1
|
Wang T, Wang C, Liu Y, Zou K, Guan M, Wu Y, Yue S, Hu Y, Yu H, Zhang K, Wu D, Du J. Genome-Wide Identification of the Maize Chitinase Gene Family and Analysis of Its Response to Biotic and Abiotic Stresses. Genes (Basel) 2024; 15:1327. [PMID: 39457451 PMCID: PMC11507598 DOI: 10.3390/genes15101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Chitinases, enzymes belonging to the glycoside hydrolase family, play a crucial role in plant growth and stress response by hydrolyzing chitin, a natural polymer found in fungal cell walls. This study aimed to identify and analyze the maize chitinase gene family, assessing their response to various biotic and abiotic stresses to understand their potential role in plant defense mechanisms and stress tolerance. METHODS We employed bioinformatics tools to identify 43 chitinase genes in the maize B73_V5 genome. These genes were characterized for their chromosomal positions, gene and protein structures, phylogenetic relationships, functional enrichment, and collinearity. Based on previous RNA-seq data, the analysis assessed the expression patterns of these genes at different developmental stages and under multiple stress conditions. RESULTS The identified chitinase genes were unevenly distributed across maize chromosomes with a history of tandem duplications contributing to their divergence. The ZmChi protein family was predominantly hydrophilic and localized mainly in chloroplasts. Expression analysis revealed that certain chitinase genes were highly expressed at specific developmental stages and in response to various stresses, with ZmChi31 showing significant responsiveness to 11 different abiotic and biotic stresses. CONCLUSIONS This study provides new insights into the role of chitinase genes in maize stress response, establishing a theoretical framework for exploring the molecular basis of maize stress tolerance. The identification of stress-responsive chitinase genes, particularly ZmChi31, offers potential candidates for further study in enhancing maize resistance to environmental challenges.
Collapse
Affiliation(s)
- Tonghan Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (C.W.); (K.Z.); (Y.W.); (S.Y.); (Y.H.); (H.Y.); (K.Z.)
| | - Changjin Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (C.W.); (K.Z.); (Y.W.); (S.Y.); (Y.H.); (H.Y.); (K.Z.)
| | - Yang Liu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China; (Y.L.); (M.G.)
| | - Kunliang Zou
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (C.W.); (K.Z.); (Y.W.); (S.Y.); (Y.H.); (H.Y.); (K.Z.)
| | - Minghui Guan
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China; (Y.L.); (M.G.)
| | - Yutong Wu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (C.W.); (K.Z.); (Y.W.); (S.Y.); (Y.H.); (H.Y.); (K.Z.)
| | - Shutong Yue
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (C.W.); (K.Z.); (Y.W.); (S.Y.); (Y.H.); (H.Y.); (K.Z.)
| | - Ying Hu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (C.W.); (K.Z.); (Y.W.); (S.Y.); (Y.H.); (H.Y.); (K.Z.)
| | - Haibing Yu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (C.W.); (K.Z.); (Y.W.); (S.Y.); (Y.H.); (H.Y.); (K.Z.)
| | - Kaijing Zhang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (C.W.); (K.Z.); (Y.W.); (S.Y.); (Y.H.); (H.Y.); (K.Z.)
| | - Degong Wu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (C.W.); (K.Z.); (Y.W.); (S.Y.); (Y.H.); (H.Y.); (K.Z.)
| | - Junli Du
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (C.W.); (K.Z.); (Y.W.); (S.Y.); (Y.H.); (H.Y.); (K.Z.)
- Anhui Province International Joint Research Center of Forage Bio-Breeding, Chuzhou 233100, China
| |
Collapse
|
2
|
Zhou Y, Bai YH, Han FX, Chen X, Wu FS, Liu Q, Ma WZ, Zhang YQ. Transcriptome sequencing and metabolome analysis reveal the molecular mechanism of Salvia miltiorrhiza in response to drought stress. BMC PLANT BIOLOGY 2024; 24:446. [PMID: 38778268 PMCID: PMC11112794 DOI: 10.1186/s12870-024-05006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Salvia miltiorrhiza is commonly used as a Chinese herbal medicine to treat different cardiovascular and cerebrovascular illnesses due to its active ingredients. Environmental conditions, especially drought stress, can affect the yield and quality of S. miltiorrhiza. However, moderate drought stress could improve the quality of S. miltiorrhiza without significantly reducing the yield, and the mechanism of this initial drought resistance is still unclear. In our study, transcriptome and metabolome analyses of S. miltiorrhiza under different drought treatment groups (CK, A, B, and C groups) were conducted to reveal the basis for its drought tolerance. We discovered that the leaves of S. miltiorrhiza under different drought treatment groups had no obvious shrinkage, and the malondialdehyde (MDA) contents as well as superoxide dismutase (SOD) and peroxidase (POD) activities dramatically increased, indicating that our drought treatment methods were moderate, and the leaves of S. miltiorrhiza began to initiate drought resistance. The morphology of root tissue had no significant change under different drought treatment groups, and the contents of four tanshinones significantly enhanced. In all, 5213, 6611, and 5241 differentially expressed genes (DEGs) were shared in the A, B, and C groups compared with the CK group, respectively. The results of KEGG and co-expression analysis showed that the DEGs involved in plant-pathogen interactions, the MAPK signaling pathway, phenylpropanoid biosynthesis, flavonoid biosynthesis, and plant hormone signal transduction responded to drought stress and were strongly correlated with tanshinone biosynthesis. Furthermore, the results of metabolism analysis indicated that 67, 72, and 92 differentially accumulated metabolites (DAMs), including fumarate, ferulic acid, xanthohumol, and phytocassanes, which were primarily involved in phenylpropanoid biosynthesis, flavonoid biosynthesis, and diterpenoid biosynthesis pathways, were detected in these groups. These discoveries provide valuable information on the molecular mechanisms by which S. miltiorrhiza responds to drought stress and will facilitate the development of drought-resistant and high-quality S. miltiorrhiza production.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan-Hong Bai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng-Xia Han
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fu-Sheng Wu
- Shandong Provincial Center of Forest and Grass, Jinan, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Jinan, China.
| | - Wen-Zhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Yong-Qing Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Hénault-Ethier L, Quinche M, Reid B, Hotte N, Fortin A, Normandin É, de La Rochelle Renaud G, Rasooli Zadeh A, Deschamps MH, Vandenberg G. Opportunities and challenges in upcycling agri-food byproducts to generate insect manure (frass): A literature review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 176:169-191. [PMID: 38301601 DOI: 10.1016/j.wasman.2023.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/24/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024]
Abstract
A range of issues related to sustainability in the agrifood industry have spurred interest in mass production of insects as human food and animal feed alternatives. This rapidly evolving sector addresses several challenges, including the management of food waste or agrifood by-products and the production of alternative animal proteins demonstrating low environmental impacts that improve sector circularity. The mass production of insects on agrifood processing wastes or by-products represents an opportunity to address these challenges. While the production of insects offers prospects for sustainable protein production, a major side stream is the production of frass or larval excrement including uneaten feed and chitin-rich exuviae (derived from multiple larval moults). The production of each tonne of edible insects generates 2 to 4 tonnes of frass with an interesting potential in agriculture versus traditional organic amendments (compost, manure, biochar). This review aims to demonstrate the characteristics of frass, its common harvest and conditioning methods, its optimal application rates for planting crops, the mechanisms by which it can protect plants against biotic and abiotic stresses and demystify the risks and potential associated with its application in agriculture. The characteristics of frass are compared with those of conventional fertilizers or other. This report also compiles the Canadian, US and European regulatory frameworks as a novel plant fertilizer and aims to pave the way for future research necessary for its valorization in plant production.
