1
|
Zhang J, Xu J, Bian C, Duan S, Hu J, Qin J, Wu H, He M, Jian Y, Duan Y, Liu J, Wang W, Li G, Jin L. Natural Variation of StNADC Regulates Plant Senescence in Tetraploid Potatoes ( Solanum tuberosum L.). Int J Mol Sci 2025; 26:4389. [PMID: 40362626 PMCID: PMC12072370 DOI: 10.3390/ijms26094389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/28/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025] Open
Abstract
Senescence impacts plant growth and yields in tetraploid potatoes (Solanum tuberosum L.). Because of their homogenous tetraploid features, it is a major challenge to understand the genetic basis and molecular mechanisms of senescence. Here, we identified a novel central senescence regulator (Nicotinate-nucleotide pyrophosphorylase QPT/StNADC) through map-based cloning. Overexpression of StNADCZ3 accelerated senescence in the late-senescence variety, with NAD content declining by around 40%. CRISPR/Cas9-induced StNADC mutant cr2-11 exhibited extremely early senescence, and the NAD content was reduced by 87% along with reduced chlorophyll content and photosynthesis. Moreover, the downstream products of the NAD synthesis pathway, such as NaMN, NAD, or niacin, can refresh the cr2-11 mutant to grow normally. Further, the transcriptomics and metabolomics data unveiled that the disrupting of StNADC impairs NAD metabolism, accelerating plant senescence through multiple biological levels. Our results show that StNADC is indispensable for NAD synthesis, and targeting the StNADC-mediated NAD synthesis pathway could be a useful strategy to regulate senescence in potato breeding preprograms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Guangcun Li
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.Z.)
| | - Liping Jin
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.Z.)
| |
Collapse
|
2
|
Bahjat NM, Yıldız M, Nadeem MA, Morales A, Wohlfeiler J, Baloch FS, Tunçtürk M, Koçak M, Chung YS, Grzebelus D, Sadik G, Kuzğun C, Cavagnaro PF. Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collection. BMC PLANT BIOLOGY 2025; 25:523. [PMID: 40307730 PMCID: PMC12044756 DOI: 10.1186/s12870-025-06525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/08/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Knowledge about the degree of genetic diversity and population structure is crucial as it facilitates novel variations that can be used in breeding programs. Similarly, genome-wide association studies (GWAS) can reveal candidate genes controlling traits of interest. Sugar beet is a major industrial crops worldwide, generating 20% of the world's total sugar production. In this work, using genotyping by sequencing (GBS)-derived SNP and silicoDArT markers, we present new insights into the genetic structure and level of genetic diversity in an international sugar beet germplasm (94 accessions from 16 countries). We also performed GWAS to identify candidate genes for agriculturally-relevant traits. RESULTS After applying various filtering criteria, a total of 4,609 high-quality non-redundant SNPs and 6,950 silicoDArT markers were used for genetic analyses. Calculation of various diversity indices using the SNP (e.g., mean gene diversity: 0.31, MAF: 0.22) and silicoDArT (mean gene diversity: 0.21, MAF: 0.12) data sets revealed the existence of a good level of conserved genetic diversity. Cluster analysis by UPGMA revealed three and two distinct clusters for SNP and DArT data, respectively, with accessions being grouped in general agreement with their geographical origins and their tap root color. Coincidently, structure analysis indicated three (K = 3) and two (K = 2) subpopulations for SNP and DArT data, respectively, with accessions in each subpopulation sharing similar geographic origins and root color; and comparable clustering patterns were also found by principal component analysis. GWAS on 13 root and leaf phenotypic traits allowed the identification of 35 significant marker-trait associations for nine traits and, based on predicted functions of the genes in the genomic regions surrounding the significant markers, 25 candidate genes were identified for four root (fresh weight, width, length, and color) and three leaf traits (shape, blade color, and veins color). CONCLUSIONS The present work unveiled conserved genetic diversity-evidenced both genetically (by SNP and silicoDArT markers) and phenotypically- exploitable in breeding programs and germplasm curation of sugar beet. Results from GWAS and candidate gene analyses provide a frame work for future studies aiming at deciphering the genetic basis underlying relevant traits for sugar beet and related crop types within Beta vulgaris subsp. vulgaris.
