1
|
Acheampong F, Ostlund T, Hedge E, Laddusaw J, Alotaibi F, Elshaier YAMM, Halaweish F. Triazole-Estradiol Analogs Induce Apoptosis and Inhibit EGFR and Its Downstream Pathways in Triple Negative Breast Cancer. Molecules 2025; 30:605. [PMID: 39942711 PMCID: PMC11820259 DOI: 10.3390/molecules30030605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Triple negative breast cancer, TNBC, is a difficult disease to treat due to relapse and resistance to known therapies. Epidermal growth factor receptor (EGFR), a tyrosine kinase responsible for downstream signaling leading to cell growth and survival, is typically overexpressed in TNBC. Our previous work has detailed the synthesis of triazole-estradiol derivatives as inhibitors of EGFR and downstream receptors, and this work continues that discussion by evaluating them in EGFR-dependent TNBC cell models MDA-MB-231 and MDA-MB-468. Compound Fz25 was cytotoxic against both MDA-MB-231 and MDA-MB-468 cell lines, yielding IC50 values of 8.12 ± 0.85 and 25.43 ± 3.68 µM, respectively. However, compounds Fz57 and Fz200 were potent against only MDA-MB-231 cells, generating IC50 values of 21.18 ± 0.23 and 10.86 ± 0.69 µM, respectively. Pathway analyses revealed that Fz25, Fz57 and Fz200 arrested the G0/G1 phase of the cell cycle and concomitantly suppressed cell cycle regulators, cyclin D1, cyclin E and Dyrk1B in MDA-MB-231 cells. Additionally, all compounds inhibited EGFR and its downstream signaling pathways-extracellular receptor kinase (ERK) and the mammalian target of rapamycin (mTOR)-in a dose-dependent manner. Furthermore, Fz25, Fz57 and Fz200 induced apoptosis in MDA-MB-231 cells by modulating morphological changes, including chromatin condensation, and attenuating the levels of cytochrome c, APAF1, caspases-3 and -9 as well as cleaved PARP. Of these compounds, only Fz25 showed overall satisfactory ADMET properties in silico. Similarly, Fz25 showed suitable binding parameters explored using molecular dynamic simulations in silico. These findings suggest that Fz25 warrants further preclinical and clinical investigations as a new generation of triazole congeners with significant potency in EFGR-dependent TNBC.
Collapse
Affiliation(s)
- Felix Acheampong
- Department of Preclinical Pharmacology and Toxicology, Verve Therapeutics Inc., Boston, MA 02215, USA
- Department of Chemistry and Biochemistry, College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA; (T.O.)
| | - Trevor Ostlund
- Department of Chemistry and Biochemistry, College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA; (T.O.)
| | - Emily Hedge
- Department of Chemistry and Biochemistry, College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA; (T.O.)
| | - Jacqueline Laddusaw
- Department of Chemistry and Biochemistry, College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA; (T.O.)
| | - Faez Alotaibi
- Department of Chemistry and Biochemistry, College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA; (T.O.)
- Department of Chemistry, College of Science, Qassim University, Buraydah 51452, Saudi Arabia
| | - Yaseen A. M. M. Elshaier
- Department of Chemistry and Biochemistry, College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA; (T.O.)
- Department of Organic and Medicinal Chemistry, University of Sadat City, Monufia 32897, Egypt
| | - Fathi Halaweish
- Department of Chemistry and Biochemistry, College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA; (T.O.)