Collapse
Affiliation(s)
- Louise Hénault-Ethier
- Institut national de la recherche scientifique, Eau Terre, Environnement Research Center, Québec, G1K 9A9, Canada; TriCycle, Montreal, Québec, H4N 2R9, Canada.
| | - Mélissa Quinche
- Institut national de la recherche scientifique, Eau Terre, Environnement Research Center, Québec, G1K 9A9, Canada
| | - Béatrice Reid
- Institut national de la recherche scientifique, Eau Terre, Environnement Research Center, Québec, G1K 9A9, Canada
| | - Noémie Hotte
- TriCycle, Montreal, Québec, H4N 2R9, Canada; Université de Sherbrooke, Québec, J1K 2R1, Canada
| | - Alexis Fortin
- TriCycle, Montreal, Québec, H4N 2R9, Canada; École de Technologie Supérieure, 1100 Rue Notre-Dame Ouest, Montréal, Québec, H3C 1K3, Canada
| | - Étienne Normandin
- TriCycle, Montreal, Québec, H4N 2R9, Canada; Centre sur la Biodiversité, Université de Montréal, 4101 R. Sherbrooke E, Montréal, Québec, H1X 2B2, Canada
| | | | - Aliyeh Rasooli Zadeh
- Institut national de la recherche scientifique, Eau Terre, Environnement Research Center, Québec, G1K 9A9, Canada
| | - Marie-Hélène Deschamps
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, G1V 0A6, Canada
| | - Grant Vandenberg
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, G1V 0A6, Canada
| |
Collapse
|
4
|
Dong Z, Hao Y, Zhao Y, Tang W, Wang X, Li J, Wang L, Hu Y, Guan X, Gu F, Liu Z, Zhang Z. Genome-Wide Analysis of the TCP Transcription Factor Gene Family in Pepper ( Capsicum annuum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:641. [PMID: 38475487 DOI: 10.3390/plants13050641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024]
Abstract
TCP transcription factors play a key role in regulating various developmental processes, particularly in shoot branching, flower development, and leaf development, and these factors are exclusively found in plants. However, comprehensive studies investigating TCP transcription factors in pepper (Capsicum annuum L.) are lacking. In this study, we identified 27 CaTCP members in the pepper genome, which were classified into Class I and Class II through phylogenetic analysis. The motif analysis revealed that CaTCPs in the same class exhibit similar numbers and distributions of motifs. We predicted that 37 previously reported miRNAs target 19 CaTCPs. The expression levels of CaTCPs varied in various tissues and growth stages. Specifically, CaTCP16, a member of Class II (CIN), exhibited significantly high expression in flowers. Class I CaTCPs exhibited high expression levels in leaves, while Class II CaTCPs showed high expression in lateral branches, especially in the CYC/TB1 subclass. The expression profile suggests that CaTCPs play specific roles in the developmental processes of pepper. We provide a theoretical basis that will assist in further functional validation of the CaTCPs.
Collapse
Affiliation(s)
- Zeyu Dong
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Yupeng Hao
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Yongyan Zhao
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Wenchen Tang
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Xueqiang Wang
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Jun Li
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Luyao Wang
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Yan Hu
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Xueying Guan
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Fenglin Gu
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya 572000, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, China
| | - Ziji Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Haikou 571101, China
| | - Zhiyuan Zhang
- Hainan Institute, Zhejiang University, Sanya 572000, China
| |
Collapse
|
5
|
Quesada-Ocampo LM, Parada-Rojas CH, Hansen Z, Vogel G, Smart C, Hausbeck MK, Carmo RM, Huitema E, Naegele RP, Kousik CS, Tandy P, Lamour K. Phytophthora capsici: Recent Progress on Fundamental Biology and Disease Management 100 Years After Its Description. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:185-208. [PMID: 37257056 DOI: 10.1146/annurev-phyto-021622-103801] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Phytophthora capsici is a destructive oomycete pathogen of vegetable, ornamental, and tropical crops. First described by L.H. Leonian in 1922 as a pathogen of pepper in New Mexico, USA, P. capsici is now widespread in temperate and tropical countries alike. Phytophthora capsici is notorious for its capability to evade disease management strategies. High genetic diversity allows P. capsici populations to overcome fungicides and host resistance, the formation of oospores results in long-term persistence in soils, zoospore differentiation in the presence of water increases epidemic potential, and a broad host range maximizes economic losses and limits the effectiveness of crop rotation. The severity of disease caused by P. capsici and management challenges have led to numerous research efforts in the past 100 years. Here, we discuss recent findings regarding the biology, genetic diversity, disease management, fungicide resistance, host resistance, genomics, and effector biology of P. capsici.
Collapse
Affiliation(s)
- L M Quesada-Ocampo
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, North Carolina, USA;
| | - C H Parada-Rojas
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, North Carolina, USA;
| | - Z Hansen
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - G Vogel
- School of Integrative Plant Science, Cornell University, Geneva, New York, USA
| | - C Smart
- School of Integrative Plant Science, Cornell University, Geneva, New York, USA
| | - M K Hausbeck
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - R M Carmo
- Division of Plant Sciences, University of Dundee, Dundee, United Kingdom
| | - E Huitema
- Division of Plant Sciences, University of Dundee, Dundee, United Kingdom
- James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - R P Naegele
- Sugarbeet and Bean Research Unit, USDA, ARS, East Lansing, Michigan, USA
| | - C S Kousik
- US Vegetable Laboratory, USDA, ARS, Charleston, South Carolina, USA
| | - P Tandy
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - K Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
6
|
Mangal V, Lal MK, Tiwari RK, Altaf MA, Sood S, Gahlaut V, Bhatt A, Thakur AK, Kumar R, Bhardwaj V, Kumar V, Singh B, Singh R, Kumar D. A comprehensive and conceptual overview of omics-based approaches for enhancing the resilience of vegetable crops against abiotic stresses. PLANTA 2023; 257:80. [PMID: 36913037 DOI: 10.1007/s00425-023-04111-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Abiotic stresses adversely affect the productivity and production of vegetable crops. The increasing number of crop genomes that have been sequenced or re-sequenced provides a set of computationally anticipated abiotic stress-related responsive genes on which further research may be focused. Knowledge of omics approaches and other advanced molecular tools have all been employed to understand the complex biology of these abiotic stresses. A vegetable can be defined as any component of a plant that is eaten for food. These plant parts may be celery stems, spinach leaves, radish roots, potato tubers, garlic bulbs, immature cauliflower flowers, cucumber fruits, and pea seeds. Abiotic stresses, such as deficient or excessive water, high temperature, cold, salinity, oxidative, heavy metals, and osmotic stress, are responsible for the adverse activity in plants and, ultimately major concern for decreasing yield in many vegetable crops. At the morphological level, altered leaf, shoot and root growth, altered life cycle duration and fewer or smaller organs can be observed. Likewise different physiological and biochemical/molecular processes are also affected in response to these abiotic stresses. In order to adapt and survive in a variety of stressful situations, plants have evolved physiological, biochemical, and molecular response mechanisms. A comprehensive understanding of the vegetable's response to different abiotic stresses and the identification of tolerant genotypes are essential to strengthening each vegetable's breeding program. The advances in genomics and next-generation sequencing have enabled the sequencing of many plant genomes over the last twenty years. A combination of modern genomics (MAS, GWAS, genomic selection, transgenic breeding, and gene editing), transcriptomics, and proteomics along with next-generation sequencing provides an array of new powerful approaches to the study of vegetable crops. This review examines the overall impact of major abiotic stresses on vegetables, adaptive mechanisms and functional genomic, transcriptomic, and proteomic processes used by researchers to minimize these challenges. The current status of genomics technologies for developing adaptable vegetable cultivars that will perform better in future climates is also examined.
Collapse
Affiliation(s)
- Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India.
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India.