Collapse
Affiliation(s)
- Noor Maiwan Bahjat
- Department of Agricultural Biotechnology, Faculty of Agriculture, Van Yuzuncu Yil University, Van, 65080, Turkey
| | - Mehtap Yıldız
- Department of Agricultural Biotechnology, Faculty of Agriculture, Van Yuzuncu Yil University, Van, 65080, Turkey.
| | - Muhammad Azhar Nadeem
- Department of Biotechnology, Faculty of Science, Mersin University, Yenişehir, Mersin, 33343, Turkey
- Department of Field Crops, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, 58140, Turkey
| | - Andres Morales
- Instituto Nacional de Tecnología Agropecuaria (INTA) Estación Experimental Agropecuaria La Consulta, La Consulta M5567, Argentina
- Facultad de Ciencias Agrarias, Laboratorio de Biología Molecular, Universidad Nacional de Cuyo (UNCuyo), Instituto de Biología Agrícola de Mendoza (IBAM CONICET, Luján de Cuyo M5534, Argentina
| | - Josefina Wohlfeiler
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA) Estación Experimental Agropecuaria Mendoza, Luján de Cuyo M5534, Argentina
| | - Faheem Shahzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, Yenişehir, Mersin, 33343, Turkey
- Department of Plant Resources and Environment, Jeju National University, Jeju, 63243, Republic of Korea
| | - Murat Tunçtürk
- Department of Field Crops, Faculty of Agriculture, Van Yuzuncu Yil University, Van, 65090, Turkey
| | - Metin Koçak
- Department of Agricultural Biotechnology, Faculty of Agriculture, Van Yuzuncu Yil University, Van, 65080, Turkey
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, 63243, Republic of Korea
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Gökhan Sadik
- Department of Agricultural Biotechnology, Faculty of Agriculture, Van Yuzuncu Yil University, Van, 65080, Turkey
| | - Cansu Kuzğun
- Department of Agricultural Biotechnology, Faculty of Agriculture, Van Yuzuncu Yil University, Van, 65080, Turkey
| | - Pablo Federico Cavagnaro
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA) Estación Experimental Agropecuaria Mendoza, Luján de Cuyo M5534, Argentina.
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland.
| |
Collapse
|
3
|
He M, Li B, Hui Z, Liu J, Bian C, Li G, Jin L, Xu J. Comprehensive transcriptome profiling and transcription factor identification in early/late leaf senescence grafts in potato. PHYSIOLOGIA PLANTARUM 2024; 176:e14582. [PMID: 39420553 DOI: 10.1111/ppl.14582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
Potato (Solanum tuberosum L.) is recognized globally as the most significant non-cereal staple crop. Leaf senescence, which significantly impacts tuber yield, serves as a critical indicator of potato maturity. Despite its importance, the molecular mechanisms regulating this process remain largely unknown. In a previous study, we grafted the early-maturing variety 'Zhongshu 5' (Z5) onto the late-maturing variety 'Zhongshu 18' (Z18), and demonstrated that the rootstock's leaves displayed physiological characteristics suggestive of early senescence. Here, we analyzed the transcriptome data of the Z5 and Z18 grafts to conduct weighted gene co-expression network and gene expression clustering analysis. Differentially expressed genes in cluster 9, as well as the floralwhite module, exhibited markedly elevated expression levels during the onset of leaf senescence. These genes were found to be enriched in several senescence related processes, such as chloroplast organization, electron transport chain, and chlorophyll metabolic process. Furthermore, we constructed transcription factor correlation networks and hub gene co-expression networks. By monitoring the expression patterns of these genes throughout the whole growth period, we identified two candidate genes, StWRKY70 and StNAP, which may play pivotal roles in leaf senescence. This study contributes valuable genetic resources for further investigations into the regulatory mechanism governing potato leaf senescence, with implications for genetic improvements, particularly in terms of maturity and yield.
