1
|
Li G, Ni R, Shi Z, Mao H, Luo Y, Cao X, Zhang C, Liu Y, Jin Z, Chen J, Fu J, Zhang H, Zhu Y. Enhancing BMSC chondrogenesis with a dynamic viscoelastic hyaluronan hydrogel loaded with kartogenin for cartilage repair. Int J Biol Macromol 2025:144042. [PMID: 40345284 DOI: 10.1016/j.ijbiomac.2025.144042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 04/23/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Hydrogel-based cartilage tissue engineering (HCTE) offers a promising strategy for the regeneration of articular cartilage. However, the effectiveness of current HCTE is hindered by the low efficiency of stem cell transplantation and insufficient chondrogenic differentiation. Here, we develop a mechanically optimized and biochemically sustained biomaterial system that integrates a dynamic hydrazone/covalent dual-crosslinked hyaluronan (HA) hydrogel with kartogenin (KGN)-loaded poly(lactic-co-glycolic acid) microspheres to facilitate stem cell chondrogenesis and repair articular cartilage. This composite hydrogel features excellent injectability and self-healing behavior, allowing for minimally invasive implantation while protecting cell viability. The tunable viscoelasticity of the hydrogel enhances focal adhesion formation in bone-marrow mesenchymal stem cells (BMSCs), promoting their spreading, proliferation, and aggregation. Furthermore, the combined effects of hydrogel viscoelasticity and sustained KGN release markedly promote the expression of cartilage-specific genes and the secretion of extracellular matrix components through the integrin-mediated Hippo signaling pathway and KGN-mediated TGF-β signaling pathway. This dual-stimuli hydrogel embedded with BMSCs significantly promotes the regeneration of articular cartilage in rabbit models. Overall, the designed KGN composite dynamic HA-based hydrogel enables highly effective transplantation and promotes efficient chondrogenesis of stem cells, providing a promising approach for stem cell therapy and cartilage regeneration.
Collapse
Affiliation(s)
- Guanrong Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Renhao Ni
- Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zheyuan Shi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Yang Luo
- Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xu Cao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chi Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Yuetian Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhanping Jin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Jun Chen
- Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia.
| | - Jun Fu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Hua Zhang
- Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yingchun Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China.
| |
Collapse
|
2
|
Asadikorayem M, Weber P, Zhang S, Surman F, Fercher D, Fonti M, Bevc K, Kauppinen S, Frondelius T, Finnilä MAJ, Zenobi-Wong M. In-situ-forming zwitterionic hydrogel does not ameliorate osteoarthritis in vivo, despite protective effects ex vivo. BIOMATERIALS ADVANCES 2025; 169:214151. [PMID: 39700642 DOI: 10.1016/j.bioadv.2024.214151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases, with no effective therapeutic options available. In this study, we aimed to develop an interpenetrating, in-situ-forming hydrogel based on biocompatible and anti-fouling zwitterionic (ZI) polymers for early-stage OA treatment. We hypothesized that the anti-fouling properties of zwitterions could provide tissue protection, and the high charge density of these polymers would enhance tissue penetration and lubrication. The hydrogel comprises carboxybetaine acrylamide as the ZI backbone and tyramine acrylamide as a functional comonomer to enable enzymatic and tissue-adhesive crosslinking. The hydrogel demonstrated exceptional tissue penetration and long-term retention in bovine cartilage explants. Moreover, hydrogel application protected cartilage in inflammatory media, enhanced lubrication, and decreased permeability. However, ZI hydrogel injection in collagenase-induced osteoarthritis model in rats did not prevent cartilage degeneration, and similar levels of tissue degradation and surface roughness were observed in rats injected with the ZI hydrogel and in OA controls. Additionally, ZI polymer without in-situ crosslinking resulted in increased cartilage degradation compared to both hydrogel and OA control. Furthermore, synovial tissue inflammation and significantly increased immune cell infiltration were observed in response to ZI materials. This study highlights the potential immunogenicity effect of ZI polymers in our disease model, contributing to impaired protective effects as well as exacerbated degeneration.