| |
Collapse
|
2
|
Mercier AE, Joubert AM, Prudent R, Viallet J, Desroches-Castan A, De Koning L, Mabeta P, Helena J, Pepper MS, Lafanechère L. Sulfamoylated Estradiol Analogs Targeting the Actin and Microtubule Cytoskeletons Demonstrate Anti-Cancer Properties In Vitro and In Ovo. Cancers (Basel) 2024; 16:2941. [PMID: 39272798 PMCID: PMC11394244 DOI: 10.3390/cancers16172941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
The microtubule-disrupting agent 2-methoxyestradiol (2-ME) displays anti-tumor and anti-angiogenic properties, but its clinical development is halted due to poor pharmacokinetics. We therefore designed two 2-ME analogs in silico-an ESE-15-one and an ESE-16 one-with improved pharmacological properties. We investigated the effects of these compounds on the cytoskeleton in vitro, and their anti-angiogenic and anti-metastatic properties in ovo. Time-lapse fluorescent microscopy revealed that sub-lethal doses of the compounds disrupted microtubule dynamics. Phalloidin fluorescent staining of treated cervical (HeLa), metastatic breast (MDA-MB-231) cancer, and human umbilical vein endothelial cells (HUVECs) displayed thickened, stabilized actin stress fibers after 2 h, which rearranged into a peripheral radial pattern by 24 h. Cofilin phosphorylation and phosphorylated ezrin/radixin/moesin complexes appeared to regulate this actin response. These signaling pathways overlap with anti-angiogenic, extra-cellular communication and adhesion pathways. Sub-lethal concentrations of the compounds retarded both cellular migration and invasion. Anti-angiogenic and extra-cellular matrix signaling was evident with TIMP2 and P-VEGF receptor-2 upregulation. ESE-15-one and ESE-16 exhibited anti-tumor and anti-metastatic properties in vivo, using the chick chorioallantoic membrane assay. In conclusion, the sulfamoylated 2-ME analogs displayed promising anti-tumor, anti-metastatic, and anti-angiogenic properties. Future studies will assess the compounds for myeloproliferative effects, as seen in clinical applications of other drugs in this class.
Collapse
Affiliation(s)
- Anne Elisabeth Mercier
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Anna Margaretha Joubert
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Renaud Prudent
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Jean Viallet
- Inovotion SAS France, Biopolis, 38700 La Tronche, France
| | - Agnes Desroches-Castan
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, 38000 Grenoble, France
| | - Leanne De Koning
- Institut Curie Centre de Recherche, PSL Research University, 75248 Paris Cedex 05, France
| | - Peace Mabeta
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Jolene Helena
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Michael Sean Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Laurence Lafanechère
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- Team Cytoskeleton Dynamics and Nuclear Functions, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
3
|
Peta KT, Durandt C, van Heerden MB, Joubert AM, Pepper MS, Ambele MA. Effect of 2-methoxyestradiol treatment on early- and late-stage breast cancer progression in a mouse model. Cell Biochem Funct 2023; 41:898-911. [PMID: 37649158 PMCID: PMC10947225 DOI: 10.1002/cbf.3842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
The prevalence of breast cancer (BC) continues to increase and is the leading cause of cancer deaths in many countries. Numerous in vitro and in vivo studies have demonstrated that 2-methoxyestradiol (2-ME) has antiproliferative and antiangiogenic effects in BC, thereby inhibiting tumour growth and metastasis. We compared the effect of 2-ME in early- and late-stage BC using a transgenic mouse model-FVB/N-Tg(MMTV-PyVT)-of spontaneously development of aggressive mammary carcinoma with lung metastasis. Mice received 100 mg/kg 2-ME treatment immediately when palpable mammary tumours were identified (early-stage BC; Experimental group 1) and 28 days after palpable mammary tumours were detected (late-stage BC; Experimental group 2). 2-ME was administered via oral gavage three times a week for 28 days after initiation of treatment, whereas control mice received the vehicle containing 10% dimethyl sulfoxide and 90% sunflower oil for the same duration as the treatment group. Mammary tumours were measured weekly over the 28 days and at termination, blood, mammary and lung tissue were collected for analysis. Mice with a tumour volume threshold of 4000 mm3 were killed before the treatment regime was completed. 2-ME treatment of early-stage BC led to lower levels of mammary tumour necrosis, whereas tumour mass and volume were increased. Additionally, necrotic lesions and anti-inflammatory CD163-expressing cells were more frequent in pulmonary metastatic tumours in this group. In contrast, 2-ME treatment of late-stage BC inhibited tumour growth over the 28-day period and resulted in increased CD3+ cell number and tumour necrosis. Furthermore, 2-ME treatment slowed down pulmonary metastasis but did not increase survival of late-stage BC mice. Besides late-stage tumour necrosis, none of the other results were statistically significant. This study demonstrates that 2-ME treatment has an antitumour effect on late-stage BC, however, with no increase in survival rate, whereas the treatment failed to demonstrate any benefit in early-stage BC.