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India.
| | | | - Salej Sood
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Vijay Gahlaut
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Department of Biotechnology and University Center for Research and Development, Chandigarh University, Mohali, Punjab, India
| | | | - Ajay Kumar Thakur
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Vinod Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rajender Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Devendra Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| |
Collapse
|
7
|
Yang F, Lv G. Combined analysis of transcriptome and metabolome reveals the molecular mechanism and candidate genes of Haloxylon drought tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1020367. [PMID: 36330247 PMCID: PMC9622360 DOI: 10.3389/fpls.2022.1020367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Haloxylon ammodendron and Haloxylon persicum, as typical desert plants, show strong drought tolerance and environmental adaptability. They are ideal model plants for studying the molecular mechanisms of drought tolerance. Transcriptomic and metabolomic analyses were performed to reveal the response mechanisms of H. ammodendron and H. persicum to a drought environment at the levels of transcription and physiological metabolism. The results showed that the morphological structures of H. ammodendron and H. persicum showed adaptability to drought stress. Under drought conditions, the peroxidase activity, abscisic acid content, auxin content, and gibberellin content of H. ammodendron increased, while the contents of proline and malondialdehyde decreased. The amino acid content of H. persicum was increased, while the contents of proline, malondialdehyde, auxin, and gibberellin were decreased. Under drought conditions, 12,233 and 17,953 differentially expressed genes (DEGs) were identified in H. ammodendron and H. persicum , respectively, including members of multiple transcription factor families such as FAR1, AP2/ERF, C2H2, bHLH, MYB, C2C2, and WRKY that were significantly up-regulated under drought stress. In the positive ion mode, 296 and 452 differential metabolites (DEMs) were identified in H. ammodendron and H. persicum, respectively; in the negative ion mode, 252 and 354 DEMs were identified, primarily in carbohydrate and lipid metabolism. A combined transcriptome and metabolome analysis showed that drought stress promoted the glycolysis/gluconeogenesis pathways of H. ammodendron and H. persicum and increased the expression of amino acid synthesis pathways, consistent with the physiological results. In addition, transcriptome and metabolome were jointly used to analyze the expression changes of the genes/metabolites of H. ammodendron and H. persicum that were associated with drought tolerance but were regulated differently in the two plants. This study identified drought-tolerance genes and metabolites in H. ammodendron and H. persicum and has provided new ideas for studying the drought stress response of Haloxylon.
Collapse
Affiliation(s)
- Fang Yang
- School of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Guanghui Lv
- School of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| |
Collapse
|
8
|
Chen KH, Liao HL, Arnold AE, Korotkin HB, Wu SH, Matheny PB, Lutzoni F. Comparative transcriptomics of fungal endophytes in co-culture with their moss host Dicranum scoparium reveals fungal trophic lability and moss unchanged to slightly increased growth rates. THE NEW PHYTOLOGIST 2022; 234:1832-1847. [PMID: 35263447 DOI: 10.1111/nph.18078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Mosses harbor fungi whose interactions within their hosts remain largely unexplored. Trophic ranges of fungal endophytes from the moss Dicranum scoparium were hypothesized to encompass saprotrophism. This moss is an ideal host to study fungal trophic lability because of its natural senescence gradient, and because it can be grown axenically. Dicranum scoparium was co-cultured with each of eight endophytic fungi isolated from naturally occurring D. scoparium. Moss growth rates, and gene expression levels (RNA sequencing) of fungi and D. scoparium, were compared between axenic and co-culture treatments. Functional lability of two fungal endophytes was tested by comparing their RNA expression levels when colonizing living vs dead gametophytes. Growth rates of D. scoparium were unchanged, or increased, when in co-culture. One fungal isolate (Hyaloscyphaceae sp.) that promoted moss growth was associated with differential expression of auxin-related genes. When grown with living vs dead gametophytes, Coniochaeta sp. switched from having upregulated carbohydrate transporter activity to upregulated oxidation-based degradation, suggesting an endophytism to saprotrophism transition. However, no such transition was detected for Hyaloscyphaceae sp. Individually, fungal endophytes did not negatively impact growth rates of D. scoparium. Our results support the long-standing hypothesis that some fungal endophytes can switch to saprotrophism.
Collapse
Affiliation(s)
- Ko-Hsuan Chen
- Department of Biology, Duke University, 130 Science Drive, Durham, NC, 27708, USA
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei, 11529, Taiwan
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Soil and Water Sciences Department, University of Florida, 1692 McCarty Drive, Gainesville, FL, 32611, USA
| | - A Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, University of Arizona, 1140 E. South Campus Drive, Tucson, AZ, 85721, USA
| | - Hailee B Korotkin
- Department of Ecology and Evolutionary Biology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996, USA
| | - Steven H Wu
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - P Brandon Matheny
- Department of Ecology and Evolutionary Biology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996, USA
| | - François Lutzoni
- Department of Biology, Duke University, 130 Science Drive, Durham, NC, 27708, USA
| |
Collapse
|
9
|
Gaibor-Vaca DG, García-Bazurto GL, Garcés-Fiallos FR. Mecanismos de defensa en plantas de Capsicum contra Phytophthora capsici. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Phytophthora capsici es un oomiceto causante de la pudrición de raíz, tallo, frutos y tizón foliar en varias especies vegetales de importancia agrícola, principalmente en Solanáceas del género Capsicum como ají y pimiento. Este fitopatógeno cosmopolita posee mecanismos de ataque que favorecen la rápida infección, colonización y reproducción en huéspedes susceptibles. Contrariamente, estos procesos son retrasados o evitados fuertemente por genotipos resistentes, debido principalmente a sus mecanismos de defensa. En esas interacciones incompatibles, las plantas resistentes de Capsicum reconocen el oomiceto y rápidamente expresan múltiples genes que posteriormente señalizan moléculas, que permiten la acumulación de compuestos fenólicos, fitoalexinas y especies reactivas de oxígeno, la actividad de diferentes enzimas, que pueden permitir incluso la formación de barreras físicas. Esta revisión aborda, expone y discute los avances y el progreso de las investigaciones a lo largo de los ultimos veinte años, referente a los mecanismos de defensa estructurales, bioquimicos y moleculares que utilizan las plantas resistentes de Capsicum para defenderse de P. capsici.
Palabras claves. ají, pimiento, pudrición de raíz y corona, tizón foliar, resistencia vegetal
Collapse
Affiliation(s)
- Darlyn G. Gaibor-Vaca
- Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Campus Experimental La Teodomira, Km 13, Lodana, Santa Ana, Manabí
| | - Génesis L García-Bazurto
- Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Campus Experimental La Teodomira, Km 13, Lodana, Santa Ana, Manabí
| | - Felipe R. Garcés-Fiallos
- Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Campus Experimental La Teodomira, Km 13, Lodana, Santa Ana, Manabí
| |
Collapse
|
10
|
Liu Z, Yu W, Zhang X, Huang J, Wang W, Miao M, Hu L, Wan C, Yuan Y, Wu B, Lyu M. Genome-Wide Identification and Expression Analysis of Chitinase-like Genes in Petunia axillaris. PLANTS (BASEL, SWITZERLAND) 2022; 11:1269. [PMID: 35567270 PMCID: PMC9100346 DOI: 10.3390/plants11091269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Chitinase (EC 3.2.1.14) is a kind of chitin-degrading glycosidase, which plays important roles in the abiotic and biotic defense of plants. In this study, we conducted whole-genome annotation, molecular evolution, and gene expression analyses on the chitinase-like (CTL) gene family members of Petunia axillaris. Thirty-three Petunia axillarischitinase-like genes (PaCTLs) were identified from the latest Petunia genome database. According to the phylogenetic analyses, these genes were divided into GH18 and GH19 subgroups and further subdivided into five classes (Class I to Class V). Conserved motif arrangements indicated their functional relevance within each group. The expansion and homeology analyses showed that gene replication events played an important role in the evolution of PaCTLs and the increase of the GH18 subgroup members was the main reason for the expansion of the PaCTL gene family in the evolution progress. By qRT-PCR analysis, we found that most of the PaCTLs showed a very low expression level in the normal growing plants. But lots of PaCTLs showed upregulated expression profiles when the plants suffered different abiotic stress conditions. Among them, five PaCTLs responded to high temperature and exhibited significantly upregulate expression level. Correspondingly, many hormone responses, as well as biotic and abiotic stress elements were found in the promoters of PaCTLs by using cis-acting element analysis. These results provide a foundation for the exploration of PaCTLs' function and enrich the evolutionary process of the CTL gene family.
