1
|
Aslam A, Mahmood A, Ur-Rehman H, Li C, Liang X, Shao J, Negm S, Moustafa M, Aamer M, Hassan MU. Plant Adaptation to Flooding Stress under Changing Climate Conditions: Ongoing Breakthroughs and Future Challenges. PLANTS (BASEL, SWITZERLAND) 2023; 12:3824. [PMID: 38005721 PMCID: PMC10675391 DOI: 10.3390/plants12223824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
Climate-change-induced variations in temperature and rainfall patterns are a serious threat across the globe. Flooding is the foremost challenge to agricultural productivity, and it is believed to become more intense under a changing climate. Flooding is a serious form of stress that significantly reduces crop yields, and future climatic anomalies are predicted to make the problem even worse in many areas of the world. To cope with the prevailing flooding stress, plants have developed different morphological and anatomical adaptations in their roots, aerenchyma cells, and leaves. Therefore, researchers are paying more attention to identifying developed and adopted molecular-based plant mechanisms with the objective of obtaining flooding-resistant cultivars. In this review, we discuss the various physiological, anatomical, and morphological adaptations (aerenchyma cells, ROL barriers (redial O2 loss), and adventitious roots) and the phytohormonal regulation in plants under flooding stress. This review comprises ongoing innovations and strategies to mitigate flooding stress, and it also provides new insights into how this knowledge can be used to improve productivity in the scenario of a rapidly changing climate and increasing flood intensity.
Collapse
Affiliation(s)
- Amna Aslam
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (A.A.); (H.U.-R.)
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Hafeez Ur-Rehman
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (A.A.); (H.U.-R.)
| | - Cunwu Li
- Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Institute of Water Resources Research, Nanning 530023, China; (C.L.); (J.S.)
| | - Xuewen Liang
- Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Institute of Water Resources Research, Nanning 530023, China; (C.L.); (J.S.)
| | - Jinhua Shao
- Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Institute of Water Resources Research, Nanning 530023, China; (C.L.); (J.S.)
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia;
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha 61421, Saudi Arabia;
| | - Muhammad Aamer
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.)
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.)
| |
Collapse
|
2
|
Pais IP, Moreira R, Semedo JN, Ramalho JC, Lidon FC, Coutinho J, Maçãs B, Scotti-Campos P. Wheat Crop under Waterlogging: Potential Soil and Plant Effects. PLANTS (BASEL, SWITZERLAND) 2022; 12:149. [PMID: 36616278 PMCID: PMC9823972 DOI: 10.3390/plants12010149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Inundation, excessive precipitation, or inadequate field drainage can cause waterlogging of cultivated land. It is anticipated that climate change will increase the frequency, intensity, and unpredictability of flooding events. This stress affects 10-15 million hectares of wheat every year, resulting in 20-50% yield losses. Since this crop greatly sustains a population's food demands, providing ca. 20% of the world's energy and protein diets requirements, it is crucial to understand changes in soil and plant physiology under excess water conditions. Variations in redox potential, pH, nutrient availability, and electrical conductivity of waterlogged soil will be addressed, as well as their impacts in major plant responses, such as root system and plant development. Waterlogging effects at the leaf level will also be addressed, with a particular focus on gas exchanges, photosynthetic pigments, soluble sugars, membrane integrity, lipids, and oxidative stress.
Collapse
Affiliation(s)
- Isabel P. Pais
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Rita Moreira
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - José N. Semedo
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José C. Ramalho
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - Fernando C. Lidon
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José Coutinho
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Estrada Gil Vaz, Ap. 6, 7350-901 Elvas, Portugal
| | - Benvindo Maçãs
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Estrada Gil Vaz, Ap. 6, 7350-901 Elvas, Portugal
| | - Paula Scotti-Campos
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
3
|
Zentgraf U, Andrade-Galan AG, Bieker S. Specificity of H 2O 2 signaling in leaf senescence: is the ratio of H 2O 2 contents in different cellular compartments sensed in Arabidopsis plants? Cell Mol Biol Lett 2022; 27:4. [PMID: 34991444 PMCID: PMC8903538 DOI: 10.1186/s11658-021-00300-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/17/2021] [Indexed: 01/21/2023] Open
Abstract
Leaf senescence is an integral part of plant development and is driven by endogenous cues such as leaf or plant age. Developmental senescence aims to maximize the usage of carbon, nitrogen and mineral resources for growth and/or for the sake of the next generation. This requires efficient reallocation of the resources out of the senescing tissue into developing parts of the plant such as new leaves, fruits and seeds. However, premature senescence can be induced by severe and long-lasting biotic or abiotic stress conditions. It serves as an exit strategy to guarantee offspring in an unfavorable environment but is often combined with a trade-off in seed number and quality. In order to coordinate the very complex process of developmental senescence with environmental signals, highly organized networks and regulatory cues have to be in place. Reactive oxygen species, especially hydrogen peroxide (H2O2), are involved in senescence as well as in stress signaling. Here, we want to summarize the role of H2O2 as a signaling molecule in leaf senescence and shed more light on how specificity in signaling might be achieved. Altered hydrogen peroxide contents in specific compartments revealed a differential impact of H2O2 produced in different compartments. Arabidopsis lines with lower H2O2 levels in chloroplasts and cytoplasm point to the possibility that not the actual contents but the ratio between the two different compartments is sensed by the plant cells.
