1
|
Yang H, Xia Y, Ma Y, Gao M, Hou S, Xu S, Wang Y. Inhibition of the cGAS-STING pathway: contributing to the treatment of cerebral ischemia-reperfusion injury. Neural Regen Res 2025; 20:1900-1918. [PMID: 38993125 PMCID: PMC11691458 DOI: 10.4103/nrr.nrr-d-24-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 07/13/2024] Open
Abstract
The cGAS-STING pathway plays an important role in ischemia-reperfusion injury in the heart, liver, brain, and kidney, but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed. Here, we outline the components of the cGAS-STING pathway and then analyze its role in autophagy, ferroptosis, cellular pyroptosis, disequilibrium of calcium homeostasis, inflammatory responses, disruption of the blood-brain barrier, microglia transformation, and complement system activation following cerebral ischemia-reperfusion injury. We further analyze the value of cGAS-STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms. Inhibition of the cGAS-STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hang Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yulei Xia
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yue Ma
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Mingtong Gao
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Shuai Hou
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Shanshan Xu
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Yanqiang Wang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
2
|
Wang G, Hua R, Chen X, He X, Dingming Y, Chen H, Zhang B, Dong Y, Liu M, Liu J, Liu T, Zhao J, Zhao YQ, Qiao L. MX1 and UBE2L6 are potential metaflammation gene targets in both diabetes and atherosclerosis. PeerJ 2024; 12:e16975. [PMID: 38406276 PMCID: PMC10893863 DOI: 10.7717/peerj.16975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Background The coexistence of diabetes mellitus (DM) and atherosclerosis (AS) is widespread, although the explicit metabolism and metabolism-associated molecular patterns (MAMPs) responsible for the correlation are still unclear. Methods Twenty-four genetically wild-type male Ba-Ma mini pigs were randomly divided into five groups distinguished by different combinations of 90 mg/kg streptozotocin (STZ) intravenous injection and high-cholesterol/lipid (HC) or high-lipid (HL) diet feeding for 9 months in total. Pigs in the STZ+HC and STZ+HL groups were injected with STZ first and then fed the HC or HL diet for 9 months. In contrast, pigs in the HC+STZ and HL+STZ groups were fed the HC or HL diet for 9 months and injected with STZ at 3 months. The controls were only fed a regular diet for 9 months. The blood glucose and abdominal aortic plaque observed through oil red O staining were used as evaluation indicators for successful modelling of DM and AS. A microarray gene expression analysis of all subjects was performed. Results Atherosclerotic lesions were observed only in the HC+STZ and STZ+HC groups. A total of 103 differentially expressed genes (DEGs) were identified as common between them. The most significantly enriched pathways of 103 common DEGs were influenza A, hepatitis C, and measles. The global and internal protein-protein interaction (PPI) networks of the 103 common DEGs consisted of 648 and 14 nodes, respectively. The top 10 hub proteins, namely, ISG15, IRG6, IRF7, IFIT3, MX1, UBE2L6, DDX58, IFIT2, USP18, and IFI44L, drive aspects of DM and AS. MX1 and UBE2L6 were the intersection of internal and global PPI networks. The expression of MX1 and UBE2L6 was 507.22 ± 342.56 and 96.99 ± 49.92 in the HC+STZ group, respectively, which was significantly higher than others and may be linked to the severity of hyperglycaemia-related atherosclerosis. Further PPI network analysis of calcium/micronutrients, including MX1 and UBE2L6, consisted of 58 and 18 nodes, respectively. The most significantly enriched KEGG pathways were glutathione metabolism, pyrimidine metabolism, purine metabolism, and metabolic pathways. Conclusions The global and internal PPI network of the 103 common DEGs consisted of 648 and 14 nodes, respectively. The intersection of the nodes of internal and global PPI networks was MX1 and UBE2L6, suggesting their key role in the comorbidity mechanism of DM and AS. This inference was partly verified by the overexpression of MX1 and UBE2L6 in the HC+STZ group but not others. Further calcium- and micronutrient-related enriched KEGG pathway analysis supported that MX1 and UBE2L6 may affect the inflammatory response through micronutrient metabolic pathways, conceptually named metaflammation. Collectively, MX1 and UBE2L6 may be potential common biomarkers for DM and AS that may reveal metaflammatory aspects of the pathological process, although proper validation is still needed to determine their contribution to the detailed mechanism.
