.L.); (S.-S.J.); (Q.-Q.M.); (Y.-Q.L.); (J.Z.)
| | - Shuang Song
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing 100050, China; (T.-T.L.); (S.-S.J.); (Q.-Q.M.); (Y.-Q.L.); (J.Z.)
| | - Jian Zhang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing 100050, China; (T.-T.L.); (S.-S.J.); (Q.-Q.M.); (Y.-Q.L.); (J.Z.)
| |
Collapse
|
22
|
Cao H, Su S, Yang Q, Le Y, Chen L, Hu M, Guo X, Zheng J, Li X, Yu Y. Metabolic profiling reveals interleukin-17A monoclonal antibody treatment ameliorate lipids metabolism with the potentiality to reduce cardiovascular risk in psoriasis patients. Lipids Health Dis 2021; 20:16. [PMID: 33602246 PMCID: PMC7890626 DOI: 10.1186/s12944-021-01441-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
Background Psoriasis is a common chronic inflammatory skin disease associated with overproduction of interleukin-17A (IL-17A). IL-17A monoclonal antibodies (mAbs) have shown clinical efficacy in psoriasis patients. Although a series of different overlapping mechanisms have been found to establish a link between psoriasis and cardiovascular diseases, the underlying mechanisms of the two types of diseases and the potential efficacy of IL-17A mAbs in amelioration of cardiovascular comorbidities remain unclear. Methods Serum samples from two study cohorts including 117 individuals were analyzed using a high-throughput UHPLC-MS platform. Non-targeted metabolic profiling analysis was first conducted with samples from 28 healthy individuals and from 28 psoriasis patients before and after 12-weeks of ixekizumab treatment in study cohort 1. Study cohort 2 was additionally recruited to validate the correlations of the identified metabolites with cardiovascular diseases. Results A total of 43 differential metabolites, including lysophospholipids, free fatty acids, acylcarnitines and dicarboxylic acids, were accurately identified in study cohort 1, and the analysis showed that lipid metabolism was impaired in psoriasis patients. Compared with healthy individuals, psoriasis patients had higher levels of lysophosphatidylcholines, lysophosphatidylinositols, lysophosphatidic acids and free fatty acids, but lower levels of acylcarnitines and dicarboxylic acids. The identified dicarboxylic acid levels were inversely correlated with psoriasis area and severity index (PASI) scores (P < 0.05). The results for study cohort 2 were largely consistent with the results for study cohort 1. Moreover, the levels of all identified lysophosphatidylcholines were higher in psoriasis patients with coronary heart diseases than in psoriasis without coronary heart disease. Notably, most of these lipidic changes were ameliorated by ixekizumab treatment. Conclusion The results of this non-targeted metabolomic analysis indicate that treatment with IL-17A mAbs can not only ameliorate psoriasis lesions but also restore dysregulated lipid metabolism to normal levels in psoriasis patients. Considering that dysregulated lipid metabolism has been regarded as the critical factor in cardiovascular diseases, the recovery of lipid metabolites in psoriasis patients indicates that IL-17A mAbs might have the potential protective effects against cardiovascular comorbidities. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01441-9.
Collapse
Affiliation(s)
- Han Cao
- School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China
| | - Shengmin Su
- School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China
| | - Qi Yang
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, People's Republic of China
| | - Yunchen Le
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, People's Republic of China
| | - Lihong Chen
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, People's Republic of China
| | - Mengyan Hu
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, People's Republic of China
| | - Xiaoyu Guo
- School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China
| | - Jie Zheng
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, People's Republic of China
| | - Xia Li
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, People's Republic of China.
