1
|
Development of the Peritoneal Metastasis: A Review of Back-Grounds, Mechanisms, Treatments and Prospects. J Clin Med 2022; 12:jcm12010103. [PMID: 36614904 PMCID: PMC9821147 DOI: 10.3390/jcm12010103] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Peritoneal metastasis is a malignant disease which originated from several gastrointestinal and gynecological carcinomas and has been leading to a suffering condition in patients for decades. Currently, as people have gradually become more aware of the severity of peritoneal carcinomatosis, new molecular mechanisms for targeting and new treatments have been proposed. However, due to the uncertainty of influencing factors involved and a lack of a standardized procedure for this treatment, as well as a need for more clinical data for specific evaluation, more research is needed, both for preventing and treating. We aim to summarize backgrounds, mechanisms and treatments in this area and conclude limitations or new aspects for treatments.
Collapse
|
2
|
Ma X, Ou K, Liu X, Yang L. Application progress of liquid biopsy in gastric cancer. Front Oncol 2022; 12:969866. [PMID: 36185234 PMCID: PMC9521037 DOI: 10.3389/fonc.2022.969866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors globally. Guiding the individualized treatment of GC is the focus of research. Obtaining representative biological samples to study the biological characteristics of GC is the focus of diagnosis and treatment of GC. Liquid biopsy technology can use high-throughput sequencing technology to detect biological genetic information in blood. Compared with traditional tissue biopsy, liquid biopsy can determine the dynamic changes of tumor. As a noninvasive auxiliary diagnostic method, liquid biopsy can provide diagnostic and prognostic information concerning the progression of the disease. Liquid biopsy includes circulating tumor cells, circulating tumor DNA, circulating tumor RNA, tumor educated platelets, exosomes, and cytokines. This article describes the classification of liquid biopsy and its application value in the occurrence, development, and therapeutic efficacy of GC.
Collapse
|
3
|
Shi J, Kanoya R, Tani Y, Ishikawa S, Maeda R, Suzuki S, Kawanami F, Miyagawa N, Takahashi K, Oku T, Yamamoto A, Fukuzawa K, Nakajima M, Irimura T, Higashi N. Sulfated Hyaluronan Binds to Heparanase and Blocks Its Enzymatic and Cellular Actions in Carcinoma Cells. Int J Mol Sci 2022; 23:ijms23095055. [PMID: 35563446 PMCID: PMC9102160 DOI: 10.3390/ijms23095055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
We examined whether sulfated hyaluronan exerts inhibitory effects on enzymatic and biological actions of heparanase, a sole endo-beta-glucuronidase implicated in cancer malignancy and inflammation. Degradation of heparan sulfate by human and mouse heparanase was inhibited by sulfated hyaluronan. In particular, high-sulfated hyaluronan modified with approximately 2.5 sulfate groups per disaccharide unit effectively inhibited the enzymatic activity at a lower concentration than heparin. Human and mouse heparanase bound to immobilized sulfated hyaluronan. Invasion of heparanase-positive colon-26 cells and 4T1 cells under 3D culture conditions was significantly suppressed in the presence of high-sulfated hyaluronan. Heparanase-induced release of CCL2 from colon-26 cells was suppressed in the presence of sulfated hyaluronan via blocking of cell surface binding and subsequent intracellular NF-κB-dependent signaling. The inhibitory effect of sulfated hyaluronan is likely due to competitive binding to the heparanase molecule, which antagonizes the heparanase-substrate interaction. Fragment molecular orbital calculation revealed a strong binding of sulfated hyaluronan tetrasaccharide to the heparanase molecule based on electrostatic interactions, particularly characterized by interactions of (−1)- and (−2)-positioned sulfated sugar residues with basic amino acid residues composing the heparin-binding domain-1 of heparanase. These results propose a relevance for sulfated hyaluronan in the blocking of heparanase-mediated enzymatic and cellular actions.
Collapse
Affiliation(s)
- Jia Shi
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (J.S.); (R.K.); (Y.T.); (S.I.); (R.M.); (S.S.); (F.K.); (N.M.); (K.T.)
| | - Riku Kanoya
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (J.S.); (R.K.); (Y.T.); (S.I.); (R.M.); (S.S.); (F.K.); (N.M.); (K.T.)
| | - Yurina Tani
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (J.S.); (R.K.); (Y.T.); (S.I.); (R.M.); (S.S.); (F.K.); (N.M.); (K.T.)
| | - Sodai Ishikawa
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (J.S.); (R.K.); (Y.T.); (S.I.); (R.M.); (S.S.); (F.K.); (N.M.); (K.T.)
