1
|
Xu L, Wang Z, Liu S, Wei Z, Yu J, Li J, Li J, Yao W, Gu Z. CRISPR/Cas9-mediated knockout of the Vanin-1 gene in the Leghorn Male Hepatoma cell line and its effects on lipid metabolism. Anim Biosci 2024; 37:437-450. [PMID: 37946431 PMCID: PMC10915194 DOI: 10.5713/ab.23.0162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 09/18/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE Vanin-1 (VNN1) is a pantetheinase that catalyses the hydrolysis of pantetheine to produce pantothenic acid and cysteamine. Our previous studies have shown that the VNN1 is specifically expressed in chicken liver which negatively regulated by microRNA-122. However, the functions of the VNN1 in lipid metabolism in chicken liver haven't been elucidated. METHODS First, we detected the VNN1 mRNA expression in 4-week chickens which were fasted 24 hours. Next, knocked out VNN1 via CRISPR/Cas9 system in the chicken Leghorn Male Hepatoma cell line. Detected the lipid deposition via oil red staining and analysis the content of triglycerides (TG), low-density lipoprotein-C (LDL-C), and highdensity lipoprotein-C (HDL-C) after VNN1 knockout in Leghorn Male Hepatoma cell line. Then we captured various differentially expressed genes (DEGs) between VNN1-modified LMH cells and original LMH cells by RNA-seq. RESULTS Firstly, fasting-induced expression of VNN1. Meanwhile, we successfully used the CRISPR/Cas9 system to achieve targeted mutations of the VNN1 in the chicken LMH cell line. Moreover, the expression level of VNN1 mRNA in LMH-KO-VNN1 cells decreased compared with that in the wild-type LMH cells (p<0.0001). Compared with control, lipid deposition was decreased after knockout VNN1 via oil red staining, meanwhile, the contents of TG and LDL-C were significantly reduced, and the content of HDL-C was increased in LMH-KO-VNN1 cells. Transcriptome sequencing showed that there were 1,335 DEGs between LMH-KO-VNN1 cells and original LMH cells. Of these DEGs, 431 were upregulated, and 904 were downregulated. Gene ontology analyses of all DEGs showed that the lipid metabolism-related pathways, such as fatty acid biosynthesis and long-chain fatty acid biosynthesis, were enriched. KEGG pathway analyses showed that "lipid metabolism pathway", "energy metabolism", and "carbohydrate metabolism" were enriched. A total of 76 DEGs were involved in these pathways, of which 29 genes were upregulated (such as cytochrome P450 family 7 subfamily A member 1, ELOVL fatty acid elongase 2, and apolipoprotein A4) and 47 genes were downregulated (such as phosphoenolpyruvate carboxykinase 1) by VNN1 knockout in the LMH cells. CONCLUSION These results suggest that VNN1 plays an important role in coordinating lipid metabolism in the chicken liver.