| | - Yunqiu Yu
- School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
23
|
Role of Peroxisome Proliferator-Activated Receptors (PPARs) in Trophoblast Functions. Int J Mol Sci 2021; 22:ijms22010433. [PMID: 33406768 PMCID: PMC7795665 DOI: 10.3390/ijms22010433] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARα, PPARβ/δ, and PPARγ) belong to the transcription factor family, and they are highly expressed in all types of trophoblast during pregnancy. The present review discusses currently published papers that are related to the regulation of PPARs via lipid metabolism, glucose metabolism, and amino acid metabolism to affect trophoblast physiological conditions, including differentiation, maturation, secretion, fusion, proliferation, migration, and invasion. Recent pieces of evidence have proven that the dysfunctions of PPARs in trophoblast lead to several related pregnancy diseases such as recurrent miscarriage, preeclampsia, intrauterine growth restriction, and gestational diabetes mellitus. Moreover, the underlying mechanisms of PPARs in the control of these processes have been discussed as well. Finally, this review's purposes are to provide more knowledge about the role of PPARs in normal and disturbed pregnancy with trophoblast, so as to find PPAR ligands as a potential therapeutic target in the treatment and prevention of adverse pregnancy outcomes.
Collapse
|
24
|
Therapeutic Potential of Porcine Liver Decomposition Product: New Insights and Perspectives for Microglia-Mediated Neuroinflammation in Neurodegenerative Diseases. Biomedicines 2020; 8:biomedicines8110446. [PMID: 33105637 PMCID: PMC7690401 DOI: 10.3390/biomedicines8110446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022] Open
Abstract
It is widely accepted that microglia-mediated inflammation contributes to the progression of neurodegenerative diseases; however, the precise mechanisms through which these cells contribute remain to be elucidated. Microglia, as the primary immune effector cells of the brain, play key roles in maintaining central nervous system (CNS) homeostasis. Microglia are located throughout the brain and spinal cord and may account for up to 15% of all cells in the brain. Activated microglia express pro-inflammatory cytokines that act on the surrounding brain and spinal cord. Microglia may also play a detrimental effect on nerve cells when they gain a chronic inflammatory function and promote neuropathologies. A key feature of microglia is its rapid morphological change upon activation, characterized by the retraction of numerous fine processes and the gradual acquisition of amoeba-like shapes. These morphological changes are also accompanied by the expression and secretion of inflammatory molecules, including cytokines, chemokines, and lipid mediators that promote systemic inflammation during neurodegeneration. This may be considered a protective response intended to limit further injury and initiate repair processes. We previously reported that porcine liver decomposition product (PLDP) induces a significant increase in the Hasegawa’s Dementia Scale-Revised (HDS-R) score and the Wechsler Memory Scale (WMS) in a randomized, double-blind, placebo-controlled study in healthy humans. In addition, the oral administration of porcine liver decomposition product enhanced visual memory and delayed recall in healthy adults. We believe that PLDP is a functional food that aids cognitive function. In this review, we provide a critical assessment of recent reports of lysophospholipids derived from PLDP, a rich source of phospholipids. We also highlight some recent findings regarding bidirectional interactions between lysophospholipids and microglia and age-related neurodegenerative diseases such as dementia and Alzheimer’s disease.
Collapse
|
25
|
Tan Y, Li Y, Zhou F, Guo J, Wang T, Shi Y, Yang Y, Lu J, Pei G. Administration of a mixture of triterpenoids from yeyachun and phenolic acids from danshen ameliorates carbon tetrachloride-induced liver fibrosis in mice by the regulation of intestinal flora. J Pharmacol Sci 2020; 143:165-175. [DOI: 10.1016/j.jphs.2020.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
|
26
|
Tsukahara T, Haniu H, Uemura T, Matsuda Y. Porcine liver decomposition product-derived lysophospholipids promote microglial activation in vitro. Sci Rep 2020; 10:3748. [PMID: 32111938 PMCID: PMC7048828 DOI: 10.1038/s41598-020-60781-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/05/2020] [Indexed: 12/18/2022] Open
Abstract
Cognitive impairments such as dementia are common in later life, and have been suggested to occur via a range of mechanisms, including oxidative stress, age-related changes to cellular metabolism, and a loss of phospholipids (PLs) from neuronal membranes. PLs are a class of amphipathic lipids that form plasma membrane lipid bilayers, and that occur at high concentrations in neuronal membranes. Our previous study suggested that a porcine liver decomposition product (PLDP) produced via protease treatment may improve cognitive function at older ages, by acting as a rich source of PLs and lysophospholipids (LPLs); however, its specific composition remains unclear. Thus, the present study used a novel liquid chromatography electrospray ionization tandem mass spectrometric (LC-MS/MS) protocol to identify the major PLs and LPLs in PLDP. Furthermore, it assessed the effect of identified LPLs on microglial activation in vitro, including cell shape, proliferation, and cell morphology. The results of the conducted analyses showed that PLDP and PLDP-derived LPLs concentration-dependently modulate microglial activation in vitro. In particular, lysophosphatidylcholine (LPC) concentration-dependently promotes cell morphology, likely via effects mediated by the enzyme autotaxin (ATX), since inhibiting ATX also promoted cell morphology, while conversely, increasing ATX production (via treatment with high levels of LPC) abolished this effect. These findings suggest that LPC is likely neuroprotective, and thus, support the importance of further research to assess its use as a therapeutic target to treat age-related cognitive impairments, including dementia.
