1
|
Zhang WJ, Shi QM, Li TZ, Huang YW. G protein coupled P2Y2 receptor as a regulatory molecule in cancer progression. Arch Biochem Biophys 2024; 762:110194. [PMID: 39486566 DOI: 10.1016/j.abb.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/01/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The occurrence and development of cancer involves the participation of many factors, its pathological mechanism is far more complicated than other diseases, and the treatment is also extremely difficult. Although the treatment of cancer adopts diversified methods to improve the survival rate and quality of life of patients, but the drug resistance, metastasis and recurrence of cancer cause most patients to fail in treatment. Therefore, exploring new molecular targets in cancer pathology is of great value for improving and preventing the treatment of cancer. Fortunately, the P2Y2 purinergic receptor (P2Y2 receptor) in the G protein-coupled receptor family has been recognized for regulating cancer progression. Agonist activated P2Y2 receptor has a certain contribution to the growth and metastasis of tumor cells. P2Y2 receptor activation participates in cancer progression by regulating calcium ion channels and classical signaling pathways (such as PLC-PKC and PI3K/AKT). It has the effect of anti-tumor therapy by inhibiting the activation of P2Y2 receptor (the use of antagonist) and reducing its expression. Therefore, in this article, we focus on the expression patterns of P2Y2 receptor in cancer and potential pharmacological targets as anti-cancer treatments.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Qing-Ming Shi
- Orthopedic Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Teng-Zheng Li
- Orthopedic Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Ya-Wei Huang
- Urology Department, The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang City, China.
| |
Collapse
|
2
|
An J, Cho J. Wheat phytase potentially protects HT-29 cells from inflammatory nucleotides-induced cytotoxicity. Anim Biosci 2023; 36:1604-1611. [PMID: 37402454 PMCID: PMC10475372 DOI: 10.5713/ab.23.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/20/2023] [Accepted: 05/23/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the protective effect of wheat phytase as a structural decomposer of inflammatory nucleotides, extracellular adenosine triphosphate (ATP), and uridine diphosphate (UDP) on HT-29 cells. METHODS Phosphatase activities of wheat phytase against ATP and UDP was investigated in the presence or absence of inhibitors such as L-phenylalanine and L-homoarginine using a Pi Color Lock gold phosphate detection kit. Viability of HT-29 cells exposed to intact- or dephosphorylated-nucleotides was analyzed with an EZ-CYTOX kit. Secretion levels of pro-inflammatory cytokines (IL-6 and IL-8) in HT-29 cells exposed to substrate treated with or without wheat phytase were measured with enzyme-linked immunosorbent assay kits. Activation of caspase-3 in HT-29 cells treated with intact ATP or dephosphorylated-ATP was investigated using a colorimetric assay kit. RESULTS Wheat phytase dephosphorylated both nucleotides, ATP and UDP, in a dosedependent manner. Regardless of the presence or absence of enzyme inhibitors (L-phenylalanine and L-homoarginine), wheat phytase dephosphorylated UDP. Only L-phenylalanine inhibited the dephosphorylation of ATP by wheat phytase. However, the level of inhibition was less than 10%. Wheat phytase significantly enhanced the viability of HT-29 cells against ATP- and UDP-induced cytotoxicity. Interleukin (IL)-8 released from HT-29 cells with nucleotides dephosphorylated by wheat phytase was higher than that released from HT-29 cells with intact nucleotides. Moreover, the release of IL-6 was strongly induced from HT-29 cells with UDP dephosphorylated by wheat phytase. HT-29 cells with ATP degraded by wheat phytase showed significantly (13%) lower activity of caspase-3 than HT-29 cells with intact ATP. CONCLUSION Wheat phytase can be a candidate for veterinary medicine to prevent cell death in animals. In this context, wheat phytase beyond its nutritional aspects might be a novel and promising tool for promoting growth and function of intestinal epithelial cells under luminal ATP and UDP surge in the gut.