Collapse
Affiliation(s)
- Ming He
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Boshu Li
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shanxi Agricultural University, Jinzhong, China
| | - Zhiming Hui
- Laboratory of Plant Tissue Culture Technology of Haidian District, Beijing, China
| | - Jiangang Liu
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunsong Bian
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangcun Li
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liping Jin
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianfei Xu
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Li X, Kumar S, Brenneman KV, Anderson TJC. Bulk segregant linkage mapping for rodent and human malaria parasites. Parasitol Int 2022; 91:102653. [PMID: 36007706 PMCID: PMC11972598 DOI: 10.1016/j.parint.2022.102653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022]
Abstract
In 2005 Richard Carter's group surprised the malaria genetics community with an elegant approach to rapidly mapping the genetic basis of phenotypic traits in rodent malaria parasites. This approach, which he termed "linkage group selection", utilized bulk pools of progeny, rather than individual clones, and exploited simple selection schemes to identify genome regions underlying resistance to drug treatment (or other phenotypes). This work was the first application of "bulk segregant" methodologies for genetic mapping in microbes: this approach is now widely used in yeast, and across multiple recombining pathogens ranging from Aspergillus fungi to Schistosome parasites. Genetic crosses of human malaria parasites (for which Richard Carter was also a pioneer) can now be conducted in humanized mice, providing new opportunities for exploiting bulk segregant approaches for a wide variety of malaria parasite traits. We review the application of bulk segregant approaches to mapping malaria parasite traits and suggest additional developments that may further expand the utility of this powerful approach.
Collapse
Affiliation(s)
- Xue Li
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Katelyn Vendrely Brenneman
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Tim J C Anderson
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
5
|
Villányi V, Gondor OK, Bánfalvi Z. Metabolite profiling of tubers of an early- and a late-maturing potato line and their grafts. Metabolomics 2022; 18:88. [PMID: 36334159 PMCID: PMC9637070 DOI: 10.1007/s11306-022-01950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Earliness of tuberisation and the quality of potato tubers are important traits in potato breeding. The qualitative traits rely on the metabolite profile of tubers, which are storage organs and net importers of assimilates. Thus, the quality of tubers largely depends on the metabolites transported from leaves to developing tubers. OBJECTIVES To test the influence of canopy on the quality of tubers by metabolite profiling of tubers of an early- and a late-maturing potato line and their grafts. METHODS Potatoes were grown under greenhouse conditions, grafted and the tubers harvested at the end of the scions' vegetation period. Metabolite profiling of freshly harvested tubers was performed using gas chromatography coupled with mass spectrometry. Statistical analyses were applied to determine the significant differences between the different tubers. RESULTS 99 metabolites were identified and an additional 181 peaks detected in chromatograms, out of which 186 were polar and 94 non-polar compounds. The concentrations of 113 metabolites were significantly different in the tubers from the early-maturing CE3130 and the late-maturing CE3027 line. Hetero-grafting resulted in considerable changes in the metabolite content of tubers. Especially, the effect of CE3027 on the metabolite composition of tubers formed on CE3130 rootstocks was readily apparent. Nevertheless, many compounds were present at similar levels in the tubers of hetero-grafted plants as was found in the tubers of their scion counterparts. CONCLUSION Hetero-grafting resulted in many compounds at similar concentrations in rootstock tubers as in scion tubers suggesting that these are transported from the source leaves to tubers.
Collapse
Affiliation(s)
- Vanda Villányi
- Genetics and Biotechnology Institute, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. u. 4, Gödöllő, 2100, Hungary
| | - Orsolya Kinga Gondor
- Centre for Agricultural Research, Eötvös Loránd Research Network, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Zsófia Bánfalvi
- Genetics and Biotechnology Institute, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. u. 4, Gödöllő, 2100, Hungary.