| | - Rino Maeda
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (J.S.); (R.K.); (Y.T.); (S.I.); (R.M.); (S.S.); (F.K.); (N.M.); (K.T.)
| | - Sana Suzuki
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (J.S.); (R.K.); (Y.T.); (S.I.); (R.M.); (S.S.); (F.K.); (N.M.); (K.T.)
| | - Fumiya Kawanami
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (J.S.); (R.K.); (Y.T.); (S.I.); (R.M.); (S.S.); (F.K.); (N.M.); (K.T.)
| | - Naoko Miyagawa
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (J.S.); (R.K.); (Y.T.); (S.I.); (R.M.); (S.S.); (F.K.); (N.M.); (K.T.)
| | - Katsuhiko Takahashi
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (J.S.); (R.K.); (Y.T.); (S.I.); (R.M.); (S.S.); (F.K.); (N.M.); (K.T.)
| | - Teruaki Oku
- Department of Microbiology, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan;
| | - Ami Yamamoto
- Department of Physical Chemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (A.Y.); (K.F.)
| | - Kaori Fukuzawa
- Department of Physical Chemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (A.Y.); (K.F.)
| | - Motowo Nakajima
- SBI Pharmaceuticals Co., Ltd., 1-6-1, Roppongi, Minato-ku, Tokyo 106-6019, Japan;
| | - Tatsuro Irimura
- Division of Glycobiologics, Intractable Disease Research Center, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 104-8520, Japan;
| | - Nobuaki Higashi
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (J.S.); (R.K.); (Y.T.); (S.I.); (R.M.); (S.S.); (F.K.); (N.M.); (K.T.)
- Correspondence: ; Tel.: +81-3-5498-5775
| |
Collapse
|
4
|
Hsieh HL, Yu MC, Cheng LC, Chu MY, Huang TH, Yeh TS, Tsai MM. Quercetin exerts anti-inflammatory effects via inhibiting tumor necrosis factor-α-induced matrix metalloproteinase-9 expression in normal human gastric epithelial cells. World J Gastroenterol 2022; 28:1139-1158. [PMID: 35431500 PMCID: PMC8985486 DOI: 10.3748/wjg.v28.i11.1139] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/23/2021] [Accepted: 02/12/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric injury is the most common digestive system disease worldwide and involves inflammation, which can lead to gastric ulcer or gastric cancer (GC). Matrix metallopeptidase-9 [MMP-9 (gelatinase-B)] plays an important role in inflammation and GC progression. Quercetin and quercetin-rich diets represent potential food supplements and a source of medications for treating gastric injury given their anti-inflammatory activities. However, the effects and mechanisms of action of quercetin on human chronic gastritis and whether quercetin can relieve symptoms remain unclear. AIM To assess whether tumor necrosis factor-α (TNF-α)-induced MMP-9 expression mediates the anti-inflammatory effects of quercetin in normal human gastric mucosal epithelial cells. METHODS The normal human gastric mucosa epithelial cell line GES-1 was used to establish a normal human gastric epithelial cell model of TNF-α-induced MMP-9 protein overexpression to evaluate the anti-inflammatory effects of quercetin. The cell counting Kit-8 assay was used to evaluate the effects of varying quercetin doses on cell viability in the normal GES-1 cell line. Cell migration was measured using Transwell assay. The expression of proto-oncogene tyrosine-protein kinase Src (c-Src), phospho (p)-c-Src, extracellular-signal-regulated kinase 2 (ERK2), p-ERK1/2, c-Fos, p-c-Fos, nuclear factor kappa B (NF-κB/p65), and p-p65 and the effects of their inhibitors were examined using Western blot analysis and measurement of luciferase activity. p65 expression was detected by immunofluorescence. MMP-9 mRNA and protein levels were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and gelatin zymography, respectively. RESULTS qRT-PCR and gelatin zymography showed that TNF-α induced MMP-9 mRNA and protein expression in a dose- and time-dependent manner. These effects were reduced by the pretreatment of GES-1 cells with quercetin or a TNF-α antagonist (TNFR inhibitor) in a dose- and time-dependent manner. Quercetin and TNF-α antagonists decreased the TNF-α-induced phosphorylation of c-Src, ERK1/2, c-Fos, and p65 in a dose- and time-dependent manner. Quercetin, TNF-α antagonist, PP1, U0126, and tanshinone IIA (TSIIA) reduced TNF-α-induced c-Fos phosphorylation and AP-1-Luciferase (Luc) activity in a dose- and time-dependent manner. Pretreatment with quercetin, TNF-α antagonist, PP1, U0126, or Bay 11-7082 reduced TNF-α-induced p65 phosphorylation and translocation and p65-Luc activity in a dose- and time-dependent manner. TNF-α significantly increased GES-1 cell migration, and these results were reduced by pretreatment with quercetin or a TNF-α antagonist. CONCLUSION Quercetin significantly downregulates TNF-α-induced MMP-9 expression in GES-1 cells via the TNFR-c-Src-ERK1/2 and c-Fos or NF-κB pathways.