Collapse
Affiliation(s)
- Jeongmin An
- Department of Animal Science and Technology, Konkuk University, Seoul 05029,
Korea
| | - Jaiesoon Cho
- Department of Animal Science and Technology, Konkuk University, Seoul 05029,
Korea
| |
Collapse
|
3
|
Kovak N, DeRosa S, Fischer C, Murphy K, Wolf J. Inclusion of airway pressure release ventilation in the management of respiratory failure and refractory hypercapnia in a dog. J Vet Emerg Crit Care (San Antonio) 2022; 32:817-823. [PMID: 36031749 DOI: 10.1111/vec.13231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To describe the use of airway pressure release ventilation (APRV) to relieve hypercapnia in a dog undergoing mechanical ventilation. CASE SUMMARY A 3-month-old male Shar-Pei mix presented to the emergency department with suspected noncardiogenic pulmonary edema. Due to severe hypercapnia, mechanical ventilation was initiated. The hypercapnia failed to improve with conventional pressure control mechanical ventilation, bronchodilator administration, suctioning, or endotracheal tube replacement. The dog was transitioned to APRV and maintained in this mode for 36 hours. A modified APRV protocol in which inverse inspiratory to expiratory ratios ranged from 4.3:1 to 6.0:1 was utilized, resulting in a drastic improvement in the patient's hypercapnia. The patient eventually was transitioned off the ventilator, and no respiratory abnormalities have been noted at subsequent recheck examinations. NEW OR UNIQUE INFORMATION PROVIDED This case documents the first use of APRV to relieve refractory hypercapnia in a dog undergoing mechanical ventilation and is one of the only recorded cases of using APRV for this purpose in the medical literature at large. APRV may be considered in cases of hypercapnia when traditional therapies fail, although caution is warranted as this mode of ventilation can also worsen hypercapnia.
Collapse
Affiliation(s)
- Natalie Kovak
- Department of Clinical Sciences and Advanced Medicine, Matthew J. Ryan Veterinary Hospital, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Sage DeRosa
- Department of Clinical Sciences and Advanced Medicine, Matthew J. Ryan Veterinary Hospital, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Christiana Fischer
- Department of Clinical Sciences and Advanced Medicine, Matthew J. Ryan Veterinary Hospital, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Kellyann Murphy
- Department of Clinical Sciences and Advanced Medicine, Matthew J. Ryan Veterinary Hospital, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Jacob Wolf
- Department of Clinical Sciences and Advanced Medicine, Matthew J. Ryan Veterinary Hospital, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Zhang M, Tu W, Zhang Q, Wu X, Zou X, Jiang S. Osteocalcin reduces fat accumulation and inflammatory reaction by inhibiting ROS-JNK signal pathway in chicken embryonic hepatocytes. Poult Sci 2022; 101:102026. [PMID: 36174267 PMCID: PMC9519800 DOI: 10.1016/j.psj.2022.102026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/24/2022] Open
Abstract
Osteocalcin (OCN) has a function in preventing fatty liver hemorrhagic syndrome (FLHS) in poultry. The aim of this study was to investigate the effects of OCN on fat emulsion stimulated chicken embryonic hepatocytes and related signaling pathways. The primary chicken embryonic hepatocytes were isolated from the incubated 15-day (E15) pathogen free eggs and cultured with dulbecco's modified eagle medium (DMEM). After the hepatocyte density reached 80%, the cells were divided into 5 groups: control group (CONT), fat emulsion group (FE, 10% FE, v/v), FE with ucOCN at 1 ng/mL (FE-LOCN), 3 ng/mL (FE-MOCN), and 9 ng/mL (FE-HOCN). In addition, 2 mM N-Acetyl-L-cysteine (NAC) a reactive oxygen species (ROS) scavenger, and 5 μM SP600125, a Jun N-terminal kinase (JNK) inhibitor, were added separately in to the DMEM with 10% FE to test effects of FE on the function of ROS-JNK signal pathway. The number of hepatocytes, cell ultra-microstructure, viability, and apoptosis were detected after 48 h treatment, and the protein expressions and enzyme concentrations were detected after 72 h treatment. The results showed that, compared to the control group, FE increased the triglyceride (TG) concentration and lipid droplets (LDs) in chicken embryonic hepatocytes (P < 0.05), and induced hepatocytic edema with obviously mitochondrial swelling, membrane damage, and cristae rupture. FE also decreased ATP concentration, increased ROS concentrations and mitochondrial DNA (mtDNA) copy number, promoted inflammatory interleukin-1 (IL-1), IL-6, tumor necrosis factor-alpha (TNF-α) concentrations and hepatocytic apoptosis rate, and raised phospho-c-Jun N-terminal kinase (p-JNK) protein expressions. Compared to the FE group, ucOCN significantly increased hepatocyte viability, reduced hepatocytic TG concentrations and LDs numbers, and alleviated hepatocytic edema and mitochondrial swelling. Furthermore, ucOCN significantly decreased ROS concentrations, increased ATP concentrations, reduced IL-1, IL-6, TNF-α concentrations and hepatocytic apoptosis rate, and inhibited p-JNK protein expressions (P < 0.05). NAC had the similar functions of ucOCN reduced the ROS concentration and inhibited the TNF-α protein expression and p-JNK/JNK ration. Similarly, SP600125 reduced p-JNK/JNK protein expression, IL-1, IL-6, TNF-α, and TG concentrations without effects on ROS concentration and hepatocytic apoptosis. These results suggest that ucOCN alleviates FE-induced mitochondrial damage, cellular edema, and apoptosis of hepatocytes. These results reveal that the functions of ucOCN in reducing fat accumulation and inflammatory reaction in chicken embryonic hepatocytes are mostly via inhibiting the ROS-JNK signal pathway.