Collapse
Affiliation(s)
- Ulrike Zentgraf
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany.
| | - Ana Gabriela Andrade-Galan
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Stefan Bieker
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| |
Collapse
|
4
|
Ahmed HAI, Shabala L, Shabala S. Tissue-specificity of ROS-induced K + and Ca 2+ fluxes in succulent stems of the perennial halophyte Sarcocornia quinqueflora in the context of salinity stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:1022-1031. [PMID: 34274889 DOI: 10.1016/j.plaphy.2021.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 05/11/2023]
Abstract
The ability of halophytes to thrive under saline conditions implies efficient ROS detoxification and signalling. In this work, the causal relationship between key membrane transport processes involved in maintaining plant ionic homeostasis and oxidative stress tolerance was investigated in a succulent perennial halophyte Sarcocornia quinqueflora. The flux responses to oxidative stresses induced by either hydroxyl radicals (OH•) or hydrogen peroxide (H2O2) were governed largely by (1) the type of ROS applied; (2) the tissue-specific origin and function (parenchymatic or chlorenchymatic); and (3) the tissue location in respect to the suberized endodermal barrier. The latter implied significant differences in responses between outer (water storage-WS; palisade tissue-Pa) and inner (internal photosynthetic layer-IP; stele parenchyma-SP) stem tissues. The ability of the cell to retain K+ under OH• stress varied between different tissues and was ranked in the following descending order: WS>Pa>IP>SP. OH• always led to Ca2+ influx in all stem tissues, while treatment with H2O2 induced tissue-specific Ca2+ "signatures". The inner/outer K+ ratio was the highest (~2.6) under the optimum NaCl dosage (200 mM) in comparison to non-saline (~0.4) and severe (800 mM; ~0.7) conditions, implying that a higher K+ concentration in the inner tissues is important for optimum growth. The overall results demonstrate a clear link between plant anatomical structure and ability of its tissues to maintain ionic homeostasis, via modulating their ROS sensitivity.
Collapse
Affiliation(s)
- Hassan Ahmed Ibraheem Ahmed
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, 7005, Australia; Department of Botany, Faculty of Science, Port Said University, Port Said, 42526, Egypt.
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, 7005, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, 7005, Australia; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China.
| |
Collapse
|
5
|
Hancock JT, Russell G. Downstream Signalling from Molecular Hydrogen. PLANTS (BASEL, SWITZERLAND) 2021; 10:367. [PMID: 33672953 PMCID: PMC7918658 DOI: 10.3390/plants10020367] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022]
Abstract
Molecular hydrogen (H2) is now considered part of the suite of small molecules that can control cellular activity. As such, H2 has been suggested to be used in the therapy of diseases in humans and in plant science to enhance the growth and productivity of plants. Treatments of plants may involve the creation of hydrogen-rich water (HRW), which can then be applied to the foliage or roots systems of the plants. However, the molecular action of H2 remains elusive. It has been suggested that the presence of H2 may act as an antioxidant or on the antioxidant capacity of cells, perhaps through the scavenging of hydroxyl radicals. H2 may act through influencing heme oxygenase activity or through the interaction with reactive nitrogen species. However, controversy exists around all the mechanisms suggested. Here, the downstream mechanisms in which H2 may be involved are critically reviewed, with a particular emphasis on the H2 mitigation of stress responses. Hopefully, this review will provide insight that may inform future research in this area.
Collapse
Affiliation(s)
- John T. Hancock
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK;
| | | |
Collapse
|
6
|
Pottosin I, Olivas-Aguirre M, Dobrovinskaya O, Zepeda-Jazo I, Shabala S. Modulation of Ion Transport Across Plant Membranes by Polyamines: Understanding Specific Modes of Action Under Stress. FRONTIERS IN PLANT SCIENCE 2021; 11:616077. [PMID: 33574826 PMCID: PMC7870501 DOI: 10.3389/fpls.2020.616077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 05/20/2023]
Abstract
This work critically discusses the direct and indirect effects of natural polyamines and their catabolites such as reactive oxygen species and γ-aminobutyric acid on the activity of key plant ion-transporting proteins such as plasma membrane H+ and Ca2+ ATPases and K+-selective and cation channels in the plasma membrane and tonoplast, in the context of their involvement in stress responses. Docking analysis predicts a distinct binding for putrescine and longer polyamines within the pore of the vacuolar TPC1/SV channel, one of the key determinants of the cell ionic homeostasis and signaling under stress conditions, and an additional site for spermine, which overlaps with the cytosolic regulatory Ca2+-binding site. Several unresolved problems are summarized, including the correct estimates of the subcellular levels of polyamines and their catabolites, their unexplored effects on nucleotide-gated and glutamate receptor channels of cell membranes and Ca2+-permeable and K+-selective channels in the membranes of plant mitochondria and chloroplasts, and pleiotropic mechanisms of polyamines' action on H+ and Ca2+ pumps.