| |
Collapse
|
6
|
Hu J, Mei M, Jin F, Xu J, Duan S, Bian C, Li G, Wang X, Jin L. Phenotypic variability and genetic diversity analysis of cultivated potatoes in China. FRONTIERS IN PLANT SCIENCE 2022; 13:954162. [PMID: 36212356 PMCID: PMC9541749 DOI: 10.3389/fpls.2022.954162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Phenotypic evaluation and molecular biotechnology are both important in the identification and utilization of crop germplasm resources. In this study, the phenotypic variation and genetic diversity of 149 main potato cultivars in China were investigated with 12 phenotypic traits and 24 SSR markers. The coefficient of variation of 12 phenotypic traits ranged from 12.11% to 156.93%. The results of SSR markers exhibited a relatively high level of genetic variation (Na =5.458 ± 1.499, Ne =3.300 ± 1.087, I =1.397 ± 0.298, Ho =0.797 ± 0.178, He = 0.660 ± 0.117, and PIC=0.702 ± 0.087). Population structure and phylogenetic tree analysis divided the varieties into three subgroups. The results indicated that ninety percent of the molecular variance was attributed to within-group differences, and the remaining 10% was attributed to variation among groups. Consistent with previous report, alleles of the STI032 marker were significantly associated with tuber starch content and growth period traits in the population. The results of this study could facilitate the utilization of potato germplasm resources, molecular genetic breeding and improvement.
Collapse
Affiliation(s)
- Jun Hu
- Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Mei
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Fang Jin
- National Agro-Tech Extension and Service Center, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
| | - Jianfei Xu
- Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoguang Duan
- Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunsong Bian
- Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangcun Li
- Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiyao Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Liping Jin
- Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Hui Z, Xu J, Jian Y, Bian C, Duan S, Hu J, Li G, Jin L. Identification of Long-Distance Transport Signal Molecules Associated with Plant Maturity in Tetraploid Cultivated Potatoes (Solanum tuberosum L.). PLANTS 2022; 11:plants11131707. [PMID: 35807658 PMCID: PMC9268856 DOI: 10.3390/plants11131707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022]
Abstract
Maturity is a key trait for breeders to identify potato cultivars suitable to grow in different latitudes. However, the molecular mechanism regulating maturity remains unclear. In this study, we performed a grafting experiment using the early-maturing cultivar Zhongshu 5 (Z5) and the late-maturing cultivar Zhongshu 18 (Z18) and found that abscisic acid (ABA) and salicylic acid (SA) positively regulate the early maturity of potato, while indole-3-acetic acid (IAA) negatively regulated early maturity. A total of 43 long-distance transport mRNAs are observed to be involved in early maturity, and 292 long-distance transport mRNAs involved in late maturity were identified using RNA sequencing. Specifically, StMADS18, StSWEET10C, and StSWEET11 are detected to be candidate genes for their association with potato early maturity. Metabolomic data analysis shows a significant increase in phenolic acid and flavonoid contents increased in the scion of the early-maturing cultivar Z5, but a significant decrease in amino acid, phenolic acid, and alkaloid contents increased in the scion of the late-maturing cultivar Z18. This work reveals a significant association between the maturity of tetraploid cultivated potato and long-distance transport signal molecules and provides useful data for assessing the molecular mechanisms underlying the maturity of potato plants and for breeding early-maturing potato cultivars.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guangcun Li
- Correspondence: (G.L.); (L.J.); Tel.: +86-010-82105955 (G.L.); +86-010-82109543 (L.J.)
| | - Liping Jin
- Correspondence: (G.L.); (L.J.); Tel.: +86-010-82105955 (G.L.); +86-010-82109543 (L.J.)
| |
Collapse
|
8
|
Li Z, Xu Y. Bulk segregation analysis in the NGS era: a review of its teenage years. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1355-1374. [PMID: 34931728 DOI: 10.1111/tpj.15646] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/27/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Bulk segregation analysis (BSA) utilizes a strategy of pooling individuals with extreme phenotypes to conduct economical and rapidly linked marker screening or quantitative trait locus (QTL) mapping. With the development of next-generation sequencing (NGS) technology in the past 10 years, BSA methods and technical systems have been gradually developed and improved. At the same time, the ever-decreasing costs of sequencing accelerate NGS-based BSA application in different species, including eukaryotic yeast, grain crops, economic crops, horticultural crops, trees, aquatic animals, and insects. This paper provides a landscape of BSA methods and reviews the BSA development process in the past decade, including the sequencing method for BSA, different populations, different mapping algorithms, associated region threshold determination, and factors affecting BSA mapping. Finally, we summarize related strategies in QTL fine mapping combining BSA.