Collapse
|
5
|
Wei W, Sun Z, He S, Zhang W, Chen S, Cao YN, Wang N. Mechanical ventilation induces lung and brain injury through ATP production, P2Y1 receptor activation and dopamine release. Bioengineered 2022; 13:2346-2359. [PMID: 35034579 PMCID: PMC8974168 DOI: 10.1080/21655979.2021.2022269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mechanical ventilation can induce lung injury and exacerbate brain injury due to lung-brain interaction. The current study sought to investigate the mechanism of lung-brain interaction induced by mechanical ventilation and offer theoretical insight into the management of ventilator-induced brain injury. The experimental mice were assigned into the spontaneously breathing group and the mechanical ventilation group and injected with dopamine (DA) receptor antagonist haloperidol or P2Y1 receptor antagonist MRS2279 before ventilation. In vitro assay was conducted using lung epithelial cells MLE-12 hippocampal neuron cells and HT-22. Mouse recognition function and lung injury were examined. The condition and concentration of neurons in the hippocampus were observed. The levels of several inflammatory factors, DA, adenosine triphosphate (ATP), P2Y1R, and dysbindin-1 were detected. Mechanical ventilation induced lung and brain injury in mice, manifested in increased inflammatory factors in the bronchoalveolar lavage fluid and hippocampus, prolonged escape latency, and swimming distance and time in the target quadrant with a weakened concentration of neurons in the hippocampus. Our results presented elevated ATP and P2Y1R expressions in the mechanically ventilated mice and stretched MLE-12 cells. The mechanically ventilated mice and P2Y1 receptor activator MRS2365-treated HT-22 cells presented with elevated levels of DA and dysbindin-1. Inactivation of P2Y1 receptor in the hippocampus or blockage of DA receptor alleviated brain injury induced by mechanical ventilation in mice. To conclude, the current study elicited that lung injury induced by mechanical ventilation exacerbated brain injury in mice by increasing ATP production, activating the P2Y1 receptor, and thus promoting DA release.
Collapse
Affiliation(s)
- Wei Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhentao Sun
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shifeng He
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wanyue Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sai Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ya-Nan Cao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ning Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Tung JP, Chiaretti S, Dean MM, Sultana AJ, Reade MC, Fung YL. Transfusion-related acute lung injury (TRALI): Potential pathways of development, strategies for prevention and treatment, and future research directions. Blood Rev 2022; 53:100926. [DOI: 10.1016/j.blre.2021.100926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
|
7
|
Hasan D, Shono A, van Kalken CK, van der Spek PJ, Krenning EP, Kotani T. A novel definition and treatment of hyperinflammation in COVID-19 based on purinergic signalling. Purinergic Signal 2021; 18:13-59. [PMID: 34757513 PMCID: PMC8578920 DOI: 10.1007/s11302-021-09814-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/18/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperinflammation plays an important role in severe and critical COVID-19. Using inconsistent criteria, many researchers define hyperinflammation as a form of very severe inflammation with cytokine storm. Therefore, COVID-19 patients are treated with anti-inflammatory drugs. These drugs appear to be less efficacious than expected and are sometimes accompanied by serious adverse effects. SARS-CoV-2 promotes cellular ATP release. Increased levels of extracellular ATP activate the purinergic receptors of the immune cells initiating the physiologic pro-inflammatory immune response. Persisting viral infection drives the ATP release even further leading to the activation of the P2X7 purinergic receptors (P2X7Rs) and a severe yet physiologic inflammation. Disease progression promotes prolonged vigorous activation of the P2X7R causing cell death and uncontrolled ATP release leading to cytokine storm and desensitisation of all other purinergic receptors of the immune cells. This results in immune paralysis with co-infections or secondary infections. We refer to this pathologic condition as hyperinflammation. The readily available and affordable P2X7R antagonist lidocaine can abrogate hyperinflammation and restore the normal immune function. The issue is that the half-maximal effective concentration for P2X7R inhibition of lidocaine is much higher than the maximal tolerable plasma concentration where adverse effects start to develop. To overcome this, we selectively inhibit the P2X7Rs of the immune cells of the lymphatic system inducing clonal expansion of Tregs in local lymph nodes. Subsequently, these Tregs migrate throughout the body exerting anti-inflammatory activities suppressing systemic and (distant) local hyperinflammation. We illustrate this with six critically ill COVID-19 patients treated with lidocaine.