Collapse
Affiliation(s)
- Tamotsu Tsukahara
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Hisao Haniu
- Institute for Biomedical Sciences, Shinshu University Interdisciplinary Cluster for Cutting Edge Research 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Takeshi Uemura
- Institute for Biomedical Sciences, Shinshu University Interdisciplinary Cluster for Cutting Edge Research 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.,Division of Gene Research, Research Center for Supports to Advanced Science, Shinshu University 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yoshikazu Matsuda
- Division of Clinical Pharmacology and Pharmaceutics, Nihon Pharmaceutical University, Ina-machi, Saitama, 362-0806, Japan
| |
Collapse
|
27
|
1-O-alkyl glycerophosphate-induced CD36 expression drives oxidative stress in microglial cells. Cell Signal 2020; 65:109459. [DOI: 10.1016/j.cellsig.2019.109459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022]
|
28
|
Xie Y, Wang X, Wu X, Tian L, Zhou J, Li X, Wang B. Lysophosphatidic acid receptor 4 regulates osteogenic and adipogenic differentiation of progenitor cells via inactivation of RhoA/ROCK1/β-catenin signaling. Stem Cells 2019; 38:451-463. [PMID: 31778241 DOI: 10.1002/stem.3128] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Yan Xie
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| | - Xiaochen Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| | - Xiaowen Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| | - Lijie Tian
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| | - Jie Zhou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| | - Xiaoxia Li
- College of Basic Medical Sciences; Tianjin Medical University; Tianjin People's Republic of China
| | - Baoli Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| |
Collapse
|
29
|
Shi Q, Jin S, Xiang X, Tian J, Huang R, Li S, Chen C, Xu H, Song C. The metabolic change in serum lysoglycerophospholipids intervened by triterpenoid saponins from Kuding tea on hyperlipidemic mice. Food Funct 2019; 10:7782-7792. [PMID: 31782452 DOI: 10.1039/c9fo02142f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triterpenoid saponins from Kuding tea have demonstrated preventive effects on hyperlipidaemia induced by a high-fat diet. Lysoglycerophospholipids (Lyso-GPLs) are known to be associated with proatherogenic conditions such as hyperlipidaemia. In this study, a target profiling strategy based on a multiple reaction monitoring mode was applied for the analysis of Lyso-GPLs. The metabolic changes were evaluated by the qualitative and relative quantitative distribution of six classes of Lyso-GPLs in mouse serum. A total of 153 Lyso-GPL regioisomers, consisting of 85 lysophosphatidylcholines, 15 lysophosphatidic acids, 23 lysophosphatidylethanolamines, 5 lysophosphatidylserines, 19 lysophosphatidylinositols and 6 lysophosphatidylglycerols, were detected and quantified. The results showed decreased trends in the content of total Lyso-GPLs in the serum of hyperlipidemic mice compared with that in normal controls. The content of total Lyso-GPLs significantly increased after treatment with triterpenoid saponins from Kuding tea. Among them, the proportions of most Lyso-GPLs with a higher degree of unsaturation or a longer carbon chain in fatty acyl chains dramatically decreased in hyperlipidemic mice. However, this tendency reversed after the treatment of triterpenoid saponins from Kuding tea. This is the first study regarding a target profiling strategy for the quantitative analysis of six different types of Lyso-GPLs on high-fat diet-induced hyperlipidemic mice intervened by Kuding tea. Those Lyso-GPLs changed significantly may be potential biomarkers for hyperlipidaemia, and involved in the mechanism of the preventive intervention of Kuding tea on Lipid metabolic diseases.