Collapse
Affiliation(s)
- Kimberly T. Peta
- Department of Immunology, Institute for Cellular and Molecular Medicine; South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy; Faculty of Health SciencesUniversity of PretoriaArcadiaSouth Africa
| | - Chrisna Durandt
- Department of Immunology, Institute for Cellular and Molecular Medicine; South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy; Faculty of Health SciencesUniversity of PretoriaArcadiaSouth Africa
| | - Marlene B. van Heerden
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Anna M. Joubert
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Michael S. Pepper
- Department of Immunology, Institute for Cellular and Molecular Medicine; South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy; Faculty of Health SciencesUniversity of PretoriaArcadiaSouth Africa
| | - Melvin A. Ambele
- Department of Immunology, Institute for Cellular and Molecular Medicine; South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy; Faculty of Health SciencesUniversity of PretoriaArcadiaSouth Africa
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
4
|
Ozhogin IV, Pugachev AD, Makarova NI, Belanova AA, Kozlenko AS, Rostovtseva IA, Zolotukhin PV, Demidov OP, El-Sewify IM, Borodkin GS, Metelitsa AV, Lukyanov BS. Novel Indoline Spiropyrans Based on Human Hormones β-Estradiol and Estrone: Synthesis, Structure, Chromogenic and Cytotoxic Properties. Molecules 2023; 28:molecules28093866. [PMID: 37175276 PMCID: PMC10179760 DOI: 10.3390/molecules28093866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The introduction of a switchable function into the structure of a bioactive compound can endow it with unique capabilities for regulating biological activity under the influence of various types of external stimuli, which makes such hybrid compounds promising objects for photopharmacology, targeted drug delivery and bio-imaging. This work is devoted to the synthesis and study of new spirocyclic derivatives of important human hormones-β-estradiol and estrone-possessing a wide range of biological activities. The obtained hybrid compounds represent an indoline spiropyrans family, a widely known class of organic photochromic compounds. The structure of the compounds was confirmed by 1H and 13C NMR, IR, HRMS and single-crystal X-ray analysis. The intermolecular interactions in the crystals of spiropyran (3) were defined by Hirshfeld surfaces and 2D fingerprint plots, which were successfully acquired from CrystalExplorer (v21.5). All target hybrids demonstrated pronounced activity in the visible region of the spectrum. The mechanisms of thermal isomerization processes of spiropyrans and their protonated merocyanine forms were studied by DFT methods, which revealed the energetic advantage of the protonation process with the formation of a β-cisoid CCCH conformer at the first stage and its further isomerization to more stable β-transoid forms. The proposed mechanism of acidochromic transformation was confirmed by the additional NMR study data that allowed for the detecting of the intermediate CCCH isomer. The study of the short-term cytotoxicity of new spirocyclic derivatives of estrogens and their 2-formyl-precursors was performed on the HeLa cell model. The precursors and spiropyrans differed in toxicity, suggesting their variable applicability in novel anti-cancer technologies.