Collapse
Affiliation(s)
- Lu Xu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500,
China
| | - Zhongliang Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500,
China
- College of Animal Science & Technology, Nanjing Agriculture University, Nanjing, 210000,
China
| | - Shihao Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500,
China
| | - Zhiheng Wei
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500,
China
| | - Jianfeng Yu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500,
China
| | - Jun Li
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500,
China
| | - Jie Li
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500,
China
- College of Animal Science & Technology, Nanjing Agriculture University, Nanjing, 210000,
China
| | - Wen Yao
- College of Animal Science & Technology, Nanjing Agriculture University, Nanjing, 210000,
China
| | - Zhiliang Gu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500,
China
| |
Collapse
|
2
|
Ran H, He Q, Han Y, Wang J, Wang H, Yue B, Zhang M, Chai Z, Cai X, Zhong J, Wang H. Functional study and epigenetic targets analyses of SIRT1 in intramuscular preadipocytes via ChIP-seq and mRNA-seq. Epigenetics 2023; 18:2135194. [PMID: 36264146 PMCID: PMC9980681 DOI: 10.1080/15592294.2022.2135194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The SIRT1 epigenetic regulator is involved in hepatic lipid homoeostasis. However, the role of SIRT1 in regulating intramuscular fat deposition as well as the pathways and potential epigenetic targets involved remain unknown. Herein, we investigate SIRT1 function, its genome-wide epigenetic target profile, and transcriptomic changes under SIRT1 overexpression during yak intramuscular preadipocytes differentiation. To this end, we analysed the relationship between SIRT1 and intramuscular fat content as well as lipid metabolism-related genes in longissimus dorsi tissue. We found that SIRT1 expression negatively correlates with intramuscular fat content as well as with the expression of genes related to lipid synthesis, while positively correlating with that of fatty acid oxidation-involved genes. SIRT1 overexpression in intramuscular preadipocytes significantly reduced adipose differentiation marker expression, intracellular triacylglycerol content, and lipid deposition. Chromatin immunoprecipitation coupled with high-throughput sequencing of H3K4ac (a known direct target of SIRT1) and high-throughput mRNA sequencing results revealed that SIRT1 may regulate intramuscular fat deposition via three potential new transcription factors (NRF1, NKX3.1, and EGR1) and four genes (MAPK1, RXRA, AGPAT1, and HADH) implicated in protein processing within the endoplasmic reticulum pathway and the MAPK signalling pathway in yaks. Our study provides novel insights into the role of SIRT1 in regulating yak intramuscular fat deposition and may help clarify the mechanistic determinants of yak meat characteristics.
Collapse
Affiliation(s)
- Hongbiao Ran
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Qiuya He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Yuting Han
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Haibo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Ming Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| |
Collapse
|
3
|
The Important Role of m6A-Modified circRNAs in the Differentiation of Intramuscular Adipocytes in Goats Based on MeRIP Sequencing Analysis. Int J Mol Sci 2023; 24:ijms24054817. [PMID: 36902246 PMCID: PMC10003525 DOI: 10.3390/ijms24054817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Intramuscular fat contributes to the improvement of goat meat quality. N6-Methyladenosine (m6A)-modified circular RNAs play important roles in adipocyte differentiation and metabolism. However, the mechanisms by which m6A modifies circRNA before and after differentiation of goat intramuscular adipocytes remain poorly understood. Here, we performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) and circRNA sequencing (circRNA-seq) to determine the distinctions in m6A-methylated circRNAs during goat adipocyte differentiation. The profile of m6A-circRNA showed a total of 427 m6A peaks within 403 circRNAs in the intramuscular preadipocytes group, and 428 peaks within 401 circRNAs in the mature adipocytes group. Compared with the intramuscular preadipocytes group, 75 peaks within 75 circRNAs were significantly different in the mature adipocytes group. Furthermore, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of intramuscular preadipocytes and mature adipocytes showed that the differentially m6A-modified circRNAs were enriched in the PKG signaling pathway, endocrine and other factor-regulated calcium reabsorption, lysine degradation, etc. m6A-circRNA-miRNA-mRNA interaction networks predicted the potential m6A-circRNA regulation mechanism in different goat adipocytes. Our results indicate that there is a complicated regulatory relationship between the 12 upregulated and 7 downregulated m6A-circRNAs through 14 and 11 miRNA mediated pathways, respectively. In addition, co-analysis revealed a positive association between m6A abundance and levels of circRNA expression, such as expression levels of circRNA_0873 and circRNA_1161, which showed that m6A may play a vital role in modulating circRNA expression during goat adipocyte differentiation. These results would provide novel information for elucidating the biological functions and regulatory characteristics of m6A-circRNAs in intramuscular adipocyte differentiation and could be helpful for further molecular breeding to improve meat quality in goats.