Collapse
Affiliation(s)
- Maryam Asadikorayem
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Patrick Weber
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Shipin Zhang
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - David Fercher
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Marina Fonti
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Kajetana Bevc
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Sami Kauppinen
- Research Unit of Health Sciences and Technology, University of Oulu, Aapistie 5A, 90220 Oulu, Finland
| | - Tuomas Frondelius
- Research Unit of Health Sciences and Technology, University of Oulu, Aapistie 5A, 90220 Oulu, Finland
| | - Mikko A J Finnilä
- Research Unit of Health Sciences and Technology, University of Oulu, Aapistie 5A, 90220 Oulu, Finland; Biocenter Oulu, University of Oulu, Aapistie 5A, 90220 Oulu, Finland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland.
| |
Collapse
|
3
|
Boos MA, Lim KS, Lamandé SR, Stok KS. Viscoelasticity Can Be Tuned Through Covalent Incorporation of Chondroitin Sulphate in Allylated Gelatin Hydrogels. Macromol Biosci 2025:e2400422. [PMID: 40107873 DOI: 10.1002/mabi.202400422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/05/2025] [Indexed: 03/22/2025]
Abstract
Cartilage is a slow-remodeling tissue with limited healing capacity. This has led to decades of tissue engineering efforts where the goal is biomaterials with regenerative capacity to restore functional integrity. Achieving full functional and mechanical integrity has proven difficult as cartilage has distinct mechanical properties. Glycosaminoglycans (GAGs) play a crucial role in cartilage mechanics due to their swelling behavior, contributing to viscoelasticity. The aims of this study are to covalently incorporate thiolated chondroitin sulphate (CSSH) in allylated gelatin (gelAGE) hydrogels at different concentrations to mimic GAG-rich regions in cartilage and create platforms to study subsequent cellular behavior. Hydrogels are evaluated for soluble fraction, swelling ratio, chondroitin sulphate (CS) retention, mechanical and viscoelastic properties, and cytocompatibility. ≈80% of CSSH is retained, and samples containing CSSH has an increased swelling ratio, indicating the incorporation of GAGs. Samples containing CSSH has an increased relaxation amplitude compared to gelAGE controls with a more elastic response. The addition of CSSH has no adverse effects on cytocompatibility. In conclusion, this study demonstrates the incorporation of thiolated CS in gelAGE hydrogels at different concentrations with no adverse effects on cytocompatibility. This allows for viscoelastic tuning which is important to consider when engineering new biomaterials.
Collapse
Affiliation(s)
- Manuela A Boos
- Department of Biomedical Engineering, The University of Melbourne, Parkville, 3010, Australia
| | - Khoon S Lim
- School of Medical Sciences, The University of Sydney, Sydney, 2006, Australia
| | - Shireen R Lamandé
- Musculoskeletal Research, Murdoch Children's Research Institute, The Royal Children's Hospital, 50 Flemington Road, Parkville, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, 3010, Australia
| | - Kathryn S Stok
- Department of Biomedical Engineering, The University of Melbourne, Parkville, 3010, Australia
| |
Collapse
|
4
|
Weber P, Asadikorayem M, Zenobi-Wong M. Zwitterionic Poly-Carboxybetaine Polymers Restore Lubrication of Inflamed Articular Cartilage. Adv Healthc Mater 2024; 13:e2401623. [PMID: 39007282 DOI: 10.1002/adhm.202401623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Osteoarthritis is a degenerative joint disease that is associated with decreased synovial fluid viscosity and increased cartilage friction. Though viscosupplements are available for decades, their clinical efficacy is limited and there is ample need for more effective joint lubricants. This study first evaluates the tribological and biochemical properties of bovine articular cartilage explants after stimulation with the inflammatory cytokine interleukin-1β. This model is then used to investigate the tribological potential of carboxybetaine (CBAA)-based zwitterionic polymers of linear and bottlebrush architecture. Due to their affinity for cartilage tissue, these polymers form a highly hydrated surface layer that decreases friction under high load in the boundary lubrication regime. For linear pCBAA, these benefits are retained over several weeks and the relaxation time of cartilage explants under compression is furthermore decreased, thereby potentially boosting the weeping lubrication mechanism. Bottlebrush bb-pCBAA shows smaller benefits under boundary lubrication but is more viscous than linear pCBAA, therefore providing better lubrication under low load in the fluid-film regime and enabling a longer residence time to bind to the cartilage surface. Showing how CBAA-based polymers restore the lost lubrication mechanisms during inflammation can inspire the next steps toward more effective joint lubricants in the future.