Collapse
Affiliation(s)
- Zhuoyi Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
- College of Horticulture, South China Agriculture University, Guangzhou 510642, China
| | - Wenfei Yu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Xiaowen Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Jinfeng Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Wei Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Miao Miao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Li Hu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Chao Wan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Yuan Yuan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Binghua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Meiling Lyu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| |
Collapse
|
11
|
Momo J, Kumar A, Islam K, Ahmad I, Rawoof A, Ramchiary N. A comprehensive update on Capsicum proteomics: Advances and future prospects. J Proteomics 2022; 261:104578. [DOI: 10.1016/j.jprot.2022.104578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
12
|
Wang J, Li M, Zhuo S, Liu Y, Yu X, Mukhtar S, Ali M, Lu G. Mitogen-activated protein kinase 4 is obligatory for late pollen and early fruit development in tomato. HORTICULTURE RESEARCH 2022; 9:uhac048. [PMID: 35591931 PMCID: PMC9113226 DOI: 10.1093/hr/uhac048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/14/2022] [Indexed: 06/09/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules regulating vegetative and reproductive development of plants. However, the molecular mechanisms of the SlMPK4 gene in tomato pollen and fruit development remain elusive. SlMPK4 is preferentially and highly expressed in tomato stamens and its mRNA levels increase during early flower development, peaking at the mature pollen stage. Either up- or downregulation of SlMPK4 expression had no significant effect on tomato vegetative growth. However, RNAi-mediated suppression of SlMPK4 caused defects in pollen development, resulting in pollen abortion. The aborted pollen grains were either malformed or collapsed and completely lacked viability, resulting in a predominantly reduced fruit set rate in RNAi lines compared with control and overexpressing transgenic plants. Interestingly, seed development was inhibited in RNAi lines. Moreover, >12% of emasculated RNAi flowers developed seedless fruits without pollination. Anthers can produce typical microspore mother cells as well as uninucleate microspores, according to cytological investigations, while binucleate pollen ceased to produce typical mature pollen. Pollen abortion was further confirmed by transmission electron microscopy analysis at the binucleate stage in RNAi plants. The exine layer in aberrant pollen had a normal structure, while the intine layer appeared thicker. Suppression of SlMPK4 affects the transcript level of genes related to cell wall formation and modification, cell signal transduction, and metabolic and biosynthetic processes. A subset of genes that may be putative substrates of plant MAPKs were also differentially changed in RNAi transgenic flowers. Taken together, these results suggest that SlMPK4 plays a critical role in regulating pollen development and fruit development in tomato plants.
Collapse
Affiliation(s)
- Jie Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Ningbo Academy of Agricultural Sciences, Ningbo 315000, Zhejiang, China
| | - Mengzhuo Li
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Shibin Zhuo
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Yue Liu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Xiaolin Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Sidra Mukhtar
- Directorate of Agriculture Research, Agricultural Research Institute Tarnab, Peshawar, Pakistan
| | - Muhammad Ali
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Gang Lu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Sharma DL, Bhoite R, Reeves K, Forrest K, Smith R, Dowla MANNU. Genome-wide superior alleles, haplotypes and candidate genes associated with tolerance on sodic-dispersive soils in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1113-1128. [PMID: 34985536 PMCID: PMC8942925 DOI: 10.1007/s00122-021-04021-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The pleiotropic SNPs/haplotypes, overlapping genes (metal ion binding, photosynthesis), and homozygous/biallelic SNPs and transcription factors (HTH myb-type and BHLH) hold great potential for improving wheat yield potential on sodic-dispersive soils. Sodic-dispersive soils have multiple subsoil constraints including poor soil structure, alkaline pH and subsoil toxic elemental ion concentration, affecting growth and development in wheat. Tolerance is required at all developmental stages to enhance wheat yield potential on such soils. An in-depth investigation of genome-wide associations was conducted using a field phenotypic data of 206 diverse Focused Identification of Germplasm Strategy (FIGS) wheat lines for two consecutive years from different sodic and non-sodic plots and the exome targeted genotyping by sequencing (tGBS) assay. A total of 39 quantitative trait SNPs (QTSs), including 18 haplotypes were identified on chromosome 1A, 1B, 1D, 2A, 2B, 2D, 3A, 3B, 5A, 5D, 6B, 7A, 7B, 7D for yield and yield-components tolerance. Among these, three QTSs had common associations for multiple traits, indicating pleiotropism and four QTSs had close associations for multiple traits, within 32.38 Mb. The overlapping metal ion binding (Mn, Ca, Zn and Al) and photosynthesis genes and transcription factors (PHD-, Dof-, HTH myb-, BHLH-, PDZ_6-domain) identified are known to be highly regulated during germination, maximum stem elongation, anthesis, and grain development stages. The homozygous/biallelic SNPs having allele frequency above 30% were identified for yield and crop establishment/plants m-2. These SNPs correspond to HTH myb-type and BHLH transcription factors, brassinosteroid signalling pathway, kinase activity, ATP and chitin binding activity. These resources are valuable in haplotype-based breeding and genome editing to improve yield potential on sodic-dispersive soils.
Collapse
Affiliation(s)
- Darshan Lal Sharma
- Department of Primary Industries and Regional Development, 3 Baron-Hay Ct, South Perth, WA, 6151, Australia.
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia.
| | - Roopali Bhoite
- Department of Primary Industries and Regional Development, 3 Baron-Hay Ct, South Perth, WA, 6151, Australia.
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia.
| | - Karyn Reeves
- Department of Primary Industries and Regional Development, 3 Baron-Hay Ct, South Perth, WA, 6151, Australia
| | - Kerrie Forrest
- Centre for AgriBioscience, Agriculture Victoria, Bundoora, AgriBioVIC, Australia
| | - Rosemary Smith
- Department of Primary Industries and Regional Development, 3 Baron-Hay Ct, South Perth, WA, 6151, Australia
| | - Mirza A N N U Dowla
- Department of Primary Industries and Regional Development, 3 Baron-Hay Ct, South Perth, WA, 6151, Australia
| |
Collapse
|
14
|
Hussain A, Khan MI, Albaqami M, Mahpara S, Noorka IR, Ahmed MAA, Aljuaid BS, El-Shehawi AM, Liu Z, Farooq S, Zuan ATK. CaWRKY30 Positively Regulates Pepper Immunity by Targeting CaWRKY40 against Ralstonia solanacearum Inoculation through Modulating Defense-Related Genes. Int J Mol Sci 2021; 22:ijms222112091. [PMID: 34769521 PMCID: PMC8584995 DOI: 10.3390/ijms222112091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
The WRKY transcription factors (TFs) network is composed of WRKY TFs’ subset, which performs a critical role in immunity regulation of plants. However, functions of WRKY TFs’ network remain unclear, particularly in non-model plants such as pepper (Capsicum annuum L.). This study functionally characterized CaWRKY30—a member of group III Pepper WRKY protein—for immunity of pepper against Ralstonia solanacearum infection. The CaWRKY30 was detected in nucleus, and its transcriptional expression levels were significantly upregulated by R. solanacearum inoculation (RSI), and foliar application ethylene (ET), abscisic acid (ABA), and salicylic acid (SA). Virus induced gene silencing (VIGS) of CaWRKY30 amplified pepper’s vulnerability to RSI. Additionally, the silencing of CaWRKY30 by VIGS compromised HR-like cell death triggered by RSI and downregulated defense-associated marker genes, like CaPR1, CaNPR1, CaDEF1, CaABR1, CaHIR1, and CaWRKY40. Conversely, transient over-expression of CaWRKY30 in pepper leaves instigated HR-like cell death and upregulated defense-related maker genes. Furthermore, transient over-expression of CaWRKY30 upregulated transcriptional levels of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. On the other hand, transient over-expression of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40 upregulated transcriptional expression levels of CaWRKY30. The results recommend that newly characterized CaWRKY30 positively regulates pepper’s immunity against Ralstonia attack, which is governed by synergistically mediated signaling by phytohormones like ET, ABA, and SA, and transcriptionally assimilating into WRKY TFs networks, consisting of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. Collectively, our data will facilitate to explicate the underlying mechanism of crosstalk between pepper’s immunity and response to RSI.