Collapse
|
4
|
Li A, Li Y, Wang Y, Wang Y, Li X, Qubi W, Xiong Y, Zhu J, Liu W, Lin Y. ACADL Promotes the Differentiation of Goat Intramuscular Adipocytes. Animals (Basel) 2023; 13:281. [PMID: 36670821 PMCID: PMC9854987 DOI: 10.3390/ani13020281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Intramuscular fat (IMF) deposits help improve meat quality such as marbling, juicy, flavor and tenderness. Long-chain acyl-CoA dehydrogenase (ACADL) is a key enzyme for catalyzing fatty acid oxidation, and studies have shown ACADL is involved in the deposition and differentiation of intramuscular adipocytes. However, the effect of ACADL on intramuscular adipocytes differentiation in goats needs further study. In this study, to explore the mechanism of ACADL on the development of goat intramuscular adipocytes, we constructed an over-expression plasmids and a SI-RNA of ACADL to explore the function of ACADL on the development of goat IMF. It was found that overexpression of ACADL promoted the differentiation of goat intramuscular adipocytes, and promoted the expression of fat cell differentiation marker genes lipoprotein lipase (LPL), peroxisome proliferator activated receptor gamma (PPARγ), APETALA-2-like transcription factor gene (AP2), CCAT enhancer binding protein (CEBPα), preadipocyte Factor 1 (Pref-1) and CCAT enhancer binding protein (CEBPβ), and the opposite trend occurred after interference. In addition, we screened of this related tumor necrosis factor (TNF) signaling pathway by RNA-Seq. So, we validate the signaling pathway with inhibitor of TNF signaling pathway. In summary, these results indicate that ACADL promotes intramuscular adipocytes differentiation through activation TNF signaling pathway. This study provides an important basis for the mechanism of IMF development.
Collapse
Affiliation(s)
- An Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Youli Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Xin Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Wuqie Qubi
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
| | - Wei Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
5
|
He C, Wang Y, Zhu J, Li Y, Chen J, Lin Y. Integrative Analysis of lncRNA-miRNA-mRNA Regulatory Network Reveals the Key lncRNAs Implicated Potentially in the Differentiation of Adipocyte in Goats. Front Physiol 2022; 13:900179. [PMID: 35600305 PMCID: PMC9117728 DOI: 10.3389/fphys.2022.900179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Goats are popular in China because of their superior meat quality, delicate flesh, and unique flavor. Long noncoding RNAs (lncRNAs) play important roles in transcriptional and post-transcriptional regulation of gene expression. However, the effects of lncRNAs on adipocyte differentiation in goat has not been fully elucidated yet. In this investigation, we performed RNA-Seq analysis of intramuscular and subcutaneous adipocytes from Jianzhou Daer goat before and after differentiation, including both intramuscular preadipocytes (IMPA) vs. intramuscular adipocytes (IMA) and subcutaneous preadipocytes (SPA) vs. subcutaneous adipocytes (SA). A total of 289.49 G clean reads and 12,519 lncRNAs were obtained from 20 samples. In total, 3,733 differentially expressed RNAs (182 lncRNAs and 3,551 mRNAs) were identified by pairwise comparison. There were 135 differentially expressed lncRNAs (DELs) specific to intramuscular adipocytes, 39 DELs specific to subcutaneous adipocytes, and 8 DELs common to both adipocytes in these 182 DELs. Some well-known and novel pathways associated with preadipocyte differentiation were identified: fat acid metabolism, TGF-beta signaling pathway and PI3K-Akt signaling pathway. By integrating miRNA-seq data from another study, we also identified hub miRNAs in both types of fat cells. Our analysis revealed the unique and common lncRNA-miRNA-mRNA networks of two kinds of adipocytes. Several lncRNAs that regulate potentially goat preadipocyte differentiation were identified, such as XR_001918 647.1, XR_001917728.1, XR_001297263.2 and LNC_004191. Furthermore, our findings from the present study may contribute to a better understanding of the molecular mechanisms underlying in goat meat quality and provide a theoretical basis for further goat molecular breeding.