Collapse
Affiliation(s)
- Igor Pottosin
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Biomedical Center, University of Colima, Colima, Mexico
| | | | | | - Isaac Zepeda-Jazo
- Food Genomics Department, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo, Mexico
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
7
|
Bouteau F, Reboutier D, Tran D, Laurenti P. Ion Transport in Plant Cell Shrinkage During Death. Front Cell Dev Biol 2020; 8:566606. [PMID: 33195198 PMCID: PMC7604285 DOI: 10.3389/fcell.2020.566606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/08/2020] [Indexed: 01/24/2023] Open
Affiliation(s)
- François Bouteau
- Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - David Reboutier
- UMR 6290-IGDR Expression Génétique et Développement Faculté de Médecine, Rennes, France
| | - Daniel Tran
- Agroscope, Institute for Plant Production Systems, Conthey, Switzerland
| | - Patrick Laurenti
- Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| |
Collapse
|
8
|
Pedersen O, Revsbech NP, Shabala S. Microsensors in plant biology: in vivo visualization of inorganic analytes with high spatial and/or temporal resolution. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3941-3954. [PMID: 32253437 DOI: 10.1093/jxb/eraa175] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
This Expert View provides an update on the recent development of new microsensors, and briefly summarizes some novel applications of existing microsensors, in plant biology research. Two major topics are covered: (i) sensors for gaseous analytes (O2, CO2, and H2S); and (ii) those for measuring concentrations and fluxes of ions (macro- and micronutrients and environmental pollutants such as heavy metals). We show that application of such microsensors may significantly advance understanding of mechanisms of plant-environmental interaction and regulation of plant developmental and adaptive responses under adverse environmental conditions via non-destructive visualization of key analytes with high spatial and/or temporal resolution. Examples included cover a broad range of environmental situations including hypoxia, salinity, and heavy metal toxicity. We highlight the power of combining microsensor technology with other advanced biophysical (patch-clamp, voltage-clamp, and single-cell pressure probe), imaging (MRI and fluorescent dyes), and genetic techniques and approaches. We conclude that future progress in the field may be achieved by applying existing microsensors for important signalling molecules such as NO and H2O2, by improving selectivity of existing microsensors for some key analytes (e.g. Na, Mg, and Zn), and by developing new microsensors for P.
Collapse
Affiliation(s)
- Ole Pedersen
- Department of Biology, University of Copenhagen, Denmark
- School of Agriculture and Environment, The University of Western Australia, Australia
| | - Niels Peter Revsbech
- Aarhus University Centre for Water Technology, Department of Bioscience, Aarhus University, Denmark
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, China
| |
Collapse
|
9
|
Wang L, Stacey G, Leblanc-Fournier N, Legué V, Moulia B, Davies JM. Early Extracellular ATP Signaling in Arabidopsis Root Epidermis: A Multi-Conductance Process. FRONTIERS IN PLANT SCIENCE 2019; 10:1064. [PMID: 31552068 PMCID: PMC6737080 DOI: 10.3389/fpls.2019.01064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/06/2019] [Indexed: 05/13/2023]
Abstract
Adenosine 5'-triphosphate (ATP) is an important extracellular signaling agent, operating in growth regulation, stomatal conductance, and wound response. With the first receptor for extracellular ATP now identified in plants (P2K1/DORN1) and a plasma membrane NADPH oxidase revealed as its target, the search continues for the components of the signaling cascades they command. The Arabidopsis root elongation zone epidermal plasma membrane has recently been shown to contain cation transport pathways (channel conductances) that operate downstream of P2K1 and could contribute to extracellular ATP (eATP) signaling. Here, patch clamp electrophysiology has been used to delineate two further conductances from the root elongation zone epidermal plasma membrane that respond to eATP, including one that would permit chloride transport. This perspective addresses how these conductances compare to those previously characterized in roots and how they might operate together to enable early events in eATP signaling, including elevation of cytosolic-free calcium as a second messenger. The role of the reactive oxygen species (ROS) that could arise from eATP's activation of NADPH oxidases is considered in a qualitative model that also considers the regulation of plasma membrane potential by the concerted action of the various cation and anion conductances. The molecular identities of the channel conductances in eATP signaling remain enigmatic but may yet be found in the multigene families of glutamate receptor-like channels, cyclic nucleotide-gated channels, annexins, and aluminum-activated malate transporters.
Collapse
Affiliation(s)
- Limin Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, United States
| | | | - Valérie Legué
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Bruno Moulia
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Julia M. Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Julia M. Davies,
| |
Collapse
|