Collapse
Affiliation(s)
- Ansar Hussain
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (A.H.); (M.I.K.); (S.M.); (I.R.N.)
| | - Muhammad Ifnan Khan
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (A.H.); (M.I.K.); (S.M.); (I.R.N.)
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Shahzadi Mahpara
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (A.H.); (M.I.K.); (S.M.); (I.R.N.)
| | - Ijaz Rasool Noorka
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (A.H.); (M.I.K.); (S.M.); (I.R.N.)
| | - Mohamed A. A. Ahmed
- Plant Production Department (Horticulture—Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Bandar S. Aljuaid
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (B.S.A.); (A.M.E.-S.)
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (B.S.A.); (A.M.E.-S.)
| | - Zhiqin Liu
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350001, China
- Correspondence: (Z.L.); (A.T.K.Z.)
| | - Shahid Farooq
- Department of Plant Protection, Faculty of Agriculture, Harran University, Şanlıurfa 63050, Turkey;
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (Z.L.); (A.T.K.Z.)
| |
Collapse
|
15
|
Lee YM, Chae GY, Kim MK, Kim S. Comparative Analysis of Re-Annotated Genes Provides Insight into Evolutionary Divergence and Expressions of Aquaporin Family in Pepper. PLANTS 2021; 10:plants10061039. [PMID: 34064088 PMCID: PMC8224332 DOI: 10.3390/plants10061039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
Aquaporins (AQPs) are known to have a vital role in water transport in all living organisms including agriculturally important crops, but a comprehensive genomic study of AQPs in pepper has not been implemented. Here, we updated previous gene annotations and generated a total of 259 AQP genes from five plants, including pepper. Phylogenetic and motif analyses revealed that a large proportion of pepper AQP genes belong to the specific subgroup of tonoplast intrinsic protein (TIP) subfamily, TIP4. Chromosomal localization and estimated duplication times illustrated that genes in TIP4 formed a tandem array on the short arm of chromosome 1, resulting from pepper-specific expansion after its divergence with Solanaceae species. Transcriptome analyses under various abiotic stress conditions revealed that transport-, photosystem-, and thylakoid-related genes were generally enriched in expression clusters containing AQP genes in pepper. These results provide valuable genomic resources and insight into the evolutionary mechanism that generate genomic diversity of the AQP gene family in pepper.
Collapse
|
16
|
He Y, Liu Y, Li M, Lamin-Samu AT, Yang D, Yu X, Izhar M, Jan I, Ali M, Lu G. The Arabidopsis SMALL AUXIN UP RNA32 Protein Regulates ABA-Mediated Responses to Drought Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:625493. [PMID: 33777065 PMCID: PMC7994887 DOI: 10.3389/fpls.2021.625493] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/02/2021] [Indexed: 05/27/2023]
Abstract
SMALL AUXIN UP-REGULATED RNAs (SAURs) are recognized as auxin-responsive genes involved in the regulation of abiotic stress adaptive growth. Among the growth-limiting factors, water-deficit condition significantly affects plant growth and development. The putative function of SAUR family member AtSAUR32 has the potential to diminish the negative impact of drought stress, but the exact function and mode of action remain unclear in Arabidopsis. In the current study, AtSAUR32 gene was cloned and functionally analyzed. AtSAUR32 localized to the plasma membrane and nucleus was dominantly expressed in roots and highly induced by abscisic acid and drought treatment at certain time points. The stomatal closure and seed germination of saur32 were less sensitive to ABA relative to AtSAUR32-overexpressed line (OE32-5) and wild type (WT). Moreover, the saur32 mutant under drought stress showed increased ion leakage while quantum yield of photosystem II (ΦPSII) and endogenous ABA accumulation were reduced, along with the expression pattern of ABA/stress-responsive genes compared with WT and the OE32-5 transgenic line. Additionally, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that AtSAUR32 interacted with clade-A PP2C proteins (AtHAI1 and AtAIP1) to regulate ABA sensitivity in Arabidopsis. Taken together, these results indicate that AtSAUR32 plays an important role in drought stress adaptation via mediating ABA signal transduction.
Collapse
Affiliation(s)
- Yanjun He
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yue Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengzhuo Li
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Anthony Tumbeh Lamin-Samu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Dandan Yang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaolin Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Izhar
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Ibadullah Jan
- Department of Agriculture, University of Swabi, Swabi, Pakistan
| | - Muhammad Ali
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Gang Lu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Li D, Qian J, Li W, Yu N, Gan G, Jiang Y, Li W, Liang X, Chen R, Mo Y, Lian J, Niu Y, Wang Y. A high-quality genome assembly of the eggplant provides insights into the molecular basis of disease resistance and chlorogenic acid synthesis. Mol Ecol Resour 2021; 21:1274-1286. [PMID: 33445226 DOI: 10.1111/1755-0998.13321] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/19/2020] [Accepted: 01/06/2021] [Indexed: 11/28/2022]
Abstract
The eggplant (Solanum melongena L.) is one of the most important Solanaceae crops, ranking third for total production and economic value in its genus. Herein, we report a high-quality, chromosome-scale eggplant reference genome sequence of 1155.8 Mb, with an N50 of 93.9 Mb, which was assembled by combining PacBio long reads and Hi-C sequencing data. Repetitive sequences occupied 70.1% of the assembly length, and 35,018 high-confidence protein-coding genes were annotated based on multiple sources. Comparative analysis revealed 646 species-specific families and 364 positive selection genes, conferring distinguishing traits on the eggplant. We performed genome-wide comparative identification of disease resistance genes and discovered an expanded gene family of bacterial spot resistance in eggplant and pepper, but not in tomato and potato. The genes involved in chlorogenic acid synthesis were comprehensively characterized. Highly similar chromosomal distribution patterns of polyphenol oxidase genes were observed in the eggplant, tomato, and potato genomes. The eggplant reference genome sequence will not only facilitate evolutionary studies of the Solanaceae but also facilitate their breeding and improvement.
Collapse
Affiliation(s)
- Dandan Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jun Qian
- Biozeron Shenzhen, Inc, Shenzhen, China
| | - Weiliu Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ning Yu
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Guiyun Gan
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yaqin Jiang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wenjia Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xuyu Liang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Riyuan Chen
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yongcheng Mo
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | | | | | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
18
|
Wang Y, Sang Z, Xu S, Xu Q, Zeng X, Jabu D, Yuan H. Comparative proteomics analysis of Tibetan hull-less barley under osmotic stress via data-independent acquisition mass spectrometry. Gigascience 2021; 9:5775614. [PMID: 32126136 PMCID: PMC7053489 DOI: 10.1093/gigascience/giaa019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/18/2020] [Accepted: 02/12/2020] [Indexed: 12/25/2022] Open
Abstract
Background Tibetan hull-less barley (Hordeum vulgare L. var. nudum) is one of the primary crops cultivated in the mountains of Tibet and encounters low temperature, high salinity, and drought. Specifically, drought is one of the major abiotic stresses that affect and limit Tibetan barley growth. Osmotic stress is often simultaneously accompanied by drought conditions. Thus, to improve crop yield, it is critical to explore the molecular mechanism governing the responses of hull-less barley to osmotic/drought stress conditions. Findings In this study, we used quantitative proteomics by data-independent acquisition mass spectrometry to investigate protein abundance changes in tolerant (XL) and sensitive (DQ) cultivars. A total of 6,921 proteins were identified and quantified in all samples. Two distinct strategies based on pairwise and time-course comparisons were utilized in the comprehensive analysis of differentially abundant proteins. Further functional analysis of differentially abundant proteins revealed that some hormone metabolism–associated and phytohormone abscisic acid–induced genes are primarily affected by osmotic stress. Enhanced regulation of reactive oxygen species (may promote the tolerance of hull-less barley under osmotic stress. Moreover, we found that some regulators, such as GRF, PR10, MAPK, and AMPK, were centrally positioned in the gene regulatory network, suggesting that they may have a dominant role in the osmotic stress response of Tibetan barley. Conclusions Our findings highlight a subset of proteins and processes that are involved in the alleviation of osmotic stress. In addition, this study provides a large-scale and multidimensional proteomic data resource for the further investigation and improvement of osmotic/drought stress tolerance in hull-less barley or other plant species.