Collapse
Affiliation(s)
- Qingxin Shi
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
García-Jaramillo M, Lytle KA, Spooner MH, Jump DB. A Lipidomic Analysis of Docosahexaenoic Acid (22:6, ω3) Mediated Attenuation of Western Diet Induced Nonalcoholic Steatohepatitis in Male Ldlr -/- Mice. Metabolites 2019; 9:E252. [PMID: 31661783 PMCID: PMC6918288 DOI: 10.3390/metabo9110252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major public health problem worldwide. NAFLD ranges in severity from benign steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and primary hepatocellular cancer (HCC). Obesity and type 2 diabetes mellitus (T2DM) are strongly associated with NAFLD, and the western diet (WD) is a major contributor to the onset and progression of these chronic diseases. Our aim was to use a lipidomic approach to identify potential lipid mediators of diet-induced NASH. We previously used a preclinical mouse (low density lipoprotein receptor null mouse, Ldlr -/-) model to assess transcriptomic mechanisms linked to WD-induced NASH and docosahexaenoic acid (DHA, 22:6, ω3)-mediated remission of NASH. This report used livers from the previous study to carry out ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and high-performance liquid chromatography coupled with dynamic multi-reaction monitoring (HPLC-dMRM) to assess the impact of the WD and DHA on hepatic membrane lipid and oxylipin composition, respectively. Feeding mice the WD increased hepatic saturated and monounsaturated fatty acids and arachidonic acid (ARA, 20:4, ω6) in membrane lipids and suppressed ω3 polyunsaturated fatty acids (PUFA) in membrane lipids and ω3 PUFA-derived anti-inflammatory oxylipins. Supplementing the WD with DHA lowered hepatic ARA in membrane lipids and ARA-derived oxylipins and significantly increased hepatic DHA and its metabolites in membrane lipids, as well as C20-22 ω3 PUFA-derived oxylipins. NASH markers of inflammation and fibrosis were inversely associated with hepatic C20-22 ω3 PUFA-derived Cyp2C- and Cyp2J-generated anti-inflammatory oxylipins (false discovery rate adjusted p-value; q ≤ 0.026). Our findings suggest that dietary DHA promoted partial remission of WD-induced NASH, at least in part, by lowering hepatic pro-inflammatory oxylipins derived from ARA and increasing hepatic anti-inflammatory oxylipins derived from C20-22 ω3 PUFA.
Collapse
Affiliation(s)
- Manuel García-Jaramillo
- Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
- The Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Kelli A Lytle
- Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.
- The Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Melinda H Spooner
- Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.
- The Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Donald B Jump
- Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.
- The Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
31
|
Xu Y. Targeting Lysophosphatidic Acid in Cancer: The Issues in Moving from Bench to Bedside. Cancers (Basel) 2019; 11:E1523. [PMID: 31658655 PMCID: PMC6826372 DOI: 10.3390/cancers11101523] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Since the clear demonstration of lysophosphatidic acid (LPA)'s pathological roles in cancer in the mid-1990s, more than 1000 papers relating LPA to various types of cancer were published. Through these studies, LPA was established as a target for cancer. Although LPA-related inhibitors entered clinical trials for fibrosis, the concept of targeting LPA is yet to be moved to clinical cancer treatment. The major challenges that we are facing in moving LPA application from bench to bedside include the intrinsic and complicated metabolic, functional, and signaling properties of LPA, as well as technical issues, which are discussed in this review. Potential strategies and perspectives to improve the translational progress are suggested. Despite these challenges, we are optimistic that LPA blockage, particularly in combination with other agents, is on the horizon to be incorporated into clinical applications.