Collapse
Affiliation(s)
- Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Artem D Pugachev
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Nadezhda I Makarova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Anna A Belanova
- Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Anastasia S Kozlenko
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Irina A Rostovtseva
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Peter V Zolotukhin
- Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Oleg P Demidov
- Faculty of Chemistry and Pharmacy, North-Caucasus Federal University, 1 Pushkina Str., 355000 Stavropol, Russia
| | - Islam M El-Sewify
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Gennady S Borodkin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Anatoly V Metelitsa
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Boris S Lukyanov
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| |
Collapse
|
5
|
Radiosensitization of Breast Cancer Cells with a 2-Methoxyestradiol Analogue Affects DNA Damage and Repair Signaling In Vitro. Int J Mol Sci 2023; 24:ijms24043592. [PMID: 36835001 PMCID: PMC9965329 DOI: 10.3390/ijms24043592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Radiation resistance and radiation-related side effects warrant research into alternative strategies in the application of this modality to cancer treatment. Designed in silico to improve the pharmacokinetics and anti-cancer properties of 2-methoxyestradiol, 2-ethyl-3-O-sulfamoyl-estra-1,3,5(10)16-tetraene (ESE-16) disrupts microtubule dynamics and induces apoptosis. Here, we investigated whether pre-exposure of breast cancer cells to low-dose ESE-16 would affect radiation-induced deoxyribonucleic acid (DNA) damage and the consequent repair pathways. MCF-7, MDA-MB-231, and BT-20 cells were exposed to sub-lethal doses of ESE-16 for 24 h before 8 Gy radiation. Flow cytometric quantification of Annexin V, clonogenic studies, micronuclei quantification, assessment of histone H2AX phosphorylation and Ku70 expression were performed to assess cell viability, DNA damage, and repair pathways, in both directly irradiated cells and cells treated with conditioned medium. A small increase in apoptosis was observed as an early consequence, with significant repercussions on long-term cell survival. Overall, a greater degree of DNA damage was detected. Moreover, initiation of the DNA-damage repair response was delayed, with a subsequent sustained elevation. Radiation-induced bystander effects induced similar pathways and were initiated via intercellular signaling. These results justify further investigation of ESE-16 as a radiation-sensitizing agent since pre-exposure appears to augment the response of tumor cells to radiation.
Collapse
|
6
|
Hargrave SD, Joubert AM, Potter BVL, Dohle W, Marais S, Mercier AE. Cell Fate following Irradiation of MDA-MB-231 and MCF-7 Breast Cancer Cells Pre-Exposed to the Tetrahydroisoquinoline Sulfamate Microtubule Disruptor STX3451. Molecules 2022; 27:3819. [PMID: 35744942 PMCID: PMC9228122 DOI: 10.3390/molecules27123819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
A tetrahydroisoquinoline (THIQ) core is able to mimic the A and B rings of 2-methoxyestradiol (2ME2), an endogenous estrogen metabolite that demonstrates promising anticancer properties primarily by disrupting microtubule dynamic instability parameters, but has very poor pharmaceutical properties that can be improved by sulfamoylation. The non-steroidal THIQ-based microtubule disruptor 2-(3-bromo-4,5-dimethoxybenzyl)-7-methoxy-6-sulfamoyloxy-1,2,3,4-tetrahydroisoquinoline (STX3451), with enhanced pharmacokinetic and pharmacodynamic profiles, was explored for the first time in radiation biology. We investigated whether 24 h pre-treatment with STX3451 could pre-sensitize MCF-7 and MDA-MB-231 breast cancer cells to radiation. This regimen showed a clear increase in cytotoxicity compared to the individual modalities, results that were contiguous in spectrophotometric analysis, flow cytometric quantification of apoptosis induction, clonogenic studies and microscopy techniques. Drug pre-treatment increased radiation-induced DNA damage, with statistically more double-strand (ds) DNA breaks demonstrated. The latter could be due to the induction of a radiation-sensitive metaphase block or the increased levels of reactive oxygen species, both evident after compound exposure. STX3451 pre-exposure may also delay DNA repair mechanisms, as the DNA damage response element ataxia telangiectasia mutated (ATM) was depressed. These in vitro findings may translate into in vivo models, with the ultimate aim of reducing both radiation and drug doses for maximal clinical effect with minimal adverse effects.