Collapse
Affiliation(s)
- Guisheng Wang
- Department of Radiology, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rongrong Hua
- Department of Radiology, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoxia Chen
- Department of Radiology, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xucheng He
- Department of Radiology, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yao Dingming
- Department of Radiology, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hua Chen
- Laboratory Animal Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Buhuan Zhang
- Department of Radiology, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuru Dong
- Department of Radiology, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Muqing Liu
- Department of Radiology, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiaxiong Liu
- Department of Radiology, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ting Liu
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Jingwei Zhao
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Qiong Zhao
- Laboratory Animal Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Li Qiao
- Department of International Business, Business College of Beijing Union University, Beijing, China
| |
Collapse
|
3
|
Shi GS, Qin QL, Huang C, Li ZR, Wang ZH, Wang YY, He XY, Zhao XM. The Pathological Mechanism of Neuronal Autophagy-Lysosome Dysfunction After Ischemic Stroke. Cell Mol Neurobiol 2023; 43:3251-3263. [PMID: 37382853 PMCID: PMC11410006 DOI: 10.1007/s10571-023-01382-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
The abnormal initiation of autophagy flux in neurons after ischemic stroke caused dysfunction of autophagy-lysosome, which not only led to autophagy flux blockage, but also resulted in autophagic death of neurons. However, the pathological mechanism of neuronal autophagy-lysosome dysfunction did not form a unified viewpoint until now. In this review, taking the autophagy lysosomal dysfunction of neurons as a starting point, we summarized the molecular mechanisms that led to neuronal autophagy lysosomal dysfunction after ischemic stroke, which would provide theoretical basis for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Guang-Sen Shi
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qi-Lin Qin
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Cheng Huang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zi-Rong Li
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zi-Han Wang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yong-Yan Wang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiu-Ying He
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiao-Ming Zhao
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
4
|
Liu Y, Yuan Y, Yan Y, Wang R, Wang Z, Liu X, Zhang Y, Hua J, Wang Y, Zhao L. Mitochondrial pyruvate carrier 1 alleviates hypoxic-ischemic brain injury in rats. Life Sci 2023; 325:121686. [PMID: 37030616 DOI: 10.1016/j.lfs.2023.121686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023]
Abstract
AIMS Mitochondrial dysfunction is a critical pathological change in cerebral ischemia. Mitochondrial pyruvate carrier 1 (MPC1) is a mitochondrial inner membrane protein carrier participating in pyruvate transport. The work is aiming to figure out the effect of MPC1 on cerebral ischemia. MAIN METHODS Bilateral internal carotid artery embolization (BICAO) rats model and cells model from oxygen glucose deprivation/reoxygenation (OGD/R) were used to simulate cerebral ischemia in vivo and in vitro. The effect of MPC1 on cerebral ischemia was detected by imaging, behavioral test, immunofluorescence, flow cytometry, transmission electron microscopy, Western blot and RT-Q-PCR. RNA-sequence (RNA-seq) was applied to explore the potential molecular mechanisms underlying the role of MPC1 in cerebral ischemia. KEY FINDING After BICAO or OGD/R treatment, MPC1 expression in ischemic cortical neurons was significantly decreased, and MPC1 deficiency significantly reduced cerebral blood flow, decreased locomotion activities, and exacerbated neuronal injury. Moreover, MPC1 deficiency obviously aggravated oxidative stress, structural disruption and dysfunction of mitochondria, autophagy and calcium overload of ischemic cortical neurons. Interestingly, MPC1 overexpression remarkably reversed neuronal loss and persisting neuronal deficits induced by OGD. Using RNA-seq, 38 MPC1-associated differentially expressed genes were involved in oxidative stress, autophagy and calcium overload. Our results further confirmed that MPC1 could alleviate autophagy via the PI3K/Akt/mTOR pathway in the ischemic cortical neurons. SIGNIFICANCE MPC1 may exert neuroprotective effects by attenuating oxidative stress, mitochondrial dysfunction, calcium overload and autophagy during cerebral ischemia. MPC1-related genes identified by RNA-seq may be a novel therapeutic target for cerebral ischemia.
Collapse
Affiliation(s)
- Yue Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuan Yuan
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yi Yan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ruyue Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaohui Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jianyu Hua
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Li Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Zheng J, Wang Y, Liu Y, Han S, Zhang Y, Luo Y, Yan Y, Li J, Zhao L. cPKCγ Deficiency Exacerbates Autophagy Impairment and Hyperphosphorylated Tau Buildup through the AMPK/mTOR Pathway in Mice with Type 1 Diabetes Mellitus. Neurosci Bull 2022; 38:1153-1169. [PMID: 35596894 PMCID: PMC9554100 DOI: 10.1007/s12264-022-00863-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/03/2022] [Indexed: 01/26/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM)-induced cognitive dysfunction is common, but its underlying mechanisms are still poorly understood. In this study, we found that knockout of conventional protein kinase C (cPKC)γ significantly increased the phosphorylation of Tau at Ser214 and neurofibrillary tangles, but did not affect the activities of GSK-3β and PP2A in the hippocampal neurons of T1DM mice. cPKCγ deficiency significantly decreased the level of autophagy in the hippocampal neurons of T1DM mice. Activation of autophagy greatly alleviated the cognitive impairment induced by cPKCγ deficiency in T1DM mice. Moreover, cPKCγ deficiency reduced the AMPK phosphorylation levels and increased the phosphorylation levels of mTOR in vivo and in vitro. The high glucose-induced Tau phosphorylation at Ser214 was further increased by the autophagy inhibitor and was significantly decreased by an mTOR inhibitor. In conclusion, these results indicated that cPKCγ promotes autophagy through the AMPK/mTOR signaling pathway, thus reducing the level of phosphorylated Tau at Ser214 and neurofibrillary tangles.
Collapse
Affiliation(s)
- Jiayin Zheng
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Yue Liu
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Song Han
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Ying Zhang
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yanlin Luo
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yi Yan
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Junfa Li
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Li Zhao
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
6
|
Su PW, Zhai Z, Wang T, Zhang YN, Wang Y, Ma K, Han BB, Wu ZC, Yu HY, Zhao HJ, Wang SJ. Research progress on astrocyte autophagy in ischemic stroke. Front Neurol 2022; 13:951536. [PMID: 36110390 PMCID: PMC9468275 DOI: 10.3389/fneur.2022.951536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke is a highly disabling and potentially fatal disease. After ischemic stroke, autophagy plays a key regulatory role as an intracellular catabolic pathway for misfolded proteins and damaged organelles. Mounting evidence indicates that astrocytes are strongly linked to the occurrence and development of cerebral ischemia. In recent years, great progress has been made in the investigation of astrocyte autophagy during ischemic stroke. This article summarizes the roles and potential mechanisms of astrocyte autophagy in ischemic stroke, briefly expounds on the crosstalk of astrocyte autophagy with pathological mechanisms and its potential protective effect on neurons, and reviews astrocytic autophagy-targeted therapeutic methods for cerebral ischemia. The broader aim of the report is to provide new perspectives and strategies for the treatment of cerebral ischemia and a reference for future research on cerebral ischemia.