Collapse
Affiliation(s)
| | - Atsuko Shono
- Department of Anaesthesiology and Critical Care Medicine, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| | | | - Peter J van der Spek
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Erasmus Universiteit Rotterdam, 3015 CE, Rotterdam, The Netherlands
| | | | - Toru Kotani
- Department of Anaesthesiology and Critical Care Medicine, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| |
Collapse
|
8
|
Shihan M, Novoyatleva T, Lehmeyer T, Sydykov A, Schermuly RT. Role of the Purinergic P2Y2 Receptor in Pulmonary Hypertension. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111009. [PMID: 34769531 PMCID: PMC8582672 DOI: 10.3390/ijerph182111009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022]
Abstract
Pulmonary arterial hypertension (PAH), group 1 pulmonary hypertension (PH), is a fatal disease that is characterized by vasoconstriction, increased pressure in the pulmonary arteries, and right heart failure. PAH can be described by abnormal vascular remodeling, hyperproliferation in the vasculature, endothelial cell dysfunction, and vascular tone dysregulation. The disease pathomechanisms, however, are as yet not fully understood at the molecular level. Purinergic receptors P2Y within the G-protein-coupled receptor family play a major role in fluid shear stress transduction, proliferation, migration, and vascular tone regulation in systemic circulation, but less is known about their contribution in PAH. Hence, studies that focus on purinergic signaling are of great importance for the identification of new therapeutic targets in PAH. Interestingly, the role of P2Y2 receptors has not yet been sufficiently studied in PAH, whereas the relevance of other P2Ys as drug targets for PAH was shown using specific agonists or antagonists. In this review, we will shed light on P2Y receptors and focus more on the P2Y2 receptor as a potential novel player in PAH and as a new therapeutic target for disease management.
Collapse
|
9
|
Leão Batista Simões J, Fornari Basso H, Cristine Kosvoski G, Gavioli J, Marafon F, Elias Assmann C, Barbosa Carvalho F, Dulce Bagatini M. Targeting purinergic receptors to suppress the cytokine storm induced by SARS-CoV-2 infection in pulmonary tissue. Int Immunopharmacol 2021; 100:108150. [PMID: 34537482 PMCID: PMC8435372 DOI: 10.1016/j.intimp.2021.108150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
The etiological agent of coronavirus disease (COVID-19) is the new member of the Coronaviridae family, a severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2), responsible for the pandemic that is plaguing the world. The single-stranded RNA virus is capable of infecting the respiratory tract, by binding the spike (S) protein on its viral surface to receptors for the angiotensin II-converting enzyme (ACE2), highly expressed in the pulmonary tissue, enabling the interaction of the virus with alveolar epithelial cells promoting endocytosis and replication of viral material. The infection triggers the activation of the immune system, increased purinergic signaling, and the release of cytokines as a defense mechanism, but the response can become exaggerated and prompt the so-called “cytokine storm”, developing cases such as severe acute respiratory syndrome (SARS). This is characterized by fever, cough, and difficulty breathing, which can progress to pneumonia, failure of different organs and death. Thus, the present review aims to compile and correlate the mechanisms involved between the immune and purinergic systems with COVID-19, since the modulation of purinergic receptors, such as A2A, A2B, and P2X7 expressed by immune cells, seems to be effective as a promising therapy, to reduce the severity of the disease, as well as aid in the treatment of acute lung diseases and other cases of generalized inflammation.