Collapse
Affiliation(s)
- Changsheng He
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Juan Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, China
- *Correspondence: Yaqiu Lin,
| |
Collapse
|
6
|
Lin ZZ, Li ZQ, Li JJ, Yu CL, Yang CW, Ran JS, Yin LQ, Zhang DH, Zhang GF, Liu YP. Mfsd2a Promotes the Proliferation, Migration, Differentiation and Adipogenesis of Chicken Intramuscular Preadipocytes. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2021-1547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- ZZ Lin
- Sichuan Agricultural University, China
| | - ZQ Li
- Sichuan Agricultural University, China
| | - JJ Li
- Sichuan Agricultural University, China
| | - CL Yu
- Sichuan Animal Science Academy, China
| | - CW Yang
- Sichuan Animal Science Academy, China
| | - JS Ran
- Sichuan Agricultural University, China
| | - LQ Yin
- Sichuan Agricultural University, China
| | - DH Zhang
- Sichuan Agricultural University, China
| | - GF Zhang
- Sichuan Agricultural University, China
| | - YP Liu
- Sichuan Agricultural University, China
| |
Collapse
|
7
|
Xiong Y, Wang Y, Xu Q, Li A, Yue Y, Ma Y, Lin Y. LKB1 Regulates Goat Intramuscular Adipogenesis Through Focal Adhesion Pathway. Front Physiol 2021; 12:755598. [PMID: 34721078 PMCID: PMC8548615 DOI: 10.3389/fphys.2021.755598] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Intramuscular fat (IMF) deposition is one of the most important factors to affect meat quality in livestock and induce insulin resistance and adverse metabolic phenotypes for humans. However, the key regulators involved in this process remain largely unknown. Although liver kinase B1 (LKB1) was reported to participate in the development of skeletal muscles and classical adipose tissues. Due to the specific autonomic location of intramuscular adipocytes, deposited between or within muscle bundles, the exact roles of LKB1 in IMF deposition need further verified. Here, we cloned the goat LKB1 coding sequence with 1,317 bp, encoding a 438 amino acid peptide. LKB1 was extensively expressed in detected tissues and displayed a trend from decline to rise during intramuscular adipogenesis. Functionally, knockdown of LKB1 by two individual siRNAs enhanced the intramuscular preadipocytes differentiation, accompanied by promoting lipid accumulation and inducing adipogenic transcriptional factors and triglyceride synthesis-related genes expression. Conversely, overexpression of LKB1 restrained these biological signatures. To further explore the mechanisms, the RNA-seq technique was performed to compare the difference between siLKB1 and the control group. There were 1,043 differential expression genes (DEGs) were screened, i.e., 425 upregulated genes and 618 downregulated genes in the siLKB1 group. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis predicted that the DEGs were mainly enriched in the focal adhesion pathway and its classical downstream signal, the PI3K-Akt signaling pathway. Specifically, knockdown of LKB1 increased the mRNA level of focal adhesion kinase (FAK) and vice versa in LKB1-overexpressed cells, a key component of the activated focal adhesion pathway. Convincingly, blocking this pathway by a specific FAK inhibitor (PF573228) rescued the observed phenotypes in LKB1 knockdown adipocytes. In conclusion, LKB1 inhibited goat intramuscular adipogenesis through the focal adhesion pathway. This work expanded the genetic regulator networks of IMF deposition and provided theoretical support for improving human health and meat quality from the aspect of IMF deposition.