Collapse
Affiliation(s)
- Pei-Wei Su
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhe Zhai
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya-Nan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ke Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing-Bing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhi-Chun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hua-Yun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hai-Jun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Hai-Jun Zhao
| | - Shi-Jun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shi-Jun Wang
| |
Collapse
|
7
|
Li Y, Wu F, Zhou M, Zhou J, Cui S, Guo J, Wu J, He L. ProNGF/NGF Modulates Autophagy and Apoptosis through PI3K/Akt/mTOR and ERK Signaling Pathways following Cerebral Ischemia-Reperfusion in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6098191. [PMID: 35391929 PMCID: PMC8983267 DOI: 10.1155/2022/6098191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023]
Abstract
NGF is involved in the process of autophagy; however, the underlying mechanisms of proNGF/NGF on autophagy in cerebral ischemia-reperfusion (CIR) remain unclear. This study explored the potential pathway of proNGF/NGF in mediating autophagy and apoptosis and thereby contributed to poststroke neurological rehabilitation. In this study, PC12 cell lines and male SD rats were used to simulate CIR; it was found that within 24 h reperfusion, proNGF was the predominant form of Ngf while after 24 h NGF was produced by proNGF transformation. The mature NGF was found to protect neurons against autophagic and apoptotic damage caused by CIR, but proNGF can cause both autophagic and apoptotic neuronal damage. The protective effect of NGF is associated with the activation of the PI3K/Akt/mTOR and ERK pathway and, as well as the change of autophagy-related proteins. On the other hand, proNGF promoted the ERK pathway increasing autophagy and affected the apoptosis-related proteins in vivo and in vitro. These results were also verified in male SD rats with CIR that neurological deficit caused by CIR can be rescued by recombinant and wild-type NGF, and vice-versa by proNGF.
Collapse
Affiliation(s)
- Yanbo Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Fengbo Wu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Muke Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jie Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shuhui Cui
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jian Guo
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Junhao Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li He
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Tian Y, Wang L, Qiu Z, Xu Y, Hua R. Autophagy triggers endoplasmic reticulum stress and C/EBP homologous protein-mediated apoptosis in OGD/R-treated neurons in a caspase-12-independent manner. J Neurophysiol 2021; 126:1740-1750. [PMID: 34644182 DOI: 10.1152/jn.00649.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We reported that a high level of autophagy was initiated by oxygen-glucose deprivation (OGD) and was maintained in neurons even after oxygen-glucose deprivation followed by reoxygenation (OGD/R), accompanied by neuronal apoptosis. This study focused on autophagy-induced apoptosis and its signaling network, especially the role of endoplasmic reticulum stress (ERS). Analysis of primary cultured cortical neurons from mice showed that the autophagy-induced apoptosis depended on caspase-8 and -9 but not on caspase-12. This finding did not mean that the endoplasmic reticulum did not participate in this process. Increases in the levels of endoplasmic reticulum (ER) biomarkers and binding immunoglobulin protein (BiP) were induced by autophagy in OGD/R-treated neurons. In addition, as an apoptotic transcription factor induced by ER stress, C/EBP homologous protein (CHOP) expression was significantly increased in neurons after OGD/R. This result suggested that the autophagy-BiP-CHOP-caspase (8 and 9)-dependent apoptotic signaling pathway at least partly participated in autophagy-induced apoptosis in primary cortical neurons. It revealed that ER induced apoptosis in neurons suffering from OGD/R injury in an ER stress-CHOP-dependent manner rather than a caspase-12-dependent manner. However, more research on signaling or cross-linking networks and intermediate links is needed. The realization of caspase-12-independent BiP-CHOP neuronal apoptosis pathway has expanded our understanding of the neuronal apoptosis network, which may eventually provide endogenous interventional strategies for OGD/R injury after stroke.NEW & NOTEWORTHY ER stress induced by autophagy mediates caspase-8- and caspase-9-dependent apoptosis pathways by regulating CHOP in neurons exposed to OGD/R. We hypothesized that the autophagy-BiP-CHOP-caspase (8 and 9)-dependent apoptotic signaling pathway at least partly participated in autophagy-induced apoptosis in primary cortical neurons.