Collapse
Affiliation(s)
| | | | | | - Jullye Gavioli
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Filomena Marafon
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Charles Elias Assmann
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | |
Collapse
|
10
|
Janssen M, Meeder JHJ, Seghers L, den Uil CA. Time controlled adaptive ventilation™ as conservative treatment of destroyed lung: an alternative to lung transplantation. BMC Pulm Med 2021; 21:176. [PMID: 34022829 PMCID: PMC8140588 DOI: 10.1186/s12890-021-01545-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) often requires controlled ventilation, yielding high mechanical power and possibly further injury. Veno-venous extracorporeal membrane oxygenation (VV-ECMO) can be used as a bridge to recovery, however, if this fails the end result is destroyed lung parenchyma. This condition is fatal and the only remaining alternative is lung transplantation. In the case study presented in this paper, lung transplantation was not an option given the critically ill state and the presence of HLA antibodies. Airway pressure release ventilation (APRV) may be valuable in ARDS, but APRV settings recommended in various patient and clinical studies are inconsistent. The Time Controlled Adaptive Ventilation (TCAV™) method is the most studied technique to set and adjust the APRV mode and uses an extended continuous positive airway pressure (CPAP) Phase in combination with a very brief Release Phase. In addition, the TCAV™ method settings are personalized and adaptive based on changes in lung pathophysiology. We used the TCAV™ method in a case of severe ARDS, which enabled us to open, stabilize and slowly heal the severely damaged lung parenchyma. Case presentation A 43-year-old woman presented with Staphylococcus Aureus necrotizing pneumonia. Progressive respiratory failure necessitated invasive mechanical ventilation and VV-ECMO. Mechanical ventilation (MV) was ultimately discontinued because lung protective settings resulted in trivial tidal volumes. She was referred to our academic transplant center for bilateral lung transplantation after the remaining infection had been cleared. We initiated the TCAV™ method in order to stabilize the lung parenchyma and to promote tissue recovery. This strategy was challenged by the presence of a large bronchopleural fistula, however, APRV enabled weaning from VV-ECMO and mechanical ventilation. After two months, following nearly complete surgical closure of the remaining bronchopleural fistulas, the patient was readmitted to ICU where she had early postoperative complications. Since other ventilation modes resulted in significant atelectasis and hypercapnia, APRV was restarted. The patient was then again weaned from MV. Conclusions The TCAV™ method can be useful to wean challenging patients with severe ARDS and might contribute to lung recovery. In this particular case, a lung transplantation was circumvented.
Collapse
Affiliation(s)
- Malou Janssen
- Department of Intensive Care Medicine, Erasmus MC, University Medical Center, Dr Molewaterplein 40, Room Rg 626, 3015 GD, Rotterdam, The Netherlands.
| | - J Han J Meeder
- Department of Intensive Care Medicine, Erasmus MC, University Medical Center, Dr Molewaterplein 40, Room Rg 626, 3015 GD, Rotterdam, The Netherlands
| | - Leonard Seghers
- Department of Pulmonary Medicine, Transplant Center, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Corstiaan A den Uil
- Department of Intensive Care Medicine, Erasmus MC, University Medical Center, Dr Molewaterplein 40, Room Rg 626, 3015 GD, Rotterdam, The Netherlands.,Department of Cardiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Intensive Care Medicine, Maasstad Hospital, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Vincenzi U. A new mode of mechanical ventilation: positive + negative synchronized ventilation. Multidiscip Respir Med 2021; 16:788. [PMID: 34584691 PMCID: PMC8441538 DOI: 10.4081/mrm.2021.788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Supporting patients suffering from severe respiratory diseases with mechanical ventilation, obstacles are often encountered due to pulmonary and/or thoracic alterations, reductions in the ventilable lung parenchyma, increases in airway resistance, alterations in thoraco-pulmonary compliance, advanced age of the subjects. All this involves difficulties in finding the right ventilation parameters and an adequate driving pressure to guarantee sufficient ventilation. Therefrom, new mechanical ventilation techniques were sought that could help overcome the aforementioned obstacles. A new mode of mechanical ventilation is being presented, i.e., a Positive + Negative Synchronized Ventilation (PNSV), characterized by the association and integration of two pulmonary ventilators; one acting inside the chest with positive pressures and one externally with negative pressure. The peculiarity of this combination is the complete synchronization, which takes place with specific electronic modifications. The PNSV can be applied both in a completely non-invasive and invasive way and, therefore, be used both in acute care wards and in ICU. The most relevant effect found, due to the compensation of opposing pressures acting on the chest, is that, during the entire inspiratory act created by the ventilators, the pressure at the alveolar level is equal to zero even if adding together the two ventilators' pressures; thus, the transpulmonary pressure is doubled. The application of this pressure for 1 hour on elderly patients suffering from severe acute respiratory failure, resulted in a significant improvement in blood gas analytical and clinical parameters without any side effects. An increased pulmonary recruitment, including posterior lung areas, and a reduction in spontaneous ventilatory rate have also been demonstrated with PNSV. This also paves the way to the search for the best ventilatory treatment in critically ill or ARDS patients. The compensation of intrathoracic pressures should also lead, although not yet proven, to an improvement in venous return, systolic and cardiac output. In the analysis of the study in which this method was applied, the total transpulmonary pressure delivered was the sum of the individual pressures applied by the two ventilators. However, this does not exclude the possibility of reducing the pressures of the two machines to modulate a lower but balanced total transpulmonary pressure within the chest.