Collapse
Affiliation(s)
- Yulin Wang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| | - Zha Sang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| | - Shaohang Xu
- Deepxomics Co., Ltd, No.2082 Shenyan Road, Yantian District., Shenzhen 518000, Guangdong, China
| | - Qijun Xu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| | - Xingquan Zeng
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| | - Dunzhu Jabu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| | - Hongjun Yuan
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| |
Collapse
|
19
|
Zhang RX, Zhu WC, Cheng GX, Yu YN, Li QH, Haq SU, Said F, Gong ZH. A novel gene, CaATHB-12, negatively regulates fruit carotenoid content under cold stress in Capsicum annuum. Food Nutr Res 2020; 64:3729. [PMID: 33447178 PMCID: PMC7778427 DOI: 10.29219/fnr.v64.3729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/20/2020] [Accepted: 09/10/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Carotenoids, the secondary metabolites terpenoids, are the largest factors that form the fruit color. Similar to flavonoids, they are not only safe and natural colorants of fruits but also play a role as stress response biomolecules. METHODS To study the contribution of the key genes in carotenoids biosynthesis, fruit-color formation, and in response to cold stress, we characterized the key regulatory factor CaATHB-12 from the HD-ZIP I sub-gene family members in pepper. RESULTS Cold stress enhanced carotenoid accumulation as compared with the normal condition. CaATHB-12 silencing through virus-induced gene silencing changed the fruit color by regulating the carotenoid contents. CaATHB-12 silencing increased the antioxidant enzyme activities in the fruits of pepper, exposed to cold stress, whereas CaATHB-12 overexpression decreased the activities of antioxidant enzymes in the transgenic Arabidopsis lines, exposed to cold stress, suggesting that CaATHB-12 is involved in the regulation of cold stress in the pepper fruits. CONCLUSION Our research will provide insights into the formation of fruit color in pepper and contribution of CaATHB-12 in response to cold stress. Further study should be focused on the interaction between CaATHB-12 and its target gene.
Collapse
Affiliation(s)
- Rui-Xing Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Wen-Chao Zhu
- Guizhou Institute of Pepper, Guiyang, P.R. China
| | - Guo-Xin Cheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Ya-Nan Yu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Quan-Hui Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Fazal Said
- Department of Agriculture, Abdul Wali Khan University, Mardan, Paksitan
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| |
Collapse
|
20
|
Ali M, Tumbeh Lamin-Samu A, Muhammad I, Farghal M, Khattak AM, Jan I, ul Haq S, Khan A, Gong ZH, Lu G. Melatonin Mitigates the Infection of Colletotrichum gloeosporioides via Modulation of the Chitinase Gene and Antioxidant Activity in Capsicum annuum L. Antioxidants (Basel) 2020; 10:antiox10010007. [PMID: 33374725 PMCID: PMC7822495 DOI: 10.3390/antiox10010007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
Anthracnose, caused by Colletotrichum gloeosporioides, is one of the most damaging pepper (Capsicum annum L.) disease. Melatonin induces transcription of defense-related genes that enhance resistance to pathogens and mediate physiological activities in plants. To study whether the melatonin-mediated pathogen resistance is associated with chitinase gene (CaChiIII2), pepper plants and Arabidopsis seeds were treated with melatonin, then CaChiIII2 activation, hydrogen peroxide (H2O2) levels, and antioxidant enzymes activity during plant–pathogen interactions were investigated. Melatonin pretreatment uncoupled the knockdown of CaChiIII2 and transiently activated its expression level in both control and CaChiIII2-silenced pepper plants and enhanced plant resistance. Suppression of CaChiIII2 in pepper plants showed a significant decreased in the induction of defense-related genes and resistance to pathogens compared with control plants. Moreover, melatonin efficiently enabled plants to maintain intracellular H2O2 concentrations at steady-state levels and enhanced the activities of antioxidant enzymes, which possibly improved disease resistance. The activation of the chitinase gene CaChiIII2 in transgenic Arabidopsis lines was elevated under C. gloeosporioides infection and exhibited resistance through decreasing H2O2 biosynthesis and maintaining H2O2 at a steady-state level. Whereas melatonin primed CaChiIII2-overexpressed (OE) and wild-type (WT) Arabidopsis seedlings displayed a remarkable increase in root-length compared to the unprimed WT plants. Using an array of CaChiIII2 knockdown and OE, we found that melatonin efficiently induced CaChiIII2 and other pathogenesis-related genes expressions, responsible for the innate immunity response of pepper against anthracnose disease.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.); (A.T.L.-S.); (M.F.)
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Anthony Tumbeh Lamin-Samu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.); (A.T.L.-S.); (M.F.)
| | - Izhar Muhammad
- College of Agronomy, Northwest A&F University, Yangling 712100, China;
| | - Mohamed Farghal
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.); (A.T.L.-S.); (M.F.)
| | - Abdul Mateen Khattak
- Department of Horticulture, The University of Agriculture, Peshawar 25120, Pakistan; (A.M.K.); (S.u.H.)
| | - Ibadullah Jan
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa 9291, Pakistan;
| | - Saeed ul Haq
- Department of Horticulture, The University of Agriculture, Peshawar 25120, Pakistan; (A.M.K.); (S.u.H.)
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan;
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China
- Correspondence: (Z.-H.G.); (G.L.)
| | - Gang Lu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.); (A.T.L.-S.); (M.F.)
- Correspondence: (Z.-H.G.); (G.L.)
| |
Collapse
|
21
|
Zhou H, Huang W, Luo S, Hu H, Zhang Y, Zhang L, Li P. Genome-Wide Identification of the Vacuolar H +-ATPase Gene Family in Five Rosaceae Species and Expression Analysis in Pear ( Pyrus bretschneideri). PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9121661. [PMID: 33261053 PMCID: PMC7761284 DOI: 10.3390/plants9121661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Vacuolar H+-ATPases (V-ATPase) are multi-subunit complexes that function as ATP hydrolysis-driven proton pumps. They play pivotal roles in physiological processes, such as development, metabolism, stress, and growth. However, there have been very few studies on the characterisation of V-ATPase (VHA) genes in Rosaceae species. Therefore, in the present study, we performed a genome-wide analysis and identified VHA gene family members in five Rosaceae species (Pyrus bretschneideri, Malus domestica, Prunus persica, Fragaria vesca, and Prunus mume). A total of 159 VHA genes were identified, and were classified into 13 subfamilies according to the phylogenetic analysis. The structure of VHA proteins revealed high similarity among different VHA genes within the same subgroup. Gene duplication event analysis revealed that whole-genome duplications represented the major pathway for expansion of the Pyrus bretschneideri VHA genes (PbrVHA genes). The tissue-specific expression analysis of the pear showed that 36 PbrVHA genes were expressed in major tissues. Seven PbrVHA genes were significantly downregulated when the pollen tube growth stopped. Moreover, many PbrVHA genes were differentially expressed during fruit development and storage, suggesting that VHA genes play specific roles in development and senescence. The present study provides fundamental information for further elucidating the potential roles of VHA genes during development and senescence.