Collapse
Affiliation(s)
- Patrick Weber
- Tissue Engineering + Biofabrication Laboratory, ETH Zurich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Maryam Asadikorayem
- Tissue Engineering + Biofabrication Laboratory, ETH Zurich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, ETH Zurich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| |
Collapse
|
5
|
Han X, Scialla S, Limiti E, Davis ET, Trombetta M, Rainer A, Jones SW, Mauri E, Zhang ZJ. Nanoscopic gel particle for intra-articular injection formulation. BIOMATERIALS ADVANCES 2024; 163:213956. [PMID: 39032433 DOI: 10.1016/j.bioadv.2024.213956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Hyaluronic acid (HA) based nanogels showed effective intracellular delivery efficacy for anti-cancer and anti-inflammatory drugs, characterized by their ability targeting relevant cell receptors. In the present study, we demonstrate the ability of hyaluronic acid-polyethyleneimine (HA-PEI) nanogels as a promising dual-functional interfacial active for intra-articular injection to intervene arthritis. Nanomechanical measurements on both model substrates and human cartilage samples confirm that the HA-PEI nanogels can significantly improve interfacial lubrication, in comparison to HA molecules, or silica-based nanoparticles. We show that the Coefficient of Friction significantly decreases with a decreasing nanogel size. The exceptional lubricating performance, coupled with the proven drug delivery capability, evidences the great potential of nanoscopic hydrogels for early-stage arthritis treatment. The flexibility in choosing the chemical nature, molecular architecture, and structural characteristics of nanogels makes it possible to modulate both drug delivery kinetics and interfacial lubrication, thus representing an innovative approach to treat degenerative joint diseases.
Collapse
Affiliation(s)
- Xiaoyu Han
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Stefano Scialla
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; National Institute of Chemical Physics and Biophysics - Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Emanuele Limiti
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; Institute of Nanotechnology (NANOTEC), National Research Council, 73100 Lecce, Italy
| | - Edward T Davis
- Royal Orthopaedic Hospital, Bristol Road, Birmingham, B31 2AP, United Kingdom
| | - Marcella Trombetta
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, via Álvaro del Portillo 200, 00128 Rome, Italy
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC Versus Arthritis Research Centre for Musculoskeletal Ageing Research, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WB, United Kingdom
| | - Emanuele Mauri
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Zhenyu J Zhang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
6
|
Berni M, Veronesi F, Fini M, Giavaresi G, Marchiori G. Relations between Structure/Composition and Mechanics in Osteoarthritic Regenerated Articular Tissue: A Machine Learning Approach. Int J Mol Sci 2023; 24:13374. [PMID: 37686179 PMCID: PMC10487849 DOI: 10.3390/ijms241713374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
In the context of a large animal model of early osteoarthritis (OA) treated by orthobiologics, the purpose of this study was to reveal relations between articular tissues structure/composition and cartilage viscoelasticity. Twenty-four sheep, with induced knee OA, were treated by mesenchymal stem cells in various preparations-adipose-derived mesenchymal stem cells (ADSCs), stromal vascular fraction (SVF), and amniotic endothelial cells (AECs)-and euthanized at 3 or 6 months to evaluate the (i) biochemistry of synovial fluid; (ii) histology, immunohistochemistry, and histomorphometry of articular cartilage; and (iii) viscoelasticity of articular cartilage. After performing an initial analysis to evaluate the correlation and multicollinearity between the investigated variables, this study used machine learning (ML) models-Variable Selection Using Random Forests (VSURF) and Extreme Gradient Boosting (XGB)-to classify variables according to their importance and employ them for interpretation and prediction. The experimental setup revealed a potential relation between cartilage elastic modulus and cartilage thickness (CT), synovial fluid interleukin 6 (IL6), and prostaglandin E2 (PGE2), and between cartilage relaxation time and CT and PGE2. SVF treatment was the only limit on the deleterious OA effect on cartilage viscoelastic properties. This work provides indications to future studies aiming to highlight these and other relationships and focusing on advanced regeneration targets.