Collapse
Affiliation(s)
- Ying Tian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Liang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, People's Republic of China
| | - Zhiqiang Qiu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yulun Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Rongrong Hua
- Department of Radiology, the Third Medical Centre, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| |
Collapse
|
9
|
Shi YN, Liu LP, Deng CF, Zhao TJ, Shi Z, Yan JY, Gong YZ, Liao DF, Qin L. Celastrol ameliorates vascular neointimal hyperplasia through Wnt5a-involved autophagy. Int J Biol Sci 2021; 17:2561-2575. [PMID: 34326694 PMCID: PMC8315023 DOI: 10.7150/ijbs.58715] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Neointimal hyperplasia caused by the excessive proliferation of vascular smooth muscle cells (VSMCs) is the pathological basis of restenosis. However, there are few effective strategies to prevent restenosis. Celastrol, a pentacyclic triterpene, has been recently documented to be beneficial to certain cardiovascular diseases. Based on its significant effect on autophagy, we proposed that celastrol could attenuate restenosis through enhancing autophagy of VSMCs. In the present study, we found that celastrol effectively inhibited the intimal hyperplasia and hyperproliferation of VSMCs by inducing autophagy. It was revealed that autophagy promoted by celastrol could induce the lysosomal degradation of c-MYC, which might be a possible mechanism contributing to the reduction of VSMCs proliferation. The Wnt5a/PKC/mTOR signaling pathway was found to be an underlying mechanism for celastrol to induce autophagy and inhibit the VSMCs proliferation. These observations indicate that celastrol may be a novel drug with a great potential to prevent restenosis.
Collapse
MESH Headings
- Animals
- Autophagy/drug effects
- Cells, Cultured
- Disease Models, Animal
- Femoral Artery/injuries
- Humans
- Hyperplasia/metabolism
- Hyperplasia/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Neointima
- Pentacyclic Triterpenes/pharmacology
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
- Wnt-5a Protein/metabolism
- Wound Healing/drug effects
Collapse
Affiliation(s)
- Ya-Ning Shi
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Le-Ping Liu
- Institue of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chang-Feng Deng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tan-Jun Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhe Shi
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jian-Ye Yan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yong-Zhen Gong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Li Qin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
10
|
Zha H, Fan Y, Yang L, Yin M, Miao W, He J, Wang Y. Autophagy protects against cerebral ischemic reperfusion injury by inhibiting neuroinflammation. Am J Transl Res 2021; 13:4726-4737. [PMID: 34150053 PMCID: PMC8205746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/04/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To examine the effect of autophagy on cerebral damage caused by different models and test the hypothesis that its protection mechanism acts via inhibiting expression of neuroinflammatory mediators. METHODS Autophagy was induced by rapamycin treatment. Cerebral damage was induced using models of IL-6 treatment, oxygen glucose deprivation/reoxygenation (OGD/R) in vitro, and middle cerebral artery occlusion (MCAO) in vivo. The effect and mechanism of autophagy was examined and assessed in terms of cell viability, infarction size in brain tissue, neurological score, production of inflammatory mediators IL-1β and IL-6, transcription and protein expression of autophagy markers beclin-1 and LC-3II in different experimental groups. RESULTS Autophagy triggered by rapamycin could protect neurons from IL-6-induced injury and astrocytes from OGD/R-induced injury in vitro and in rat brain tissue from MCAO in vivo. Autophagy significantly increased cell viability, attenuated cerebral infarction and improved neurological scores. It also inhibited production of the IL-1β and IL-6 and elevated the expression of beclin-1 and LC-3II. CONCLUSIONS Autophagy can inhibit the inflammatory response and reduce cerebral I/R injury. There was a relationship between the extent of protection and (i) the level of the autophagic response, (ii) the stage of the cerebral I/R injury, and (iii) the time of intervention.
Collapse
Affiliation(s)
- Hao Zha
- Department of Reproductive and Genetics, Second Affiliated Hospital of Kunming Medical UniversityKunming, China
| | - Yaodong Fan
- Department of Neurosurgery, Third Affiliated Hospital of Kunming Medical UniversityKunming, China
| | - Li Yang
- Department of Histology and Embryology, Kunming Medical UniversityKunming, China
| | - Mei Yin
- Department of Neurology, Second Affiliated Hospital of Kunming Medical UniversityKunming, China
| | - Wei Miao
- Department of Neurology, Second Affiliated Hospital of Kunming Medical UniversityKunming, China
| | - Jin He
- Department of Neurology, Second Affiliated Hospital of Kunming Medical UniversityKunming, China
| | - Ying Wang
- Department of Neurology, Second Affiliated Hospital of Kunming Medical UniversityKunming, China
| |
Collapse
|
11
|
Yoshioka K, Sasai N, Kurogi Y, Hayakawa K, Itoh Y, Agata N, Murakami T, Inoue-Miyazu M, Sokabe M, Kawakami K. Cessation of electrically-induced muscle contraction activates autophagy in cultured myotubes. Biochem Biophys Res Commun 2020; 533:410-416. [PMID: 32972749 DOI: 10.1016/j.bbrc.2020.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023]
Abstract
Exercise is known to improve skeletal muscle function. The mechanism involves muscle contraction-induced activation of the mTOR pathway, which plays a central role in protein synthesis. However, mTOR activation blocks autophagy, a recycling mechanism with a critical role in cellular maintenance/homeostasis. These two responses to muscle contraction look contradictory to the functional improvement of exercise. Herein, we investigate these paradoxical muscle responses in a series of active-inactive phases in a cultured myotube model receiving electrical stimulation to induce intermittent muscle contraction. Our model shows that (1) contractile activity induces mTOR activation and muscle hypertrophy but blocks autophagy, resulting in the accumulation of damaged proteins, while (2) cessation of muscle contraction rapidly activates autophagy, removing damaged protein, yet a prolonged inactive state results in muscle atrophy. Our findings provide new insights into muscle biology and suggest that not only muscle contraction, but also the subsequent cessation of contraction plays a substantial role for the improvement of skeletal muscle function.