Collapse
Affiliation(s)
- Umberto Vincenzi
- Former Director of Operative Unit of Pneumology and Intensive Respiratory Care Unit, "Ospedali Riuniti" University Hospital, Foggia, Italy
| |
Collapse
|
12
|
Pelleg A. Extracellular adenosine 5'-triphosphate in pulmonary disorders. Biochem Pharmacol 2020; 187:114319. [PMID: 33161021 DOI: 10.1016/j.bcp.2020.114319] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Adenosine 5'-triphosphate (ATP) is found in every cell of the human body where it plays a critical role in cellular energetics and metabolism. ATP is released from cells under physiologic and pathophysiologic condition; extracellular ATP is rapidly degraded to adenosine 5'-diphosphate (ADP) and adenosine by ecto-enzymes (mainly, CD39 and CD73). Before its degradation, ATP acts as an autocrine and paracrine agent exerting its effects on targeted cells by activating cell surface receptors named P2 Purinergic receptors. The latter are expressed by different cell types in the lungs, the activation of which is involved in multiple pulmonary disorders. This succinct review summarizes the role of ATP in inflammation processes associated with these disorders including bronchoconstriction, cough, mechanical ventilation-induced lung injury and idiopathic pulmonary fibrosis. All of these disorders still constitute unmet clinical needs. Therefore, the various ATP-signaling pathways in pulmonary inflammation constitute attractive targets for novel drug-candidates that would improve the management of patients with multiple pulmonary diseases.
Collapse
Affiliation(s)
- Amir Pelleg
- Danmir Therapeutics, LLC, Haverford, PA, USA. http://www.danmirtherapeutics.com
| |
Collapse
|
13
|
Resolving the Ionotropic P2X4 Receptor Mystery Points Towards a New Therapeutic Target for Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21145005. [PMID: 32679900 PMCID: PMC7404342 DOI: 10.3390/ijms21145005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Adenosine triphosphate (ATP) is a primordial versatile autacoid that changes its role from an intracellular energy saver to a signaling molecule once released to the extracellular milieu. Extracellular ATP and its adenosine metabolite are the main activators of the P2 and P1 purinoceptor families, respectively. Mounting evidence suggests that the ionotropic P2X4 receptor (P2X4R) plays pivotal roles in the regulation of the cardiovascular system, yet further therapeutic advances have been hampered by the lack of selective P2X4R agonists. In this review, we provide the state of the art of the P2X4R activity in the cardiovascular system. We also discuss the role of P2X4R activation in kidney and lungs vis a vis their interplay to control cardiovascular functions and dysfunctions, including putative adverse effects emerging from P2X4R activation. Gathering this information may prompt further development of selective P2X4R agonists and its translation to the clinical practice.
Collapse
|
14
|
Wirsching E, Fauler M, Fois G, Frick M. P2 Purinergic Signaling in the Distal Lung in Health and Disease. Int J Mol Sci 2020; 21:E4973. [PMID: 32674494 PMCID: PMC7404078 DOI: 10.3390/ijms21144973] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
The distal lung provides an intricate structure for gas exchange in mammalian lungs. Efficient gas exchange depends on the functional integrity of lung alveoli. The cells in the alveolar tissue serve various functions to maintain alveolar structure, integrity and homeostasis. Alveolar epithelial cells secrete pulmonary surfactant, regulate the alveolar surface liquid (ASL) volume and, together with resident and infiltrating immune cells, provide a powerful host-defense system against a multitude of particles, microbes and toxicants. It is well established that all of these cells express purinergic P2 receptors and that purinergic signaling plays important roles in maintaining alveolar homeostasis. Therefore, it is not surprising that purinergic signaling also contributes to development and progression of severe pathological conditions like pulmonary inflammation, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) and pulmonary fibrosis. Within this review we focus on the role of P2 purinergic signaling in the distal lung in health and disease. We recapitulate the expression of P2 receptors within the cells in the alveoli, the possible sources of ATP (adenosine triphosphate) within alveoli and the contribution of purinergic signaling to regulation of surfactant secretion, ASL volume and composition, as well as immune homeostasis. Finally, we summarize current knowledge of the role for P2 signaling in infectious pneumonia, ALI/ARDS and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
| | | | | | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (E.W.); (M.F.); (G.F.)