Collapse
Affiliation(s)
- Matteo Berni
- Medical Technology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy;
| | - Francesca Veronesi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy; (G.G.); (G.M.)
| | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy;
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy; (G.G.); (G.M.)
| | - Gregorio Marchiori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy; (G.G.); (G.M.)
| |
Collapse
|
7
|
Rovnyagina NR, Budylin GS, Dyakonov PV, Efremov YM, Lipina MM, Goncharuk YR, Murdalov EE, Pogosyan DA, Davydov DA, Korneev AA, Serejnikova NB, Mikaelyan KA, Evlashin SA, Lazarev VA, Lychagin AV, Timashev PS, Shirshin EA. Grading cartilage damage with diffuse reflectance spectroscopy: Optical markers and mechanical properties. JOURNAL OF BIOPHOTONICS 2023; 16:e202200149. [PMID: 36066126 DOI: 10.1002/jbio.202200149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/01/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Osteoarthritis (OA) is one of the most common joint diseases worldwide. Unfortunately, clinical methods lack the ability to detect OA in the early stages. Timely detection of the knee joint degradation at the level of tissue changes can prevent its progressive damage. Here, diffuse reflectance spectroscopy (DRS) in the NIR range was used to obtain optical markers of the cartilage damage grades and to assess its mechanical properties. It was observed that the water content obtained by DRS strongly correlates with the cartilage thickness (R = .82) and viscoelastic relaxation time (R = .7). Moreover, the spectral parameters, including water content (OH-band), protein content (CH-band), and scattering parameters allowed for discrimination between the cartilage damage grades (10-4 < P ≤ 10-3 ). The developed approach may become a valuable addition to arthroscopy, helping to identify lesions at the microscopic level in the early stages of OA and complement the surgical analysis.
Collapse
Affiliation(s)
- Nataliya R Rovnyagina
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Gleb S Budylin
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pavel V Dyakonov
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, Sechenov First Moscow State Medical University, Moscow, Russia
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Yuri M Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marina M Lipina
- Department of Trauma, Orthopedics and Disaster Surgery, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yuliya R Goncharuk
- Department of Trauma, Orthopedics and Disaster Surgery, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Emirkhan E Murdalov
- Department of Trauma, Orthopedics and Disaster Surgery, Sechenov First Moscow State Medical University, Moscow, Russia
| | - David A Pogosyan
- Department of Trauma, Orthopedics and Disaster Surgery, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Denis A Davydov
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexander A Korneev
- N.V. Sklifosovskiy Institute of Clinical Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Natalia B Serejnikova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Karen A Mikaelyan
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Stanislav A Evlashin
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Vladimir A Lazarev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | - Alexey V Lychagin
- Department of Trauma, Orthopedics and Disaster Surgery, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Evgeny A Shirshin
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Todros S, Spadoni S, Barbon S, Stocco E, Confalonieri M, Porzionato A, Pavan PG. Compressive Mechanical Behavior of Partially Oxidized Polyvinyl Alcohol Hydrogels for Cartilage Tissue Repair. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120789. [PMID: 36550995 PMCID: PMC9774902 DOI: 10.3390/bioengineering9120789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Polyvinyl alcohol (PVA) hydrogels are extensively used as scaffolds for tissue engineering, although their biodegradation properties have not been optimized yet. To overcome this limitation, partially oxidized PVA has been developed by means of different oxidizing agents, obtaining scaffolds with improved biodegradability. The oxidation reaction also allows tuning the mechanical properties, which are essential for effective use in vivo. In this work, the compressive mechanical behavior of native and partially oxidized PVA hydrogels is investigated, to evaluate the effect of different oxidizing agents, i.e., potassium permanganate, bromine, and iodine. For this purpose, PVA hydrogels are tested by means of indentation tests, also considering the time-dependent mechanical response. Indentation results show that the oxidation reduces the compressive stiffness from about 2.3 N/mm for native PVA to 1.1 ÷ 1.4 N/mm for oxidized PVA. During the consolidation, PVA hydrogels exhibit a force reduction of about 40% and this behavior is unaffected by the oxidizing treatment. A poroviscoelastic constitutive model is developed to describe the time-dependent mechanical response, accounting for the viscoelastic polymer matrix properties and the flow of water molecules within the matrix during long-term compression. This model allows to estimate the long-term Young's modulus of PVA hydrogels in drained conditions (66 kPa for native PVA and 34-42 kPa for oxidized PVA) and can be exploited to evaluate their performances under compressive stress in vivo, as in the case of cartilage tissue engineering.