Collapse
Affiliation(s)
- Kiyoshi Yoshioka
- Department of Physical Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan; Institute for Research on Productive Aging, Kobe, Japan
| | - Nobuaki Sasai
- Department of Physical Therapy, Graduate School of Medical Science & Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | | | - Kimihide Hayakawa
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan; Genble.Inc, Fukuoka, Japan
| | - Yuta Itoh
- Faculty of Rehabilitation Science, Nagoya Gakuin University, Nagoya, Japan
| | - Nobuhide Agata
- Faculty of Health and Medical Sciences, Tokoha University, Hamamatsu, Japan
| | - Taro Murakami
- Department of Nutrition, Shigakkan University, Ohbu, Japan
| | | | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Kawakami
- Faculty of Welfare and Health Sciences, Oita University, Oita, Japan.
| |
Collapse
|
12
|
Protein Kinase C Isozymes and Autophagy during Neurodegenerative Disease Progression. Cells 2020; 9:cells9030553. [PMID: 32120776 PMCID: PMC7140419 DOI: 10.3390/cells9030553] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Protein kinase C (PKC) isozymes are members of the Serine/Threonine kinase family regulating cellular events following activation of membrane bound phospholipids. The breakdown of the downstream signaling pathways of PKC relates to several disease pathogeneses particularly neurodegeneration. PKC isozymes play a critical role in cell death and survival mechanisms, as well as autophagy. Numerous studies have reported that neurodegenerative disease formation is caused by failure of the autophagy mechanism. This review outlines PKC signaling in autophagy and neurodegenerative disease development and introduces some polyphenols as effectors of PKC isozymes for disease therapy.
Collapse
|
13
|
An Z, Yan J, Zhang Y, Pei R. Applications of nanomaterials for scavenging reactive oxygen species in the treatment of central nervous system diseases. J Mater Chem B 2020; 8:8748-8767. [DOI: 10.1039/d0tb01380c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanomaterials with excellent ROS-scavenging ability and biodistribution are considered as promising candidates in alleviating oxidative stress and restoring redox balance in CNS diseases, further facilitating the function recovery of the CNS.
Collapse
Affiliation(s)
- Zhen An
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Jincong Yan
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Ye Zhang
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
14
|
Liu T, Han S, Dai Q, Zheng J, Liu C, Li S, Li J. IL-17A-Mediated Excessive Autophagy Aggravated Neuronal Ischemic Injuries via Src-PP2B-mTOR Pathway. Front Immunol 2019; 10:2952. [PMID: 31921197 PMCID: PMC6933613 DOI: 10.3389/fimmu.2019.02952] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/02/2019] [Indexed: 01/02/2023] Open
Abstract
We previously reported that astrocyte-derived proinflammatory cytokine interleukin (IL)-17A could aggravate neuronal ischemic injuries and strength autophagy both in oxygen-glucose deprivation (OGD)/reoxygenation (R)-treated neurons and peri-infarct region of mice with middle cerebral artery occlusion (MCAO)/reperfusion (R)-simulated ischemic stroke. In this study, the role and molecular mechanism of IL-17A in autophagy were further explored under ischemic condition. We found that exogenous addition of rmIL-17A remarkably (P < 0.001) decreased cell viability, which companying with the increases of LC3 II accumulation (P < 0.05 or 0.01) and Beclin 1 levels (P < 0.05 or 0.001), and reduction of p62 levels (P < 0.01 or 0.001) in OGD/R-treated cortical neurons (n = 6). The levels of P-mTOR (Ser 2448) (P < 0.001) and P-S6 (Ser 240/244) (P < 0.01) significantly decreased without the involvement of Akt, ERK1/2 and AMPK in cortical neurons under rmIL-17A and OGD/R treatments (n = 6). Interestingly, the co-IP analysis exhibited that PP2B and mTOR could be reciprocally immunoprecipitated; and the addition of rmIL-17A increased their interactions, PP2B activities (P < 0.001), P-Src (P < 0.001), and P-PLCγ1 (P < 0.01) levels in OGD/R-treated neurons (n = 6 or 5). The PP2B inhibitor Cyclosporin A blocked the induction of excessive autophagy (P < 0.05 or <0.001) and increased cell viability (P < 0.001) after OGD/R and rmIL-17A treatments (n = 6). In addition, the ICV injection of IL-17A neutralizing mAb could attenuate autophagy levels (P < 0.01 or 0.001, n = 6) and improve neurological functions (P < 0.01 or 0.001, n = 10) of mice after 1 h MCAO/R 24 h or 7 d. These results suggested that IL-17A-mediated excessive autophagy aggravates neuronal ischemic injuries via Src-PP2B-mTOR pathway, and IL-17A neutralization may provide a potential therapeutic effect for ischemic stroke.