Collapse
Affiliation(s)
- Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu, China.,College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yuxue Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Qing Xu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - An Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yongqi Yue
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yan Ma
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu, China.,College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| |
Collapse
|
8
|
Zhang Y, Fan X, Qiu L, Zhu W, Huang L, Miao Y. Liver X receptor α promotes milk fat synthesis in buffalo mammary epithelial cells by regulating the expression of FASN. J Dairy Sci 2021; 104:12980-12993. [PMID: 34593221 DOI: 10.3168/jds.2021-20596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/16/2021] [Indexed: 01/14/2023]
Abstract
Liver X receptor α (LXRα; NR1H3) is an important transcription factor that can facilitate milk fat synthesis by regulating the transcription of FASN in mice and goats. Nevertheless, the lipid synthesis related to LXRα and its regulation on FASN in the buffalo mammary gland remain elusive. Here, we demonstrated that the mRNA and protein expression of LXRα in buffalo mammary tissue increased in lactation compared with that in the dry-off period. Overexpression of NR1H3 enhanced the lipid droplet formation and triacylglycerol concentration in buffalo mammary epithelial cells (BuMEC), whereas the knockdown of NR1H3 resulted in a decrease in the number of lipid droplets. At the same time, NR1H3 also affected the expression of regulatory factors (INSIG1, INSIG2, SREBF1, and PPARG) related to milk fat synthesis and that of genes involved in de novo synthesis (FASN, ACACA, and SCD), and uptake and transport (LPL, CD36, and FABP3) of fatty acids as well as triacylglycerol synthesis (GPAM, APGAT6, and DGAT1). Luciferase reporter assays indicated that overexpression of NR1H3 resulted in an increase in the activity of FASN promoter, whereas the knockdown of NR1H3 had an opposite effect. When NR1H3 was overexpressed, mutations in LXRE or SRE could decrease the promoter activity of FASN. Furthermore, mutagenesis of both LXRE and SRE within the FASN promoter completely eliminated the induced activity of LXRα. Our results reveal that buffalo LXRα promotes milk fat synthesis through regulating the expression of FASN by directly interacting with FASN promoter and affecting the SREBF1 expression. This study underscores a crucial role of LXRα in regulating lipid synthesis of the buffalo mammary gland.
Collapse
Affiliation(s)
- Yongyun Zhang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China; Teaching Demonstration Center of the Basic Experiments of Agricultural Majors, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xinyang Fan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Lihua Qiu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Wei Zhu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Lige Huang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yongwang Miao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
9
|
Xu Q, Li Y, Lin S, Wang Y, Zhu J, Lin Y. KLF4 Inhibits the Differentiation of Goat Intramuscular Preadipocytes Through Targeting C/EBPβ Directly. Front Genet 2021; 12:663759. [PMID: 34421986 PMCID: PMC8373462 DOI: 10.3389/fgene.2021.663759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Intramuscular fat (IMF) deposition is a complicated process, and most of the underlying regulators of this biological process are unknown. Here, we cloned the intact CDS of KLF4 gene, investigated the role of KLF4 by gaining or losing function in vitro and further explored the pathways of KLF4 regulating differentiation of intramuscular preadipocytes in goat. Our results show that goat KLF4 gene consists of 1,536 bp encoding a protein of 486 amino acids. The expression of KLF4 is higher in the lung while lower in the heart and muscle in goat. Knockdown of KLF4 mediated by siRNA technique significantly promotes intramuscular preadipocyte lipid accumulation and upregulates mRNA expression of adipogenic related genes including C/EBPα, C/EBPβ, and PPARγ in vivo cultured cells. Consistently, overexpression of KLF4 inhibits intramuscular adipocyte lipid accumulation and significantly downregulation gene expression of C/EBPβ, PPARγ, aP2, and Pref-1. Further, we found that other members of KLFs were upregulated or downregulated after interference or overexpression of KLF4, including KLF2 and KLF5-7. We also found that C/EBPβ was a potential target of KLF4, because it had an opposite expression pattern with KLF4 during the differentiation of intramuscular preadipocytes and had putative binding sites of KLF4. The dual-luciferase reporter assay indicated that overexpression of KLF4 inhibited the transcriptional activity of C/EBPβ. These results demonstrate that KLF4 inhibits the differentiation of intramuscular preadipocytes in goat by targeting C/EBPβ.