Collapse
Affiliation(s)
- Silvia Todros
- Department of Industrial Engineering, University of Padova, via Venezia 1, 35131 Padova, Italy
| | - Silvia Spadoni
- Department of Industrial Engineering, University of Padova, via Venezia 1, 35131 Padova, Italy
- Correspondence:
| | - Silvia Barbon
- Department of Neurosciences, Section of Human Anatomy, University of Padova, via A. Gabelli 65, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Regione Veneto, via N. Giustiniani 2, 35128 Padova, Italy
| | - Elena Stocco
- Department of Neurosciences, Section of Human Anatomy, University of Padova, via A. Gabelli 65, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Regione Veneto, via N. Giustiniani 2, 35128 Padova, Italy
| | - Marta Confalonieri
- Department of Industrial Engineering, University of Padova, via Venezia 1, 35131 Padova, Italy
| | - Andrea Porzionato
- Department of Neurosciences, Section of Human Anatomy, University of Padova, via A. Gabelli 65, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Regione Veneto, via N. Giustiniani 2, 35128 Padova, Italy
| | - Piero Giovanni Pavan
- Department of Industrial Engineering, University of Padova, via Venezia 1, 35131 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127 Padova, Italy
| |
Collapse
|
9
|
Berni M, Erani P, Lopomo NF, Baleani M. Optimization of In Situ Indentation Protocol to Map the Mechanical Properties of Articular Cartilage. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6425. [PMID: 36143736 PMCID: PMC9505484 DOI: 10.3390/ma15186425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Tissue engineering aims at developing complex composite scaffolds for articular cartilage repair. These scaffolds must exhibit a mechanical behavior similar to the whole osteochondral unit. In situ spherical indentation allows us to map the mechanical behavior of articular cartilage, avoiding removal of the underlying bone tissue. Little is known about the impact of grid spacing, indenter diameter, and induced deformation on the cartilage response to indentation. We investigated the impact of grid spacing (range: a to 3a, where a is the radius of the contact area between cartilage and indenter), indenter diameter (range: 1 to 8 mm), and deformation induced by indentation (constant indentation depth versus constant nominal deformation) on cartilage response. The bias induced by indentations performed in adjacent grid points was minimized with a 3a grid spacing. The cartilage response was indenter-dependent for diameters ranging between 1 and 6 mm with a nominal deformation of 15%. No significant differences were found using 6 mm and 8 mm indenters. Six mm and 8 mm indenters were used to map human articular cartilage with a grid spacing equal to 3a. Instantaneous elastic modulus E0 was calculated for constant indentation depth and constant nominal deformation. E0 value distribution did not change significantly by switching the two indenters, while dispersion decreased by 5-6% when a constant nominal deformation was applied. Such an approach was able to discriminate changes in tissue response due to doubling the indentation rate. The proposed procedure seems to reduce data dispersion and properly determine cartilage mechanical properties to be compared with those of complex composite scaffolds.
Collapse
Affiliation(s)
- Matteo Berni
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Paolo Erani
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | | | - Massimiliano Baleani
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
10
|
Oliveira AS, Silva JC, Figueiredo L, Ferreira FC, Kotov NA, Colaço R, Serro AP. High-performance bilayer composites for the replacement of osteochondral defects. Biomater Sci 2022; 10:5856-5875. [DOI: 10.1039/d2bm00716a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two novel bilayer constructs for the repair of osteochondral defects were developed from nanofibers and ceramic particles embedded into PVA matrices, exhibiting multiple promising properties similar to those of corresponding natural tissues.