| |
Collapse
|
15
|
Hasuzawa N, Moriyama S, Moriyama Y, Nomura M. Physiopathological roles of vesicular nucleotide transporter (VNUT), an essential component for vesicular ATP release. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183408. [PMID: 32652056 DOI: 10.1016/j.bbamem.2020.183408] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
Abstract
Vesicular nucleotide transporter (VNUT) is the last identified member of the SLC17 organic anion transporter family, which plays a central role in vesicular storage in ATP-secreting cells. The discovery of VNUT demonstrated that, despite having been neglected for a long time, vesicular ATP release represents a major pathway for purinergic chemical transmission, which had been mainly attributed to ATP permeation channels. This article summarizes recent advances in our understanding of the mechanism of VNUT and its physiopathological roles as well as the development of inhibitors. Regulating the activity and/or the expression of VNUT represents a new and promising therapeutic strategy for the treatment of multiple diseases.
Collapse
Affiliation(s)
- Nao Hasuzawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan.
| | - Sawako Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Yoshinori Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| |
Collapse
|
16
|
Abstract
Mechanical ventilation can cause ventilator-induced brain injury via afferent vagal signaling and hippocampal neurotransmitter imbalances. The triggering mechanisms for vagal signaling during mechanical ventilation are unknown. The objective of this study was to assess whether pulmonary transient receptor potential vanilloid type-4 (TRPV4) mechanoreceptors and vagal afferent purinergic receptors (P2X) act as triggers of ventilator-induced brain injury.
Collapse
|
17
|
Dobbe L, Rahman R, Elmassry M, Paz P, Nugent K. Cardiogenic Pulmonary Edema. Am J Med Sci 2019; 358:389-397. [PMID: 31813466 DOI: 10.1016/j.amjms.2019.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/15/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
The initial events in cardiogenic pulmonary edema involve hemodynamic pulmonary congestion with high capillary pressures. This causes increased fluid transfer out of capillaries into the interstitium and alveolar spaces. High capillary pressures can also cause barrier disruption which increases permeability and fluid transfer into the interstitium and alveoli. Fluid in alveoli alters surfactant function and increases surface tension. This can lead to more edema formation and to atelectasis with impaired gas exchange. Patients with barrier disruption have increased levels of surfactant protein B in the circulation, and these levels often remain high after the initial clinical improvement. Routine clinical assessment may not identify patients with increased extravascular fluid in the lungs; pulmonary ultrasound can easily detect pulmonary edema in patients with acute decompensation and in patients at risk for decompensation. Studies using serial pulmonary ultrasound could help characterize patients with cardiogenic pulmonary edema and help identify subgroups who need alternative management. The conventional management of cardiogenic pulmonary edema usually involves diuresis, afterload reduction and in some cases noninvasive ventilation to reduce the work of breathing and improve oxygenation. Patients with persistent symptoms, abnormal chest x-rays and diuretic resistance might benefit from alternative approaches to management. These could include beta agonists and pentoxifylline which warrant more study in patients with cardiogenic pulmonary edema.
Collapse
Affiliation(s)
- Logan Dobbe
- Department of Graduate Medical Education, Madigan Army Medical Center, Tacoma, Washington
| | - Rubayat Rahman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Mohamed Elmassry
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Pablo Paz
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas.