Collapse
Affiliation(s)
- Qing Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China.,College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Sen Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China.,College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China.,College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| |
Collapse
|
10
|
He C, Wang Y, Xu Q, Xiong Y, Zhu J, Lin Y. Overexpression of Krueppel like factor 3 promotes subcutaneous adipocytes differentiation in goat Capra hircus. Anim Sci J 2021; 92:e13514. [PMID: 33522088 DOI: 10.1111/asj.13514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/28/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022]
Abstract
Previous research reported that KLF3 plays different roles in the regulation of adipose deposition across species. However, the exact function of KLF3 in goat subcutaneous adipocyte remains unknown. Here, the goat KLF3 gene was firstly cloned and showed that the mRNA sequence of the goat KLF3 gene was 1,264 bp (GenBank accession number: KU041753.1) and its coding sequence was 1,037 bp, encoding 345 amino acids with three classic zinc finger domains of KLFs family at its C-terminus. The alignment of the amino acid sequence of KLF3 among various species demonstrated that goat had the highest homology to that of sheep, presenting 99.4% similarity, while the homology similarity to that of mice presented only 93.62% in contrast. Furthermore, KLF3 had highest mRNA level in fat tissue and lowest level in the heart in comparison. Additionally, the mRNA level of KLF3 gradually tended to increase during adipogenesis. Interestingly, overexpression of KLF3 increased lipid accumulation. In line with this, the gain-of-function of KLF3 dramatically elevated the mRNA levels of TG synthetic genes and adipogenic maker genes (p < .01) . Moreover, overexpression of KLF3 upregulated all the potential target genes, except for C/EBPα. These results suggested that KLF3 is a positive regulator for subcutaneous adipocyte differentiation in goats.
Collapse
Affiliation(s)
- Changsheng He
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Qing Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, China
| |
Collapse
|
11
|
Du Y, Ma J, Wang Y, Zhu J, Li Y, Meng Q, Lin Y. MiR-421 regulates goat intramuscular preadipocytes differentiation via targeting FGF13. Anim Biotechnol 2021; 33:1333-1343. [PMID: 33914665 DOI: 10.1080/10495398.2021.1898414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
As a member of the MicroRNA s (miRNAs) family, miR-421 has been widely studied in regulating the proliferation and apoptosis of cancer cells a. However, there are still no reports on miR-421 in regulating adipocyte differentiation and its related mechanisms. Accordingly, this study aimed to investigate the potential involvement of miR-421 in goat intramuscular preadipocytes (P_IMA). The expression level of miR-421 was measured via quantitative real-time PCR during goat P_IMA differentiation. And the effects of miR-421 on goat P_IMA differentiation were studied by liposome transfection, Oil red O staining and qRT-PCR. Furthermore, the miR-421 target was searched and the underlying mechanism was clarified by luciferase reporter assay and rescue experiment. Our results showed that inhibition of miR-421 could accumulation of lipid droplets by upregulation the expression level of AP2, LPL, C/EBPα and SREBP1. Further studies showed that fibroblast growth factor 13 (FGF13) was the direct target of miR-421. Knocking down of FGF13 expression could inhibit lipid droplet formation and down-regulated the expression of key adipogenic regulatory genes. In addition, the rescue experiment revealed that FGF13 is involved in miR-421-induced differentiation of goat P_IMA as a key factor. Overall, these findings indicate that miR-421 is a negative regulator in the progression of differentiation of goat P_IMA by inhibiting the expression of FGF13.
Collapse
Affiliation(s)
- Yu Du
- Key Laboratory of Ministry of Education, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Jieqiong Ma
- Key Laboratory of Ministry of Education, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Ministry of Education, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Ministry of Education, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Yanyan Li
- Key Laboratory of Ministry of Education, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Qingyong Meng
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yaqiu Lin
- Key Laboratory of Ministry of Education, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, China
| |
Collapse
|
12
|
García-Niño WR, Zazueta C. New insights of Krüppel-like transcription factors in adipogenesis and the role of their regulatory neighbors. Life Sci 2020; 265:118763. [PMID: 33189819 DOI: 10.1016/j.lfs.2020.118763] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022]
Abstract
Obesity is a serious public health problem associated with predisposition to develop metabolic diseases. Over the past decade, several studies in vitro and in vivo have shown that the activity of Krüppel-like factors (KLFs) regulates adipogenesis, adipose tissue function and metabolism. Comprehension of both the origin and development of adipocytes and of adipose tissue could provide new insights into therapeutic strategies to contend against obesity and related metabolic diseases. This review focus on the transcriptional role that KLF family members play during adipocyte differentiation, describes their main interactions and the mechanisms involved in this fine-tuned developmental process. We also summarize new findings of the involvement of several effectors that modulate KLFs expression during adipogenesis, including growth factors, circadian clock proteins, interleukins, nuclear receptors, protein kinases and importantly, microRNAs. Thus, KLFs regulation by these factors and emerging molecules might constitute a potential therapeutic target for anti-obesity intervention.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico.