Collapse
Affiliation(s)
- A. S. Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Instituto de Engenharia Mecânica and Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - J. C. Silva
- Centre for Rapid and Sustainable Product Development, Politécnico de Leiria, Rua de Portugal – Zona Industrial, 2430-028 Marinha Grande, Portugal
- Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - L. Figueiredo
- Bioceramed S.A., Rua José Gomes Ferreira 1 Arm. D, 2660-360 São Julião do Tojal, Portugal
| | - F. C. Ferreira
- Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - N. A. Kotov
- Biointerfaces Institute and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - R. Colaço
- Instituto de Engenharia Mecânica and Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - A. P. Serro
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| |
Collapse
|
11
|
Khan B, Kafian-Attari I, Nippolainen E, Shaikh R, Semenov D, Hauta-Kasari M, Töyräs J, Afara IO. Articular cartilage optical properties in the near-infrared (NIR) spectral range vary with depth and tissue integrity. BIOMEDICAL OPTICS EXPRESS 2021; 12:6066-6080. [PMID: 34745722 PMCID: PMC8548021 DOI: 10.1364/boe.430053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 05/02/2023]
Abstract
Optical properties of biological tissues in the NIR spectral range have demonstrated significant potential for in vivo diagnostic applications and are critical parameters for modelling light interaction in biological tissues. This study aims to investigate the optical properties of articular cartilage as a function of tissue depth and integrity. The results suggest consistent wavelength-dependent variation in optical properties between cartilage depth-wise zones, as well as between healthy and degenerated tissue. Also, statistically significant differences (p<0.05) in both optical properties were observed between the different cartilage depth-wise zones and as a result of tissue degeneration. When taken into account, the outcome of this study could enable accurate modelling of light interaction in cartilage matrix and could provide useful diagnostic information on cartilage integrity.
Collapse
Affiliation(s)
- Bilour Khan
- University of Eastern Finland, Department of Applied Physics, Yliopistonranta 1, Kuopio, Finland, 70120, Finland
| | - Iman Kafian-Attari
- University of Eastern Finland, Department of Applied Physics, Yliopistonranta 1, Kuopio, Finland, 70120, Finland
| | - Ervin Nippolainen
- University of Eastern Finland, Department of Applied Physics, Yliopistonranta 1, Kuopio, Finland, 70120, Finland
| | - Rubina Shaikh
- University of Eastern Finland, Department of Applied Physics, Yliopistonranta 1, Kuopio, Finland, 70120, Finland
| | - Dmitry Semenov
- University of Eastern Finland, School of Computing, Lämsikatu 15, Joensuu, Finland, 80110, Finland
| | - Markku Hauta-Kasari
- University of Eastern Finland, School of Computing, Lämsikatu 15, Joensuu, Finland, 80110, Finland
| | - Juha Töyräs
- University of Eastern Finland, Department of Applied Physics, Yliopistonranta 1, Kuopio, Finland, 70120, Finland
- The University of Queensland, School of Information Technology, and Electrical Engineering, St. Lucia, Australia, QLD 4072, Australia
| | - Isaac O. Afara
- University of Eastern Finland, Department of Applied Physics, Yliopistonranta 1, Kuopio, Finland, 70120, Finland
- The University of Queensland, School of Information Technology, and Electrical Engineering, St. Lucia, Australia, QLD 4072, Australia
| |
Collapse
|
12
|
Perni S, Prokopovich P. Rheometer enabled study of cartilage frequency-dependent properties. Sci Rep 2020; 10:20696. [PMID: 33244092 PMCID: PMC7693262 DOI: 10.1038/s41598-020-77758-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 11/17/2020] [Indexed: 12/02/2022] Open
Abstract
Despite the well-established dependence of cartilage mechanical properties on the frequency of the applied load, most research in the field is carried out in either load-free or constant load conditions because of the complexity of the equipment required for the determination of time-dependent properties. These simpler analyses provide a limited representation of cartilage properties thus greatly reducing the impact of the information gathered hindering the understanding of the mechanisms involved in this tissue replacement, development and pathology. More complex techniques could represent better investigative methods, but their uptake in cartilage research is limited by the highly specialised training required and cost of the equipment. There is, therefore, a clear need for alternative experimental approaches to cartilage testing to be deployed in research and clinical settings using more user-friendly and financial accessible devices. Frequency dependent material properties can be determined through rheometry that is an easy to use requiring a relatively inexpensive device; we present how a commercial rheometer can be adapted to determine the viscoelastic properties of articular cartilage. Frequency-sweep tests were run at various applied normal loads on immature, mature and trypsinased (as model of osteoarthritis) cartilage samples to determine the dynamic shear moduli (G*, G′ G″) of the tissues. Moduli increased with increasing frequency and applied load; mature cartilage had generally the highest moduli and GAG depleted samples the lowest. Hydraulic permeability (KH) was estimated from the rheological data and decreased with applied load; GAG depleted cartilage exhibited higher hydraulic permeability than either immature or mature tissues. The rheometer-based methodology developed was validated by the close comparison of the rheometer-obtained cartilage characteristics (G*, G′, G″, KH) with results obtained with more complex testing techniques available in literature. Rheometry is relatively simpler and does not require highly capital intensive machinery and staff training is more accessible; thus the use of a rheometer would represent a cost-effective approach for the determination of frequency-dependent properties of cartilage for more comprehensive and impactful results for both healthcare professional and R&D.