Collapse
Affiliation(s)
- Ting Liu
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Song Han
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Qingqing Dai
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Jiayin Zheng
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Cui Liu
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Shujuan Li
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Junfa Li
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Zhang Y, Ma L, Su Y, Su L, Lan X, Wu D, Han S, Li J, Kvederis L, Corey S, Borlongan CV, Ji X. Hypoxia conditioning enhances neuroprotective effects of aged human bone marrow mesenchymal stem cell-derived conditioned medium against cerebral ischemia in vitro. Brain Res 2019; 1725:146432. [PMID: 31491422 DOI: 10.1016/j.brainres.2019.146432] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/27/2019] [Accepted: 09/01/2019] [Indexed: 12/24/2022]
Abstract
Therapeutic transplantation of autologous bone marrow mesenchymal stem cells (BMSCs) holds great promise for ischemic stroke, yet the efficacy is negatively impacted by aging. Here, we examined whether hypoxia conditioning could enhance aged human BMSCs-induced neuroprotection via secretome action. Primary cultured mouse neurons were exposed to oxygen glucose deprivation (OGD) to mimic ischemic stroke in vitro, then randomized into a hypoxia conditioned aged human BMSCs-conditioned medium (BMSC-hypoCM) versus normoxia conditioned (BMSC-norCM). After 22 h of reperfusion, cell viability was significantly increased in neurons treated with BMSC-hypoCM rather than BMSC-norCM. ELISA revealed that hypoxia conditioning enhanced vascular endothelial growth factor (VEGF) release into BMSC-derived CM. Blocking the VEGF receptor negated BMSC-hypoCM-induced protection for neurons against OGD insult. Altogether, our data indicates that hypoxia conditioning improves aged human BMSCs' therapeutic efficacy for neurons with ischemic challenge, in part via promoting secretion of VEGF.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Neurobiology, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Longhui Ma
- Department of Neurobiology, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yuwen Su
- Department of Neurobiology, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Li Su
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaoxi Lan
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Di Wu
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Song Han
- Department of Neurobiology, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Junfa Li
- Department of Neurobiology, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Lauren Kvederis
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China; Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
16
|
Hua R, Wei H, Liu C, Shi Z, Xing Y. Phosphorylated mTORC1 represses autophagic-related mRNA translation in neurons exposed to ischemia-reperfusion injury. J Cell Biochem 2019; 120:15915-15923. [PMID: 31081172 DOI: 10.1002/jcb.28865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES The sequential reactivation of mechanistic target of rapamycin (mTOR) inhibited autophagic flux in neurons exposed to oxygen-glucose deprivation/reperfusion (OGD/R), which was characterized by reduction of autophagosome formation and restriction of autolysosome degradation. However, its detailed molecular mechanism was still unknown. In this study, we further explore the existing form of mTOR and its suppression on the transcriptional levels of related mRNA from neurons exposed to ischemia-reperfusion injury. METHODS The OGD/R or middle cerebral artery occlusion/reperfusion (MCAO/R)-treated neurons was used to simulate ischemia/reperfusion injury . Autophagy flux was monitored by means of microtubule-associated protein 1 light chain 3 (LC3) and p62. The reactivation of mTOR was determined by phosphorylation of ribosomal protein S6 kinase 1 (S6K1). Then the inhibitors of mTOR were used to confirm its existence form. Finally, the mRNA transcription levels were analyzed to observe the negative regulation of mTOR. RESULTS The sequential phosphorylation of mTOR contributed to the neuronal autophagy flux blocking. mTOR was re-phosphorylated and existed as mTOR complex 1 (mTORC1), which was supported by phosphorylation of S6K1 at Thr 389 in neurons. In addition, the phosphorylation of S6K1 was decreased roughly by applying mTORC1 inhibitors, rapamycin and torin 1. However, the administration of mTORC1/2 inhibitor PP242 could recover the phosphorylation of S6K1, which suggested that mTORC2 was involved in the regulation of mTORC1 activity. In paralleling with reactivation of mTORC1, related mRNA transcription was repressed in neurons under ischemia-reperfusion exposure in vivo and in vitro. The mRNA expression levels of LC3, Stx17, Vamp8, Snap29, Lamp2a, and Lamp2b were decreased in neurons after reperfusion, comparing with ischemia-treated neurons. CONCLUSIONS The reactivated mTORC1 could suppress the transcription levels of related mRNA, such as LC3, Stx17, Vamp8, Snap29, Lamp2a, and Lamp2b. The research will expand the horizons that mTOR would negatively regulate autophagy at transcription and post-translation levels in neurons suffering ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Rongrong Hua
- Department of Neurology, Aviation General Hospital, China Medical University, Beijing, People's Republic of China
| | - Haiping Wei
- Department of Neurology, Second Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Chunyan Liu
- Department of Neurology, Aviation General Hospital, China Medical University, Beijing, People's Republic of China
| | - Zhe Shi
- Department of Neurology, Aviation General Hospital, China Medical University, Beijing, People's Republic of China
| | - Yan Xing
- Department of Neurology, Aviation General Hospital, China Medical University, Beijing, People's Republic of China
| |
Collapse
|
17
|
Lu Y, Li C, Chen Q, Liu P, Guo Q, Zhang Y, Chen X, Zhang Y, Zhou W, Liang D, Zhang Y, Sun T, Lu W, Jiang C. Microthrombus-Targeting Micelles for Neurovascular Remodeling and Enhanced Microcirculatory Perfusion in Acute Ischemic Stroke. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808361. [PMID: 30957932 DOI: 10.1002/adma.201808361] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Reperfusion injury exists as the major obstacle to full recovery of neuron functions after ischemic stroke onset and clinical thrombolytic therapies. Complex cellular cascades including oxidative stress, neuroinflammation, and brain vascular impairment occur within neurovascular units, leading to microthrombus formation and ultimate neuron death. In this work, a multitarget micelle system is developed to simultaneously modulate various cell types involved in these events. Briefly, rapamycin is encapsulated in self-assembled micelles that are consisted of reactive oxygen species (ROS)-responsive and fibrin-binding polymers to achieve micelle retention and controlled drug release within the ischemic lesion. Neuron survival is reinforced by the combination of micelle facilitated ROS elimination and antistress signaling pathway interference under ischemia conditions. In vivo results demonstrate an overall remodeling of neurovascular unit through micelle polarized M2 microglia repair and blood-brain barrier preservation, leading to enhanced neuroprotection and blood perfusion. This strategy gives a proof of concept that neurovascular units can serve as an integrated target for ischemic stroke treatment with nanomedicines.