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico.
| |
Collapse
|
13
|
Molecular characterization of fibroblast growth factor-16 and its role in promoting the differentiation of intramuscular preadipocytes in goat. Animal 2020; 14:2351-2362. [PMID: 32624066 DOI: 10.1017/s1751731120001160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fat metabolism is an important and complex biochemical reaction in vivo and is regulated by many factors. Recently, the findings on high expression of fibroblast growth factor-16 (FGF16) in brown adipose tissue have led to an interest in exploring its role in lipogenesis and lipid metabolism. The study cloned the goat's FGF16 gene 624 bp long, including the complete open reading frame that encodes 207 amino acids. We found that FGF16 expression is highest in goat kidneys and hearts, followed by subcutaneous fat and triceps. Moreover, the expression of FGF16 reached its peak on the 2nd day of adipocyte differentiation (P < 0.01) and then decreased significantly. We used overexpression and interference to study the function of FGF16 gene in goat intramuscular preadipocytes. Silencing of FGF16 decreased adipocytes lipid droplet aggregation and triglyceride synthesis. This is in contrast to the situation where FGF16 is overexpressed. Furthermore, knockdown of FGF16 also caused down-regulated expression of genes associated with adipocyte differentiation including CCAAT enhancer-binding protein beta (P < 0.01), fatty acid-binding protein-2 (P < 0.01) and sterol regulatory element binding protein-1 (P < 0.05), but the preadipocyte factor-1 was up-regulated. At the same time, the genes adipose triglyceride lipase (P < 0.01) and hormone-sensitive lipase (P < 0.05) associated with triglyceride breakdown were highly expressed. Next, we locked the fibroblast growth factor receptor-4 (FGFR4) through the protein interaction network and interfering with FGF16 to significantly reduce FGFR4 expression. It was found that the expression profile of FGFR4 in adipocyte differentiation was highly similar to that of FGF16. Overexpression and interference methods confirmed that FGFR4 and FGF16 have the same promoting function in adipocyte differentiation. Finally, using co-transfection technology, pc-FGF16 and siRNA-FGFR4, siRNA2-FGF16 and siRNA-FGFR4 were combined to treat adipocytes separately. It was found that in the case of overexpression of FGF16, cell lipid secretion and triglyceride synthesis showed a trend of first increase and then decrease with increasing interference concentration. In the case of interference with FGF16, lipid secretion and triglyceride synthesis showed a downward trend with the increase of interference concentration. These findings illustrated that FGF16 mediates adipocyte differentiation via receptor FGFR4 expression and contributed to further study of the functional role of FGF16 in goat fat formation.
Collapse
|
14
|
Xu Q, Lin Y, Wang Y, Bai W, Zhu J. Knockdown of KLF9 promotes the differentiation of both intramuscular and subcutaneous preadipocytes in goat. Biosci Biotechnol Biochem 2020; 84:1594-1602. [PMID: 32434447 DOI: 10.1080/09168451.2020.1767497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
KLF9 is reported to promote adipocyte differentiation in 3T3-L1 cells and pigs. However, the roles of KLF9 in adipocytes differentiation of goat remain unknown. In this study, the expression profiles of KLF9 were different between subcutaneous and intramuscular preadipocytes of goat during differentiation process. After silencing KLF9 gene, the lipid droplets were increased in both two types of adipocytes. In subcutaneous preadipocyte with silencing KLF9, the expressions of C/EBPβ, PPARγ, LPL, KLF1-2, KLF5, and KLF17 genes were up-regulated, while KLF12, KLF4, and KLF13 genes were down-regulated in expression level. In intramuscular preadipocyte, aP2, C/EBPα, KLF2-3, KLF5, and KLF7 gene were up-regulated, and Pref-1 gene was down-regulated. In addition, the binding sites of KLF9 existed in the promoters of aP2, C/EBPα, C/EBPβ, LPL and Pref-1. Taken together, KLF9 play a negative role in the differentiation of both intramuscular and subcutaneous preadipocytes in goats, but the functional mechanism may be different.