Collapse
Affiliation(s)
- Stefano Perni
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Redwood BuildingCardiff, CF10 3NB, UK
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Redwood BuildingCardiff, CF10 3NB, UK.
| |
Collapse
|
13
|
Can sodium MRI be used as a method for mapping of cartilage stiffness? MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:327-336. [PMID: 33180225 PMCID: PMC8154796 DOI: 10.1007/s10334-020-00893-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/19/2020] [Accepted: 10/23/2020] [Indexed: 11/10/2022]
Abstract
Objective Sodium concentration is responsible for (at least part of) the stiffness of articular cartilage due to the osmotic pressure it generates. Therefore, we hypothesized that we could use sodium MRI to approximate the stiffness of cartilage to assess early cartilage degeneration. Methods Four human tibial plateaus were retrieved from patients undergoing total knee replacement (TKR), and their cartilage stiffness mapped with indentation testing, after which samples were scanned in a 7 T MRI to determine sodium concentration. The relation of biomechanical parameters to MRI sodium and glycosaminoglycan (GAG) concentration was explored by a linear mixed model. Results Weak correlations of GAG concentration with apparent peak modulus (p = 0.0057) and apparent equilibrium modulus (p = 0.0181) were observed and lack of correlation of GAG concentration versus MRI sodium concentration was observed. MRI sodium concentration was not correlated with apparent peak modulus, though a moderate correlation of MRI sodium concentration with permeability was shown (p = 0.0014). Discussion and conclusion Although there was correlation between GAG concentration and cartilage stiffness, this was not similar with sodium concentration as measured by MRI. Thus, if the correlation between MRI sodium imaging and GAG concentration could be resolved, this strategy for assessing cartilage functional quality still holds promise. Electronic supplementary material The online version of this article (10.1007/s10334-020-00893-x) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Nebelung S, Post M, Knobe M, Shah D, Schleich C, Hitpass L, Kuhl C, Thüring J, Truhn D. Human articular cartilage mechanosensitivity is related to histological degeneration - a functional MRI study. Osteoarthritis Cartilage 2019; 27:1711-1720. [PMID: 31319176 DOI: 10.1016/j.joca.2019.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate changes in response to sequential pressure-controlled loading and unloading in human articular cartilage of variable histological degeneration using serial T1ρ mapping. METHOD We obtained 42 cartilage samples of variable degeneration from the medial femoral condyles of 42 patients undergoing total knee replacement. Samples were placed in a standardized artificial knee joint within an MRI-compatible whole knee-joint compressive loading device and imaged before (δ0), during (δld1, δld2, δld3, δld4, δld5) and after (δrl1, δrl2, δrl3, δrl4, δrl5) pressure-controlled loading to 0.663 ± 0.021 kN (94% body weight) using serial T1ρ mapping (spin-lock multigradient echo sequence; 3.0T MRI system [Achieva, Philips]). Reference assessment included histology (Mankin scoring) and conventional biomechanics (Tangent stiffness). We dichotomized sample into intact (n = 21) and degenerative (n = 21) based on histology and analyzed data using Mann Whitney, Kruskal Wallis, one-way ANOVA tests and Spearman's correlation, respectively. RESULTS At δ0, we found no significant differences between intact and degenerative samples, while the response-to-loading patterns were distinctly different. In intact samples, T1ρ increases were consistent and non-significant, while in degenerative samples, T1ρ increases were significantly higher (P = 0.004, δ0 vs δld1, δ0 vs δld3), yet undulating and variable. With unloading, T1ρ increases subsided, yet were persistently elevated beyond δ0. CONCLUSION Cartilage mechanosensitivity is related to histological degeneration and assessable by serial T1ρ mapping. Unloaded, T1ρ characteristics are not significantly different in intact vs degenerative cartilage, while load bearing is organized in intact cartilage and disorganized in degenerative cartilage.