Collapse
Affiliation(s)
- Yifei Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
- National Pharmaceutical Engineering and Research Center, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Chao Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Peixin Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yu Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xinli Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yujie Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wenxi Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Donghui Liang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yiwen Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Weigen Lu
- National Pharmaceutical Engineering and Research Center, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
18
|
Huang WY, Jiang C, Ye HB, Jiao JT, Cheng C, Huang J, Liu J, Zhang R, Shao JF. miR-124 upregulates astrocytic glutamate transporter-1 via the Akt and mTOR signaling pathway post ischemic stroke. Brain Res Bull 2019; 149:231-239. [PMID: 31004734 DOI: 10.1016/j.brainresbull.2019.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 03/29/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022]
Abstract
High-concentration glutamic acid (Glu) induced by ischemic stroke can be inhibited by glutamate transporter-1 (GLT-1), which is the main mechanism for preventing excessive extracellular glutamate accumulation in the central nervous system. Upregulation of miR-124 could reduce the infarct area and promote the recovery of neurological function after ischemic stroke. A previous study investigated whether miR-124 could regulate GLT-1 expression in normal culture conditions. However, the role of miR-124 in the regulation of GLT-1 expression and further mechanisms after ischemic stroke remain unclear. In this study, the effects of miR-124 on GLT-1 expression in astrocytes after ischemic stroke were explored using an in vitro model of ischemic stroke (oxygen-glucose deprivation/reperfusion, OGD/reperfusion). The expression of GLT-1 was significantly decreased with lower expression of miR-124 in astrocytes injured by OGD/reperfusion. When miR-124 expression was improved, the expression of GLT-1 was notably increased in astrocytes injured by OGD/reperfusion. The results revealed that GLT-1 expression in astrocytes had a relationship with miR-124 after OGD/reperfusion. However, a direct interaction could not be confirmed with a luciferase reporter assay. Further results demonstrated that an inhibitor of Akt could decrease the increased protein expression of GLT-1 induced by miR-124 mimics, and an inhibitor of mTOR could increase the reduced protein expression of GLT-1 caused by a miR-124 inhibitor in astrocytes injured by different OGD/reperfusion conditions. These results indicated that miR-124 could regulate GLT-1 expression in astrocytes after OGD/reperfusion through the Akt and mTOR pathway.
Collapse
Affiliation(s)
- Wei-Yi Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Chen Jiang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Han-Bin Ye
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Jian-Tong Jiao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Jin Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Jin Liu
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Rui Zhang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Jun-Fei Shao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China.
| |
Collapse
|
19
|
Hou Y, Wang J, Feng J. The neuroprotective effects of curcumin are associated with the regulation of the reciprocal function between autophagy and HIF-1α in cerebral ischemia-reperfusion injury. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1135-1144. [PMID: 31040648 PMCID: PMC6461000 DOI: 10.2147/dddt.s194182] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Purpose The beneficial, neuroprotective effects of curcumin against ischemia-reperfusion injury have been demonstrated. In the present study, whether curcumin exerts neuroprotective effects associated with the inhibition of autophagy and hypoxia inducible factor-1α (HIF-1α) was investigated. Materials and methods PC12 cellular model of oxygen glucose deprivation/reperfusion (OGD/R) has been developed to mimic cerebral ischemia-reperfusion injury. Cell viability was evaluated using the CellTiter 96® AQueous One Solution Cell Proliferation Assay. Apoptosis was assessed using flow cytometry. The expression levels of HIF-1α and autophagy-associated proteins, LC3 and P62, were examined using Western blot. The autophagy flux was quantitatively estimated based on the number of autophagic compartments using fluorescence microscopy. In addition, 3-methyladenine (3-MA) was administered to PC12 cells to investigate how autophagy affects HIF-1α. Moreover, the inhibitory effects of HIF-1α on autophagy activation level were examined. Results In this study, curcumin decreased the death and apoptosis of cells, and inhibited autophagy and HIF-1α under OGD/R conditions, consistent with 3-MA treatment or HIF-1α downregulation. Moreover, inhibition of autophagy caused a decrease in HIF-1α, and the attenuation of HIF-1α induced autophagy suppression under OGD/R conditions. Conclusion The results of this study showed that curcumin exerts neuroprotective effects against ischemia-reperfusion, which is associated with the regulation of the reciprocal function between autophagy and HIF-1α.