Collapse
Affiliation(s)
- Qing Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education , Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization , Sichuan Province, Chengdu, China.,School of Life Science and Technology, Southwest Minzu University , Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education , Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization , Sichuan Province, Chengdu, China.,School of Life Science and Technology, Southwest Minzu University , Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education , Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization , Sichuan Province, Chengdu, China
| | - Wenlin Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University , Shenyang, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education , Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization , Sichuan Province, Chengdu, China
| |
Collapse
|
15
|
Xu Q, Wang Y, Zhang Y, Zhu J, Lin Y. RXRα cooperates with KLF8 to promote the differentiation of intramuscular preadipocytes in goat. Anim Biotechnol 2020; 32:580-590. [DOI: 10.1080/10495398.2020.1732397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qing Xu
- School of Life Science and Technology, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, China
- Key Laboratory of Modern Biotechnology of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- School of Life Science and Technology, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yanan Zhang
- School of Life Science and Technology, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, China
- Key Laboratory of Modern Biotechnology of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- School of Life Science and Technology, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yaqiu Lin
- School of Life Science and Technology, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, China
- Key Laboratory of Modern Biotechnology of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| |
Collapse
|
16
|
Ding C, Bi H, Wang D, Kang M, Tian Z, Zhang Y, Wang H, Zhu T, Ma J. Preparation of Chitosan/Alginate-ellagic Acid Sustained-release Microspheres and their Inhibition of Preadipocyte Adipogenic Differentiation. Curr Pharm Biotechnol 2020; 20:1213-1222. [PMID: 31762423 DOI: 10.2174/1389201020666190809110511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/05/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE In this study, chitosan/alginate-ellagic acid sustained-release microspheres were prepared, and the effect of sustained-release microspheres on preadipocyte adipogenic differentiation was analyzed. METHODS Chitosan/alginate-ellagic acid microspheres were prepared and identified by scanning electron microscopy (SEM) and infrared spectroscopy (IR). The drug release rates were measured at pH 6.8, 7.0, 7.2, 7.4 to determine sustained release of ellagic acid from microspheres. The effects of 0.1, 1, 10 mg/L chitosan/alginate-ellagic acid microsphere on 3T3-F442A preadipocyte proliferation were determined by Methyl thiazolyl tetrazolium assay (MTT), and cell morphology was checked by hematoxylin/ eosin staining (HE staining). The effect of chitosan/alginate-ellagic acid microspheres on preadipocyte adipogenic differentiation was also determined by Oil red O staining, and lipogenesis was measured by isopropanol extraction. The molecular mechanism was investigated by detecting the mRNA expression of CCAAT/enhancer binding protein alpha (C/EBPα) and peroxisome proliferatorsactivated receptor gamma (PPARγ). RESULTS Chitosan/alginate-ellagic acid sustained-release microspheres were successfully prepared, and the inhibition of proliferation and adipogenic differentiation of preadipocytes was found to be dosedependent. The mechanism of differentiation inhibition was found to be closely related to the expression of transcription factor C/EBPα and PPARγ. CONCLUSION Chitosan/alginate can be used as a good material to prepare ellagic acid sustained-release microspheres, and these microspheres can be used for treating the obesity.
Collapse
Affiliation(s)
- Chengshi Ding
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China.,Tianjin Institute of Environmental Medicine & Operational Medicine, Tianjin 300050, China
| | - Haidan Bi
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China
| | - Deya Wang
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China
| | - Meiling Kang
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China
| | - Zhongjing Tian
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China
| | - Yingxia Zhang
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China
| | - Hongkai Wang
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China
| | - Tianshun Zhu
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China
| | - Jing Ma
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China.,Basic Medical School, Jining Medical College, Jining 272067, China
| |
Collapse
|