Collapse
Affiliation(s)
- Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut Street R2-E380, Indianapolis, IN 46202, USA.
| |
Collapse
|
32
|
Guo L, Lv J, Huang YF, Hao DJ, Liu JJ. Bioinformatics analyses of differentially expressed genes associated with spinal cord injury: A microarray-based analysis in a mouse model. Neural Regen Res 2019; 14:1262-1270. [PMID: 30804258 PMCID: PMC6425843 DOI: 10.4103/1673-5374.251335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
Gene spectrum analysis has shown that gene expression and signaling pathways change dramatically after spinal cord injury, which may affect the microenvironment of the damaged site. Microarray analysis provides a new opportunity for investigating diagnosis, treatment, and prognosis of spinal cord injury. However, differentially expressed genes are not consistent among studies, and many key genes and signaling pathways have not yet been accurately studied. GSE5296 was retrieved from the Gene Expression Omnibus DataSet. Differentially expressed genes were obtained using R/Bioconductor software (expression changed at least two-fold; P < 0.05). Database for Annotation, Visualization and Integrated Discovery was used for functional annotation of differentially expressed genes and Animal Transcription Factor Database for predicting potential transcription factors. The resulting transcription regulatory protein interaction network was mapped to screen representative genes and investigate their diagnostic and therapeutic value for disease. In total, this study identified 109 genes that were upregulated and 30 that were downregulated at 0.5, 4, and 24 hours, and 3, 7, and 28 days after spinal cord injury. The number of downregulated genes was smaller than the number of upregulated genes at each time point. Database for Annotation, Visualization and Integrated Discovery analysis found that many inflammation-related pathways were upregulated in injured spinal cord. Additionally, expression levels of these inflammation-related genes were maintained for at least 28 days. Moreover, 399 regulation modes and 77 nodes were shown in the protein-protein interaction network of upregulated differentially expressed genes. Among the 10 upregulated differentially expressed genes with the highest degrees of distribution, six genes were transcription factors. Among these transcription factors, ATF3 showed the greatest change. ATF3 was upregulated within 30 minutes, and its expression levels remained high at 28 days after spinal cord injury. These key genes screened by bioinformatics tools can be used as biological markers to diagnose diseases and provide a reference for identifying therapeutic targets.
Collapse
Affiliation(s)
- Lei Guo
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yun-Fei Huang
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Ding-Jun Hao
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Ji-Jun Liu
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|
33
|
Mongelli A, Martelli F, Farsetti A, Gaetano C. The Dark That Matters: Long Non-coding RNAs as Master Regulators of Cellular Metabolism in Non-communicable Diseases. Front Physiol 2019; 10:369. [PMID: 31191327 PMCID: PMC6539782 DOI: 10.3389/fphys.2019.00369] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022] Open
Abstract
Non-coding RNAs are pivotal for many cellular functions, such as splicing, gene regulation, chromosome structure, and hormone-like activity. Here, we will report about the biology and the general molecular mechanisms associated with long non-coding RNAs (lncRNAs), a class of >200 nucleotides-long ribonucleic acid sequences, and their role in chronic non-transmissible diseases. In particular, we will summarize knowledge about some of the best-characterized lncRNAs, such as H19 and MALAT1, and how they regulate carbohydrate and lipid metabolism as well as protein synthesis and degradation. Evidence is discussed about how lncRNAs expression might affect cellular and organismal metabolism and whether their modulation could provide ground for the development of innovative treatments.