Collapse
Affiliation(s)
- Yang Hou
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China,
| | - Jue Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China,
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China,
| |
Collapse
|
20
|
Wei DM, Jiang MT, Lin P, Yang H, Dang YW, Yu Q, Liao DY, Luo DZ, Chen G. Potential ceRNA networks involved in autophagy suppression of pancreatic cancer caused by chloroquine diphosphate: A study based on differentially‑expressed circRNAs, lncRNAs, miRNAs and mRNAs. Int J Oncol 2019; 54:600-626. [PMID: 30570107 PMCID: PMC6317664 DOI: 10.3892/ijo.2018.4660] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
Autophagy has been reported to be involved in the occurrence and development of pancreatic cancer. However, the mechanism of autophagy‑associated non‑coding RNAs (ncRNAs) in pancreatic cancer remains largely unknown. In the present study, microarrays were used to detect differential expression of mRNAs, microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs) post autophagy suppression by chloroquine diphosphate in PANC‑1 cells. Collectively, 3,966 mRNAs, 3,184 lncRNAs and 9,420 circRNAs were differentially expressed. Additionally, only two miRNAs (hsa‑miR‑663a‑5p and hsa‑miR‑154‑3p) were underexpressed in the PANC‑1 cells in the autophagy‑suppression group. Furthermore, miR‑663a‑5p with 9 circRNAs, 8 lncRNAs and 46 genes could form a prospective ceRNA network associated with autophagy in pancreatic cancer cells. In addition, another ceRNA network containing miR‑154‑3p, 5 circRNAs, 2 lncRNAs and 11 genes was also constructed. The potential multiple ceRNA, miRNA and mRNA associations may serve pivotal roles in the autophagy of pancreatic cancer cells, which lays the theoretical foundation for subsequent investigations on pancreatic cancer.
Collapse
Affiliation(s)
| | | | - Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | | | | | | | | | | |
Collapse
|
21
|
Panisello-Roselló A, Roselló-Catafau J. Molecular Mechanisms and Pathophysiology of Ischemia-Reperfusion Injury. Int J Mol Sci 2018; 19:4093. [PMID: 30567290 PMCID: PMC6321148 DOI: 10.3390/ijms19124093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a major cause of graft loss and dysfunction in clinical transplantation and organ resection. [...].
Collapse
Affiliation(s)
- Arnau Panisello-Roselló
- Ischemia-Reperfusion Unit, Experimental Pathology Department, Institut d'Insvestigacions Biomèdiques de Barcelona (IIBB), Spanish Research Council, 08036 Barcelona, Catalonia, Spain.
| | - Joan Roselló-Catafau
- Ischemia-Reperfusion Unit, Experimental Pathology Department, Institut d'Insvestigacions Biomèdiques de Barcelona (IIBB), Spanish Research Council, 08036 Barcelona, Catalonia, Spain.
| |
Collapse
|
22
|
Sun B, Ou H, Ren F, Huan Y, Zhong T, Gao M, Cai H. Propofol inhibited autophagy through Ca 2+/CaMKKβ/AMPK/mTOR pathway in OGD/R-induced neuron injury. Mol Med 2018; 24:58. [PMID: 30470173 PMCID: PMC6251140 DOI: 10.1186/s10020-018-0054-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/24/2018] [Indexed: 11/22/2022] Open
Abstract
Background The neuroprotective role of propofol (PPF) in cerebral ischemia-reperfusion (I/R) has recently been highlighted. This study aimed to explore whether the neuroprotective mechanisms of PPF were linked to its regulation of Ca2+/CaMKKβ (calmodulin-dependent protein kinase kinase β)/AMPK (AMP-activated protein kinase)/mTOR (mammalian target of rapamycin)/autophagy pathway. Methods Cultured primary rat cerebral cortical neurons were treated with oxygen-glucose deprivation and re-oxygenation (OGD/R) to mimic cerebral I/R injury in vitro. Results Compared with the control neurons, OGD/R exposure successfully induced neuronal I/R injury. Furthermore, OGD/R exposure notably caused autophagy induction, reflected by augmented LC3-II/LC3-I ratio and Beclin 1 expression, decreased p62 expression, and increased LC3 puncta formation. Moreover, OGD/R exposure induced elevation of intracellular Ca2+ concentration ([Ca2+]i). However, PPF treatment significantly antagonized OGD/R-triggered cell injury, autophagy induction, and [Ca2+]i elevation. Further investigation revealed that both autophagy induction by rapamycin and [Ca2+]i elevation by the Ca2+ ionophore ionomycin significantly reversed the PPF-mediated amelioration of OGD/R-triggered cell injury. Importantly, ionomycin also significantly abrogated the PPF-mediated suppression of autophagy and CaMKKβ/AMPK/mTOR signaling in OGD/R-exposed neurons. Additionally, activation of CaMKKβ/AMPK/mTOR signaling abrogated the PPF-mediated autophagy suppression. Conclusion Our findings demonstrate that PPF antagonized OGD/R-triggered neuronal injury, which might be mediated, at least in part, via inhibition of autophagy through Ca2+/CaMKKβ/AMPK/mTOR pathway. Electronic supplementary material The online version of this article (10.1186/s10020-018-0054-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bei Sun
- Department of Anesthesiology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, People's Republic of China
| | - Hao Ou
- Department of Emergency and Critical Care Medicine, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, People's Republic of China.,Translational Medicine Center of Sepsis, Department of Pathophysiology, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, People's Republic of China
| | - Fei Ren
- Department of Anesthesiology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, People's Republic of China
| | - Ye Huan
- Department of Anesthesiology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, People's Republic of China
| | - Tao Zhong
- Department of Anesthesiology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, People's Republic of China
| | - Min Gao
- Department of Emergency and Critical Care Medicine, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, People's Republic of China.,Translational Medicine Center of Sepsis, Department of Pathophysiology, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, People's Republic of China
| | - Hongwei Cai
- Department of Anesthesiology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, People's Republic of China.
| |
Collapse
|