Collapse
Affiliation(s)
- Scott D. Hargrave
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (S.D.H.); (A.M.J.); (S.M.)
| | - Anna M. Joubert
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (S.D.H.); (A.M.J.); (S.M.)
| | - Barry V. L. Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK; (B.V.L.P.); (W.D.)
| | - Wolfgang Dohle
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK; (B.V.L.P.); (W.D.)
| | - Sumari Marais
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (S.D.H.); (A.M.J.); (S.M.)
| | - Anne E. Mercier
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (S.D.H.); (A.M.J.); (S.M.)
| |
Collapse
|
7
|
Intracellular Signaling Responses Induced by Radiation within an In Vitro Bone Metastasis Model after Pre-Treatment with an Estrone Analogue. Cells 2021; 10:cells10082105. [PMID: 34440874 PMCID: PMC8394480 DOI: 10.3390/cells10082105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
2-Ethyl-3-O-sulfamoyl-estra-1,3,5(10)16-tetraene (ESE-16) is an in silico-designed estradiol analogue which has improved the parent compound’s efficacy in anti-cancer studies. In this proof-of-concept study, the potential radiosensitizing effects of ESE-16 were investigated in an in vitro deconstructed bone metastasis model. Prostate (DU 145) and breast (MDA-MB-231) tumor cells, osteoblastic (MC3T3-E1) and osteoclastic (RAW 264.7) bone cells and human umbilical vein endothelial cells (HUVECs) were representative components of such a lesion. Cells were exposed to a low-dose ESE-16 for 24 hours prior to radiation at non-lethal doses to determine early signaling and molecular responses of this combination treatment. Tartrate-resistant acid phosphatase activity and actin ring formation were investigated in osteoclasts, while cell cycle progression, reactive oxygen species generation and angiogenic protein expression were investigated in HUVECs. Increased cytotoxicity was evident in tumor and endothelial cells while bone cells appeared to be spared. Increased mitotic indices were calculated, and evidence of increased deoxyribonucleic acid damage with retarded repair, together with reduced metastatic signaling was observed in tumor cells. RAW 264.7 macrophages retained their ability to differentiate into osteoclasts. Anti-angiogenic effects were observed in HUVECs, and expression of hypoxia-inducible factor 1-α was decreased. Through preferentially inducing tumor cell death and potentially inhibiting neovascularization whilst preserving bone physiology, this low-dose combination regimen warrants further investigation for its promising therapeutic application in bone metastases management, with the additional potential of limited treatment side effects.
Collapse
|
8
|
Ali MY, Oliva CR, Noman ASM, Allen BG, Goswami PC, Zakharia Y, Monga V, Spitz DR, Buatti JM, Griguer CE. Radioresistance in Glioblastoma and the Development of Radiosensitizers. Cancers (Basel) 2020; 12:E2511. [PMID: 32899427 PMCID: PMC7564557 DOI: 10.3390/cancers12092511] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation is a common and effective therapeutic option for the treatment of glioblastoma (GBM). Unfortunately, some GBMs are relatively radioresistant and patients have worse outcomes after radiation treatment. The mechanisms underlying intrinsic radioresistance in GBM has been rigorously investigated over the past several years, but the complex interaction of the cellular molecules and signaling pathways involved in radioresistance remains incompletely defined. A clinically effective radiosensitizer that overcomes radioresistance has yet to be identified. In this review, we discuss the current status of radiation treatment in GBM, including advances in imaging techniques that have facilitated more accurate diagnosis, and the identified mechanisms of GBM radioresistance. In addition, we provide a summary of the candidate GBM radiosensitizers being investigated, including an update of subjects enrolled in clinical trials. Overall, this review highlights the importance of understanding the mechanisms of GBM radioresistance to facilitate the development of effective radiosensitizers.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA;
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Claudia R. Oliva
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Abu Shadat M. Noman
- Department of Biochemistry and Molecular Biology, The University of Chittagong, Chittagong 4331, Bangladesh;
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Bryan G. Allen
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Prabhat C. Goswami
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Yousef Zakharia
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (Y.Z.); (V.M.)
| | - Varun Monga
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (Y.Z.); (V.M.)