Collapse
Affiliation(s)
- S Nebelung
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - M Post
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - M Knobe
- Department of Orthopaedic Trauma, Aachen University Hospital, Aachen, Germany.
| | - D Shah
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - C Schleich
- Department of Diagnostic and Interventional Radiology, University of Düsseldorf, Düsseldorf, Germany.
| | - L Hitpass
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - C Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - J Thüring
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - D Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany; Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
15
|
Soleimani M, Funnell WRJ, Decraemer WF. A Non-linear Viscoelastic Model of the Incudostapedial Joint. J Assoc Res Otolaryngol 2019; 21:21-32. [PMID: 31620954 DOI: 10.1007/s10162-019-00736-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/02/2019] [Indexed: 10/25/2022] Open
Abstract
The ossicular joints of the middle ear can significantly affect middle-ear function, particularly under conditions such as high-intensity sound pressures or high quasi-static pressures. Experimental investigations of the mechanical behaviour of the human incudostapedial joint have shown strong non-linearity and asymmetry in tension and compression tests, but some previous finite-element models of the joint have had difficulty replicating such behaviour. In this paper, we present a finite-element model of the joint that can match the asymmetry and non-linearity well without using different model structures or parameters in tension and compression. The model includes some of the detailed structures of the joint seen in histological sections. The material properties are found from the literature when available, but some parameters are calculated by fitting the model to experimental data from tension, compression and relaxation tests. The model can predict the hysteresis loops of loading and unloading curves. A sensitivity analysis for various parameters shows that the geometrical parameters have substantial effects on the joint mechanical behaviour. While the joint capsule affects the tension curve more, the cartilage layers affect the compression curve more.
Collapse
Affiliation(s)
- Majid Soleimani
- Department of BioMedical Engineering, McGill University, 3775, rue University, Montréal, QC, H3A 2B4, Canada
| | - W Robert J Funnell
- Department of BioMedical Engineering, McGill University, 3775, rue University, Montréal, QC, H3A 2B4, Canada. .,Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Canada.
| | - Willem F Decraemer
- Department of Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| |
Collapse
|
16
|
Maier F, Lewis CG, Pierce DM. The evolving large-strain shear responses of progressively osteoarthritic human cartilage. Osteoarthritis Cartilage 2019; 27:810-822. [PMID: 30660720 DOI: 10.1016/j.joca.2018.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/22/2018] [Accepted: 12/28/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The composition and structure of articular cartilage evolves during the development and progression of osteoarthritis (OA) resulting in changing mechanical responses. We aimed to assess the evolution of the intrinsic, large-strain mechanics of human articular cartilage-governed by collagen and proteoglycan and their interactions-during the progression of OA. DESIGN We completed quasi-static, large-strain shear tests on 64 specimens from ten donors undergoing total knee arthroplasty (TKA), and quantified the corresponding state of OA (OARSI grade), structural integrity (PLM score), and composition (glycosaminoglycan and collagen content). RESULTS We observed nonlinear stress-strain relationships with distinct hystereses for all magnitudes of applied strain where stiffnesses, nonlinearities, and hystereses all reduced as OA advanced. We found a reduction in energy dissipation density up to 80% in severely degenerated (OARSI grade 4, OA-4) vs normal (OA-1) cartilage, and more importantly, we found that even cartilage with a normal appearance in structure and composition (OA-1) dissipated 50% less energy than healthy (control) load-bearing cartilage (HL0). Changes in stresses and stiffnesses were in general less pronounced and did not allow us to distinguish between healthy load-bearing controls and very early-stage OA (OA-1), or to distinguish consistently among different levels of degeneration, i.e., OARSI grades. CONCLUSIONS Our results suggest that reductions in energy dissipation density can be detected by bulk-tissue testing, and that these reductions precede visible signs of degeneration. We highlight the potential of energy dissipation, as opposed to stress- or stiffness-based measures, as a marker to diagnose early-stage OA.
Collapse
Affiliation(s)
- F Maier
- University of Connecticut, Department of Mechanical Engineering, Storrs, CT, USA
| | - C G Lewis
- Hartford Healthcare, Bone & Joint Institute, Hartford, CT, USA
| | - D M Pierce
- University of Connecticut, Department of Mechanical Engineering, Storrs, CT, USA; University of Connecticut, Department of Biomedical Engineering, Storrs, CT, USA.
| |
Collapse
|