Collapse
Affiliation(s)
- Hongsheng Zhou
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (S.L.); (H.H.); (Y.Z.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Wen Huang
- Nanjing Institute of Vegetable Science, Nanjing 210042, China;
| | - Shufen Luo
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (S.L.); (H.H.); (Y.Z.)
| | - Huali Hu
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (S.L.); (H.H.); (Y.Z.)
| | - Yingtong Zhang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (S.L.); (H.H.); (Y.Z.)
| | - Leigang Zhang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (S.L.); (H.H.); (Y.Z.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pengxia Li
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (S.L.); (H.H.); (Y.Z.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
22
|
Multi-Omics Analysis of Small RNA, Transcriptome, and Degradome in T. turgidum-Regulatory Networks of Grain Development and Abiotic Stress Response. Int J Mol Sci 2020; 21:ijms21207772. [PMID: 33096606 PMCID: PMC7589925 DOI: 10.3390/ijms21207772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 01/04/2023] Open
Abstract
Crop reproduction is highly sensitive to water deficit and heat stress. The molecular networks of stress adaptation and grain development in tetraploid wheat (Triticum turgidum durum) are not well understood. Small RNAs (sRNAs) are important epigenetic regulators connecting the transcriptional and post-transcriptional regulatory networks. This study presents the first multi-omics analysis of the sRNAome, transcriptome, and degradome in T. turgidum developing grains, under single and combined water deficit and heat stress. We identified 690 microRNAs (miRNAs), with 84 being novel, from 118 sRNA libraries. Complete profiles of differentially expressed miRNAs (DEMs) specific to genotypes, stress types, and different reproductive time-points are provided. The first degradome sequencing report for developing durum grains discovered a significant number of new target genes regulated by miRNAs post-transcriptionally. Transcriptome sequencing profiled 53,146 T. turgidum genes, swith differentially expressed genes (DEGs) enriched in functional categories such as nutrient metabolism, cellular differentiation, transport, reproductive development, and hormone transduction pathways. miRNA-mRNA networks that affect grain characteristics such as starch synthesis and protein metabolism were constructed on the basis of integrated analysis of the three omics. This study provides a substantial amount of novel information on the post-transcriptional networks in T. turgidum grains, which will facilitate innovations for breeding programs aiming to improve crop resilience and grain quality.
Collapse
|
23
|
Chitinase Gene Positively Regulates Hypersensitive and Defense Responses of Pepper to Colletotrichum acutatum Infection. Int J Mol Sci 2020; 21:ijms21186624. [PMID: 32927746 PMCID: PMC7555800 DOI: 10.3390/ijms21186624] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Anthracnose caused by Colletotrichum acutatum is one of the most devastating fungal diseases of pepper (Capsicum annuum L.). The utilization of chitin-binding proteins or chitinase genes is the best option to control this disease. A chitin-binding domain (CBD) has been shown to be crucial for the innate immunity of plants and activates the hypersensitive response (HR). The CaChiIII7 chitinase gene has been identified and isolated from pepper plants. CaChiIII7 has repeated CBDs that encode a chitinase enzyme that is transcriptionally stimulated by C. acutatum infection. The knockdown of CaChiIII7 in pepper plants confers increased hypersensitivity to C. acutatum, resulting in its proliferation in infected leaves and an attenuation of the defense response genes CaPR1, CaPR5, and SAR8.2 in the CaChiIII7-silenced pepper plants. Additionally, H2O2 accumulation, conductivity, proline biosynthesis, and root activity were distinctly reduced in CaChiIII7-silenced plants. Subcellular localization analyses indicated that the CaChiIII7 protein is located in the plasma membrane and cytoplasm of plant cells. The transient expression of CaChiIII7 increases the basal resistance to C. acutatum by significantly expressing several defense response genes and the HR in pepper leaves, accompanied by an induction of H2O2 biosynthesis. These findings demonstrate that CaChiIII7 plays a prominent role in plant defense in response to pathogen infection.
Collapse
|
24
|
Ali M, Muhammad I, ul Haq S, Alam M, Khattak AM, Akhtar K, Ullah H, Khan A, Lu G, Gong ZH. The CaChiVI2 Gene of Capsicum annuum L. Confers Resistance Against Heat Stress and Infection of Phytophthora capsici. FRONTIERS IN PLANT SCIENCE 2020; 11:219. [PMID: 32174952 PMCID: PMC7057250 DOI: 10.3389/fpls.2020.00219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/12/2020] [Indexed: 05/08/2023]
Abstract
Extreme environmental conditions seriously affect crop growth and development, resulting in substantial reduction in yield and quality. However, chitin-binding proteins (CBP) family member CaChiVI2 plays a crucial role in eliminating the impact of adverse environmental conditions, such as cold and salt stress. Here, for the first time it was discovered that CaChiVI2 (Capana08g001237) gene of pepper (Capsicum annuum L.) had a role in resistance to heat stress and physiological processes. The full-length open-reading frame (ORF) of CaChiVI2 (606-bp, encoding 201-amino acids), was cloned into TRV2:CaChiVI2 vector for silencing. The CaChiVI2 gene carries heat shock elements (HSE, AAAAAATTTC) in the upstream region, and thereby shows sensitivity to heat stress at the transcriptional level. The silencing effect of CaChiVI2 in pepper resulted in increased susceptibility to heat and Phytophthora capsici infection. This was evident from the severe symptoms on leaves, the increase in superoxide (O2 -) and hydrogen peroxide (H2O2) accumulation, higher malondialdehyde (MDA), relative electrolyte leakage (REL) and lower proline contents compared with control plants. Furthermore, the transcript level of other resistance responsive genes was also altered. In addition, the CaChiIV2-overexpression in Arabidopsis thaliana showed mild heat and drought stress symptoms and increased transcript level of a defense-related gene (AtHSA32), indicating its role in the co-regulation network of the plant. The CaChiVI2-overexpressed plants also showed a decrease in MDA contents and an increase in antioxidant enzyme activity and proline accumulation. In conclusion, the results suggest that CaChiVI2 gene plays a decisive role in heat and drought stress tolerance, as well as, provides resistance against P. capsici by reducing the accumulation of reactive oxygen species (ROS) and modulating the expression of defense-related genes. The outcomes obtained here suggest that further studies should be conducted on plants adaptation mechanisms in variable environments.
Collapse
Affiliation(s)
- Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling, China
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Izhar Muhammad
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Mukhtar Alam
- Department of Agriculture, The University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Mateen Khattak
- Department of Horticulture, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Kashif Akhtar
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hidayat Ullah
- Department of Agriculture, The University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Gang Lu
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
25
|
Haq SU, Khan A, Ali M, Gai WX, Zhang HX, Yu QH, Yang SB, Wei AM, Gong ZH. Knockdown of CaHSP60-6 confers enhanced sensitivity to heat stress in pepper (Capsicum annuum L.). PLANTA 2019; 250:2127-2145. [PMID: 31606756 DOI: 10.1007/s00425-019-03290-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/26/2019] [Indexed: 05/24/2023]
Abstract
HSP60 gene family in pepper was analyzed through bioinformatics along with transcriptional regulation against multiple abiotic and hormonal stresses. Furthermore, the knockdown of CaHSP60-6 increased sensitivity to heat stress. The 60 kDa heat shock protein (HSP60) also known as chaperonin (cpn60) is encoded by multi-gene family that plays an important role in plant growth, development and in stress response as a molecular chaperone. However, little is known about the HSP60 gene family in pepper (Capsicum annuum L.). In this study, 16 putative pepper HSP60 genes were identified through bioinformatic tools. The phylogenetic tree revealed that eight of the pepper HSP60 genes (50%) clustered into group I, three (19%) into group II, and five (31%) into group III. Twelve (75%) CaHSP60 genes have more than 10 introns, while only a single gene contained no introns. Chromosomal mapping revealed that the tandem and segmental duplication events occurred in the process of evolution. Gene ontology enrichment analysis predicted that CaHSP60 genes were responsible for protein folding and refolding in an ATP-dependent manner in response to various stresses in the biological processes category. Multiple stress-related cis-regulatory elements were found in the promoter region of these CaHSP60 genes, which indicated that these genes were regulated in response to multiple stresses. Tissue-specific expression was studied under normal conditions and induced under 2 h of heat stress measured by RNA-Seq data and qRT-PCR in different tissues (roots, stems, leaves, and flowers). The data implied that HSP60 genes play a crucial role in pepper growth, development, and stress responses. Fifteen (93%) CaHSP60 genes were induced in both, thermo-sensitive B6 and thermo-tolerant R9 lines under heat treatment. The relative expression of nine representative CaHSP60 genes in response to other abiotic stresses (cold, NaCl, and mannitol) and hormonal applications [ABA, methyl jasmonate (MeJA), and salicylic acid (SA)] was also evaluated. Knockdown of CaHSP60-6 increased the sensitivity to heat shock treatment as documented by a higher relative electrolyte leakage, lipid peroxidation, and reactive oxygen species accumulation in silenced pepper plants along with a substantial lower chlorophyll content and antioxidant enzyme activity. These results suggested that HSP60 might act as a positive regulator in pepper defense against heat and other abiotic stresses. Our results provide a basis for further functional analysis of HSP60 genes in pepper.