| | - Douglas R. Spitz
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - John M. Buatti
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Corinne E. Griguer
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| |
Collapse
|
9
|
Tang X, Tao F, Xiang W, Zhao Y, Jin L, Tao H. Anticancer effects and the mechanism underlying 2-methoxyestradiol in human osteosarcoma in vitro and in vivo. Oncol Lett 2020; 20:64. [PMID: 32863897 PMCID: PMC7436181 DOI: 10.3892/ol.2020.11925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 06/22/2020] [Indexed: 12/05/2022] Open
Abstract
Osteosarcoma (OS) occurs in both children and adolescents and leads to a poor prognosis. 2-methoxyestradiol (2-ME) has a strong antitumor effect and is effective against numerous types of tumor. However, 2-ME has a low level of antitumor effects in OS. The present study investigated the effects of 2-ME on the proliferation and apoptosis of human MG63 OS cells. The potential biological mechanisms by which 2-ME exerts its biological effects were also investigated in the present study. The results of the present study demonstrated that 2-ME inhibited the proliferation of OS cells in a time- and dose-dependent manner, induced G2/M phase cell cycle arrest and early apoptosis. The expression levels of vascular endothelial growth factor (VEGF), Bcl-2 and caspase-3 were measured via western blotting and reverse transcription-quantitative PCR. As the concentration of 2-ME increased, the RNA and protein expression levels of VEGF and Bcl-2 decreased gradually, whereas the expression of caspase-3 increased gradually. In addition, tumor growth in nude mice was suppressed by 2-ME with no toxic side effects observed in the liver or kidney. Immunohistochemistry demonstrated that the expression levels of Bcl-2 and VEGF were significantly lower, and those of caspase-3 were significantly higher in test mice compared with the control group. TUNEL staining of xenograft tumors revealed that with increased 2-ME concentration, the number of apoptotic cells also gradually increased. Thus, 2-ME effectively inhibited the proliferation and induced apoptosis of MG63 OS cells in vitro and in vivo with no obvious side effects. The mechanism of the anticancer effect of 2-ME may be associated with the actions of Bcl-2, VEGF and caspase-3.
Collapse
Affiliation(s)
- Xiaoyan Tang
- General Department, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yingchun Zhao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lin Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
10
|
Li R, Wang X, Zhang X, Yu J, Feng J, Lv P, Lou Y, Chen Y. Ad5-EMC6 mediates antitumor activity in gastric cancer cells through the mitochondrial apoptosis pathway. Biochem Biophys Res Commun 2019; 513:663-668. [PMID: 30982575 DOI: 10.1016/j.bbrc.2019.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/03/2019] [Indexed: 12/30/2022]
Abstract
Endoplasmic reticulum membrane protein complex subunit 6 (EMC6), also known as transmembrane protein 93 (transmembrane protein 93, TMEM93), is an autophagy-related protein. EMC6 overexpression inhibits cancer cell growth and induces apoptosis, but the interaction partners of EMC6 and its cellular responsibilities remain incompletely understood. In this study, we report that adenovirus-mediated ectopic overexpression of EMC6 (Ad5-EMC6) in BGC823 and SGC7901 gastric cancer cells decreases the activity of ERK1/2, down-regulates the levels of BCL-2 protein and phosphorylated BCL-2, increases the expression of tBID and BAX, and decreases mitochondrial membrane potential and subsequently leading to cell apoptosis. In a xenograft tumor model, we found that Ad5-EMC6 impairs the tumorigenesis of SGC7901 gastric cancer cells in nude mice. Additionally, Ad5-EMC6 enhances the sensitivity of gastric cancer cells to the chemotherapeutic drug etoposide. Collectively, these results demonstrate that EMC6-induced apoptosis of gastric cancer cells occurs at least partially through the mitochondrial-mediated apoptosis pathway. Our study suggests a rational basis for the potential clinical application of Ad5-EMC6 in gastric cancer.
Collapse
Affiliation(s)
- Riyong Li
- Department of Immunology, Peking University School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Xiaokun Wang
- Functional Testing of Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Xuan Zhang
- Department of Immunology, Peking University School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Jiahong Yu
- Department of Immunology, Peking University School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Jinqiu Feng
- Department of Immunology, Peking University School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Ping Lv
- Department of Immunology, Peking University School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Yaxin Lou
- Medical and Healthy Analytical Center, Peking University, Beijing, 100191, China.
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China.
| |
Collapse
|