Collapse
Affiliation(s)
- Zhiqiang Li
- Adsen Biotechnology Co., Ltd., Urumchi, 830022, China
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd., Urumchi, 830022, China
| |
Collapse
|
9
|
Li J, Yu X, Zhang S, Yu Z, Li J, Jin X, Zhang X, Yang D. Identification of starch candidate genes using SLAF-seq and BSA strategies and development of related SNP-CAPS markers in tetraploid potato. PLoS One 2021; 16:e0261403. [PMID: 34932571 PMCID: PMC8691606 DOI: 10.1371/journal.pone.0261403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
Potato starch is an essential nutrient for humans and is widely used worldwide. Locating relevant genomic regions, mining stable genes and developing candidate gene markers can promote the breeding of new high-starch potato varieties. A total of 106 F1 individuals and their parents (YSP-4 × MIN-021) were used as test materials, from which 20 plants with high starch content and 20 with low starch content were selected to construct DNA pools for site-specific amplified fragment sequencing (SLAF-seq) and bulked segregation analysis (BSA). A genomic region related to the starch traits was first identified in the 0–5.62 Mb of chromosome 2 in tetraploid potato. In this section, a total of 41 non-synonymous genes, which were considered as candidate genes related to the starch trait, were annotated through a basic local alignment search tool (BLAST) search of multiple databases. Six candidate genes for starch (PGSC0003DMG400017793, PGSC0003DMG400035245, PGSC0003DMG400036713, PGSC0003DMG400040452, PGSC0003DMG400006636 and PGSC0003DMG400044547) were further explored. In addition, cleaved amplified polymorphic sequence (CAPS) markers were developed based on single nucleotide polymorphism (SNP) sites associated with the starch candidate genes. SNP-CAPS markers chr2-CAPS6 and chr2-CAPS21 were successfully developed and validated with the F2 population and 24 tetraploid potato varieties (lines). Functional analysis and cloning of the candidate genes associated with potato starch will be performed in further research, and the SNP-CAPS markers chr2-CAPS6 and chr2-CAPS21 can be further used in marker-assisted selection breeding of tetraploid potato varieties with high starch content.
Collapse
Affiliation(s)
- Jiaqi Li
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xiaoxia Yu
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Sheng Zhang
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- * E-mail: (SZ); (ZY)
| | - Zhuo Yu
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- * E-mail: (SZ); (ZY)
| | - Jingwei Li
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xinghong Jin
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xia Zhang
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Dongsheng Yang
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
10
|
The recombination landscape and multiple QTL mapping in a Solanum tuberosum cv. 'Atlantic'-derived F 1 population. Heredity (Edinb) 2021; 126:817-830. [PMID: 33753876 PMCID: PMC8102480 DOI: 10.1038/s41437-021-00416-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/01/2023] Open
Abstract
There are many challenges involved with the genetic analyses of autopolyploid species, such as the tetraploid potato, Solanum tuberosum (2n = 4x = 48). The development of new analytical methods has made it valuable to re-analyze an F1 population (n = 156) derived from a cross involving 'Atlantic', a widely grown chipping variety in the USA. A fully integrated genetic map with 4285 single nucleotide polymorphisms, spanning 1630 cM, was constructed with MAPpoly software. We observed that bivalent configurations were the most abundant ones (51.0~72.4% depending on parent and linkage group), though multivalent configurations were also observed (2.2~39.2%). Seven traits were evaluated over four years (2006-8 and 2014) and quantitative trait loci (QTL) mapping was carried out using QTLpoly software. Based on a multiple-QTL model approach, we detected 21 QTL for 15 out of 27 trait-year combination phenotypes. A hotspot on linkage group 5 was identified with co-located QTL for maturity, plant yield, specific gravity, and internal heat necrosis resistance evaluated over different years. Additional QTL for specific gravity and dry matter were detected with maturity-corrected phenotypes. Among the genes around QTL peaks, we found those on chromosome 5 that have been previously implicated in maturity (StCDF1) and tuber formation (POTH1). These analyses have the potential to provide insights into the biology and breeding of tetraploid potato and other autopolyploid species.
Collapse
|