Collapse
Affiliation(s)
- Saeed Ul Haq
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qing-Hui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China
| | - Sheng-Bao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, People's Republic of China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
26
|
Cao P, Liu X, Guo J, Chen Y, Li S, Wang C, Huang W, Min Y. Genome-Wide Analysis of Dynamin Gene Family in cassava ( Manihot esculenta Crantz) and Transcriptional Regulation of Family Members ARC5 in Hormonal Treatments. Int J Mol Sci 2019; 20:ijms20205094. [PMID: 31615135 PMCID: PMC6829251 DOI: 10.3390/ijms20205094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
The Dynamin gene family play a significance role in many physiological processes, especially ARC5 (Accumulation and replication of chloroplasts 5) in the process of plastid division. We performed a genome-wide analysis of the cassava Dynamin family based on the published cassava genome sequence and identified ARC5. 23 cassava Dynamins (MeDynamins) were identified and renamed. 23 MeDynamins were further divided into five major groups based on their structural and phylogenetic characteristics. The segmental duplication events have a significant impact on the expansion of MeDynamins. ARC5 expression analysis showed that there were differences between leaves and roots of cassava at different developmental stages. The tissue-specific expression analysis of the MeDynamins showed that most of MeDynamins were expressed in stem apical meristem and embryogenesis, whereas ARC5 was mainly expressed in leaves. The processing of IAA (Indole-3-acetic Acid) and MeJA (Methyl Jasmonate) verified the prediction results of cis-elements, and ACR5 was closely related to plant growth and positively correlated. It also indicated that high concentrations of MeJA treatment caused the cassava defense mechanism to function in advance. In conclusion, these findings provide basic insights for functional validation of the ARC5 genes in exogenous hormonal treatments.
Collapse
Affiliation(s)
- Peng Cao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Life Sciences and Pharmacy, Hainan University, Haikou 570228, China.
| | - Xiaohan Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Life Sciences and Pharmacy, Hainan University, Haikou 570228, China.
| | - Jianchun Guo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Yinhua Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Life Sciences and Pharmacy, Hainan University, Haikou 570228, China.
| | - Shuangbao Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Life Sciences and Pharmacy, Hainan University, Haikou 570228, China.
| | - Congcong Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Life Sciences and Pharmacy, Hainan University, Haikou 570228, China.
| | - Wu Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Life Sciences and Pharmacy, Hainan University, Haikou 570228, China.
| | - Yi Min
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Life Sciences and Pharmacy, Hainan University, Haikou 570228, China.
| |
Collapse
|
27
|
Ali M, Gai WX, Khattak AM, Khan A, Haq SU, Ma X, Wei AM, Muhammad I, Jan I, Gong ZH. Knockdown of the chitin-binding protein family gene CaChiIV1 increased sensitivity to Phytophthora capsici and drought stress in pepper plants. Mol Genet Genomics 2019. [PMID: 31175439 DOI: 10.1007/s00438-019-01583-1587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Phytophthora capsici has been the most destructive pathogen of pepper plants (Capsicum annuum L.), possessing the ability to quickly overcome the host defense system. In this context, the chitin-binding protein (CBP) family member CaChiIV1 regulates the response to P. capsici and abiotic stresses. The relevance of functional characterization and regulation of CaChiIV1 has not been explored in horticultural crops, especially pepper plants. The target gene (CaChiIV1) was isolated from pepper plants and cloned; the encoded protein carries a chitin-binding domain (CBD) that is rich in cysteine residues and has a hinge region with an abundance of proline and glycine residues. Additionally, the conserved regions in the promoter have a remarkable motif, "TTGACC". The expression of CaChiIV1 was markedly regulated by methyl-jasmonate (MeJA), hydrogen peroxide (H2O2), melatonin, mannitol and P. capsici (PC and HX-9) infection. Knockdown of CaChiIV1 in pepper plants increased sensitivity to P. capsici (PC strain). Higher malondialdehyde (MDA) content and relative electrolyte leakage (REL) but lower antioxidant enzyme activities, chlorophyll content, root activity, and proline content were observed in CaChiIV1-silenced plants than in control plants. In conclusion, CaChiIV1-silenced pepper plants displayed increased susceptibility to P. capsici infection due to changes in expression of defense-related genes, thus showing its coregulation affect in particular conditions. Furthermore, antioxidant enzymes and proline content were largely diminished in CaChiIV1-silenced plants. Therefore, this evidence suggests that the CaChiIV1 gene plays a prominent role in the defense mechanism of pepper plants against P. capsici infection. In the future, the potential role of the CaChiIV1 gene in defense regulatory pathways and its coregulation with other pathogen-related genes should be identified.
Collapse
Affiliation(s)
- Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Abdul Mateen Khattak
- Department of Horticulture, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
- College of Information and Electrical Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Saeed Ul Haq
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, People's Republic of China
| | - Izhar Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ibadullah Jan
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
28
|
Knockdown of the chitin-binding protein family gene CaChiIV1 increased sensitivity to Phytophthora capsici and drought stress in pepper plants. Mol Genet Genomics 2019; 294:1311-1326. [PMID: 31175439 DOI: 10.1007/s00438-019-01583-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
Phytophthora capsici has been the most destructive pathogen of pepper plants (Capsicum annuum L.), possessing the ability to quickly overcome the host defense system. In this context, the chitin-binding protein (CBP) family member CaChiIV1 regulates the response to P. capsici and abiotic stresses. The relevance of functional characterization and regulation of CaChiIV1 has not been explored in horticultural crops, especially pepper plants. The target gene (CaChiIV1) was isolated from pepper plants and cloned; the encoded protein carries a chitin-binding domain (CBD) that is rich in cysteine residues and has a hinge region with an abundance of proline and glycine residues. Additionally, the conserved regions in the promoter have a remarkable motif, "TTGACC". The expression of CaChiIV1 was markedly regulated by methyl-jasmonate (MeJA), hydrogen peroxide (H2O2), melatonin, mannitol and P. capsici (PC and HX-9) infection. Knockdown of CaChiIV1 in pepper plants increased sensitivity to P. capsici (PC strain). Higher malondialdehyde (MDA) content and relative electrolyte leakage (REL) but lower antioxidant enzyme activities, chlorophyll content, root activity, and proline content were observed in CaChiIV1-silenced plants than in control plants. In conclusion, CaChiIV1-silenced pepper plants displayed increased susceptibility to P. capsici infection due to changes in expression of defense-related genes, thus showing its coregulation affect in particular conditions. Furthermore, antioxidant enzymes and proline content were largely diminished in CaChiIV1-silenced plants. Therefore, this evidence suggests that the CaChiIV1 gene plays a prominent role in the defense mechanism of pepper plants against P. capsici infection. In the future, the potential role of the CaChiIV1 gene in defense regulatory pathways and its coregulation with other pathogen-related genes should be identified.
Collapse
|