Collapse
Affiliation(s)
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Antonella Farsetti
- Institute of Cell Biology and Neurobiology, National Research Council, Università Cattolica di Roma, Rome, Italy
| | - Carlo Gaetano
- Laboratory of Epigenetics, ICS Maugeri S.p.A., Pavia, Italy
| |
Collapse
|
34
|
Tigyi GJ, Johnson LR, Lee SC, Norman DD, Szabo E, Balogh A, Thompson K, Boler A, McCool WS. Lysophosphatidic acid type 2 receptor agonists in targeted drug development offer broad therapeutic potential. J Lipid Res 2019; 60:464-474. [PMID: 30692142 PMCID: PMC6399510 DOI: 10.1194/jlr.s091744] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/15/2019] [Indexed: 11/20/2022] Open
Abstract
The growth factor-like lipid mediator, lysophosphatidic acid (LPA), is a potent signaling molecule that influences numerous physiologic and pathologic processes. Manipulation of LPA signaling is of growing pharmacotherapeutic interest, especially because LPA resembles compounds with drug-like features. The action of LPA is mediated through activation of multiple types of molecular targets, including six G protein-coupled receptors that are clear targets for drug development. However, the LPA signaling has been linked to pathological responses that include promotion of fibrosis, atherogenesis, tumorigenesis, and metastasis. Thus, a question arises: Can we harness, in an LPA-like drug, the many beneficial activities of this lipid without eliciting its dreadful actions? We developed octadecyl thiophosphate (OTP; subsequently licensed as Rx100), an LPA mimic with higher stability in vivo than LPA. This article highlights progress made toward developing analogs like OTP and exploring prosurvival and regenerative LPA signaling. We determined that LPA prevents cell death triggered by various cellular stresses, including genotoxic stressors, and rescues cells condemned to apoptosis. LPA2 agonists provide a new treatment option for secretory diarrhea and reduce gastric erosion caused by nonsteroidal anti-inflammatory drugs. The potential uses of LPA2 agonists like OTP and sulfamoyl benzoic acid-based radioprotectins must be further explored for therapeutic uses.
Collapse
Affiliation(s)
- Gabor J Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN 38163
- RxBio Inc. Memphis, TN 38163
- Research Division Veterans Affairs Medical Center, Memphis, TN 38104
| | - Leonard R Johnson
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN 38163
- RxBio Inc. Memphis, TN 38163
| | - Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN 38163
| | - Derek D Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN 38163
- Research Division Veterans Affairs Medical Center, Memphis, TN 38104
| | - Erzsebet Szabo
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN 38163
| | - Andrea Balogh
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN 38163
| | | | | | | |
Collapse
|
35
|
Wepy JA, Galligan JJ, Kingsley PJ, Xu S, Goodman MC, Tallman KA, Rouzer CA, Marnett LJ. Lysophospholipases cooperate to mediate lipid homeostasis and lysophospholipid signaling. J Lipid Res 2018; 60:360-374. [PMID: 30482805 DOI: 10.1194/jlr.m087890] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
Lysophospholipids (LysoPLs) are bioactive lipid species involved in cellular signaling processes and the regulation of cell membrane structure. LysoPLs are metabolized through the action of lysophospholipases, including lysophospholipase A1 (LYPLA1) and lysophospholipase A2 (LYPLA2). A new X-ray crystal structure of LYPLA2 compared with a previously published structure of LYPLA1 demonstrated near-identical folding of the two enzymes; however, LYPLA1 and LYPLA2 have displayed distinct substrate specificities in recombinant enzyme assays. To determine how these in vitro substrate preferences translate into a relevant cellular setting and better understand the enzymes' role in LysoPL metabolism, CRISPR-Cas9 technology was utilized to generate stable KOs of Lypla1 and/or Lypla2 in Neuro2a cells. Using these cellular models in combination with a targeted lipidomics approach, LysoPL levels were quantified and compared between cell lines to determine the effect of losing lysophospholipase activity on lipid metabolism. This work suggests that LYPLA1 and LYPLA2 are each able to account for the loss of the other to maintain lipid homeostasis in cells; however, when both are deleted, LysoPL levels are dramatically increased, causing phenotypic and morphological changes to the cells.
Collapse
Affiliation(s)
- James A Wepy
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - James J Galligan
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Philip J Kingsley
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Shu Xu
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Michael C Goodman
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Keri A Tallman
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Carol A Rouzer
- Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Lawrence J Marnett
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146 .,Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| |
Collapse
|