| |
Collapse
|
18
|
Le TTT, Berg NK, Harting MT, Li X, Eltzschig HK, Yuan X. Purinergic Signaling in Pulmonary Inflammation. Front Immunol 2019; 10:1633. [PMID: 31379836 PMCID: PMC6646739 DOI: 10.3389/fimmu.2019.01633] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022] Open
Abstract
Purine nucleotides and nucleosides are at the center of biologic reactions. In particular, adenosine triphosphate (ATP) is the fundamental energy currency of cellular activity and adenosine has been demonstrated to play essential roles in human physiology and pathophysiology. In this review, we examine the role of purinergic signaling in acute and chronic pulmonary inflammation, with emphasis on ATP and adenosine. ATP is released into extracellular space in response to cellular injury and necrosis. It is then metabolized to adenosine monophosphate (AMP) via ectonucleoside triphosphate diphosphohydrolase-1 (CD39) and further hydrolyzed to adenosine via ecto-5'-nucleotidase (CD73). Adenosine signals via one of four adenosine receptors to exert pro- or anti-inflammatory effects. Adenosine signaling is terminated by intracellular transport by concentrative or equilibrative nucleoside transporters (CNTs and ENTs), deamination to inosine by adenosine deaminase (ADA), or phosphorylation back into AMP via adenosine kinase (AK). Pulmonary inflammatory and hypoxic conditions lead to increased extracellular ATP, adenosine diphosphate (ADP) and adenosine levels, which translates to increased adenosine signaling. Adenosine signaling is central to the pulmonary injury response, leading to various effects on inflammation, repair and remodeling processes that are either tissue-protective or tissue destructive. In the acute setting, particularly through activation of adenosine 2A and 2B receptors, adenosine signaling serves an anti-inflammatory, tissue-protective role. However, excessive adenosine signaling in the chronic setting promotes pro-inflammatory, tissue destructive effects in chronic pulmonary inflammation.
Collapse
Affiliation(s)
- Thanh-Thuy T. Le
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nathaniel K. Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Matthew T. Harting
- Department of Pediatric Surgery, McGovern Medical School, Children's Memorial Hermann Hospital, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
19
|
Grygorczyk R, Boudreault F, Tan JJ, Ponomarchuk O, Sokabe M, Furuya K. Mechanosensitive ATP release in the lungs: New insights from real-time luminescence imaging studies. CURRENT TOPICS IN MEMBRANES 2019; 83:45-76. [PMID: 31196610 DOI: 10.1016/bs.ctm.2019.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular ATP and other nucleotides are important autocrine/paracrine mediators that stimulate purinergic receptors and regulate diverse processes in the normal lungs. They are also associated with pathogenesis of a number of respiratory diseases and clinical complications including acute respiratory distress syndrome and ventilator induced lung injury. Mechanical forces are major stimuli for cellular ATP release but precise mechanisms responsible for this release are still debated. The present review intends to provide the current state of knowledge of the mechanisms of ATP release in the lung. Putative pathways of the release, including the contribution of cell membrane injury and cell lysis are discussed addressing their strength, weaknesses and missing evidence that requires future study. We also provide an overview of the recent technical advances in studying cellular ATP release in vitro and ex vivo. Special attention is given to new insights into lung ATP release obtained with the real-time luminescence ATP imaging. This includes recent data on stretch-induced mechanosensitive ATP release in a model and primary cells of lung alveoli in vitro as well as inflation-induced ATP release in airspaces and pulmonary blood vessels of lungs, ex vivo.
Collapse
Affiliation(s)
- Ryszard Grygorczyk
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| | - Francis Boudreault
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Ju Jing Tan
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Olga Ponomarchuk
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Kishio Furuya
- Mechanobiology Laboratory, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
20
|
van der Zee P, Gommers D. Recruitment Maneuvers and Higher PEEP, the So-Called Open Lung Concept, in Patients with ARDS. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:73. [PMID: 30850004 PMCID: PMC6408810 DOI: 10.1186/s13054-019-2365-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2019. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2019. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Collapse
Affiliation(s)
- Philip van der Zee
- Department of Adult Intensive Care Medicine, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Diederik Gommers
- Department of Adult Intensive Care Medicine, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
21
|
NLRP3 inflammasome activation in inflammaging. Semin Immunol 2018; 40:61-73. [PMID: 30268598 DOI: 10.1016/j.smim.2018.09.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
Abstract
The process of aging is associated with the appearance of low-grade subclinical inflammation, termed inflammaging, that can accelerate age-related diseases. In Western societies the age-related inflammatory response can additionally be aggravated by an inflammatory response related to modern lifestyles and excess calorie consumption, a pathophysiologic inflammatory response that was coined metaflammation. Here, we summarize the current knowledge of mechanisms that drive both of these processes and focus our discussion the emerging concept that a key innate immune pathway, the NLRP3 inflammasome, is centrally involved in the recognition of triggers that appear during physiological aging and during metabolic stress. We further discuss how these processes are involved in the pathogenesis of common age-related pathologies and highlight potential strategies by which the detrimental inflammatory responses could be pharmacologically addressed.
Collapse
|