Collapse
Affiliation(s)
- Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, New Taipei Municipal TuCheng Hospital, New Taipei 236, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Li-Ching Cheng
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Mei-Yi Chu
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Tzu-Hao Huang
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Ta-Sen Yeh
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Ming Tsai
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of General Surgery, New Taipei Municipal TuCheng Hospital, New Taipei 236, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
5
|
Pyridazinone Derivatives Limit Osteosarcoma-Cells Growth In Vitro and In Vivo. Cancers (Basel) 2021; 13:cancers13235992. [PMID: 34885102 PMCID: PMC8656549 DOI: 10.3390/cancers13235992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary There is a dire need for novel therapeutic interventions to treat osteosarcoma. Pyridazinone derivatives have proven some efficacy in several cancer models, but their effect on osteosarcoma is yet to be evaluated. Our goal was to synthesize and evaluate, both in vitro and in vivo, some pyridazinone derivatives to provide a proof of concept of their potential as anti-osteosarcoma molecules. We demonstrated that our newly synthesized pyridazinone scaffold-based molecules might be hit-candidates to develop new therapeutic avenues for multi-therapy purposes. Abstract Osteosarcoma is a rare primary bone cancer that mostly affects children and young adults. Current therapeutic approaches consist of combining surgery and chemotherapy but remain unfortunately insufficient to avoid relapse and metastases. Progress in terms of patient survival has remained the same for 30 years. In this study, novel pyridazinone derivatives have been evaluated as potential anti-osteosarcoma therapeutics because of their anti-type 4 phosphodiesterase activity, which modulates the survival of several other cancer cells. By using five—four human and one murine osteosarcoma—cell lines, we demonstrated differential cytotoxic effects of four pyridazinone scaffold-based compounds (mitochondrial activity and DNA quantification). Proapoptotic (annexin V positive cells and caspase-3 activity), anti-proliferative (EdU integration) and anti-migratory effects (scratch test assay) were also observed. Owing to their cytotoxic activity in in vitro conditions and their ability to limit tumor growth in a murine orthotopic osteosarcoma model, our data suggest that these pyridazinone derivatives might be hit-candidates to develop new therapeutic strategies against osteosarcoma.
Collapse
|
6
|
Hattori Y, Saito H, Oku T, Ozaki KI. Effects of sterol derivatives in cationic liposomes on biodistribution and gene-knockdown in the lungs of mice systemically injected with siRNA lipoplexes. Mol Med Rep 2021; 24:598. [PMID: 34165169 PMCID: PMC8240178 DOI: 10.3892/mmr.2021.12237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/04/2021] [Indexed: 01/17/2023] Open
Abstract
Cationic liposomes can be intravenously injected to deliver short interfering (si)RNAs into the lungs. The present study investigated the effects of sterol derivatives in systemically injected siRNA/cationic liposome complexes (siRNA lipoplexes) on gene-knockdown in the lungs of mice. Cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane or dimethyldioctadecylammonium bromide (DDAB) were prepared as a cationic lipid, with sterol derivatives such as cholesterol (Chol), β-sitosterol, ergosterol (Ergo) or stigmasterol as a neutral helper lipid. Transfected liposomal formulations composed of DDAB/Chol or DDAB/Ergo did not suppress the expression of the luciferase gene in LLC-Luc and Colon 26-Luc cells in vitro, whereas other formulations induced moderate gene-silencing. The systemic injection of siRNA lipoplexes formulated with Chol or Ergo into mice resulted in abundant siRNA accumulation in the lungs. In comparison, systemically injected DDAB/Chol or DDAB/Ergo lipoplexes of Tie2 siRNA effectively increased the suppression of the Tie2 mRNA expression in the lungs of mice. These findings indicated that DDAB/Chol and DDAB/Ergo liposomes could function as vectors for siRNA delivery to the lungs.
Collapse
Affiliation(s)
- Yoshiyuki Hattori
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo 142-8501, Japan
| | - Hiromu Saito
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo 142-8501, Japan
| | - Teruaki Oku
- Department of Microbiology, Hoshi University, Tokyo 142-8501, Japan
| | - Kei-Ichi Ozaki
- Department of Molecular Pathology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| |
Collapse
|
7
|
Zhu HB, Li B, Guo J, Miao YZ, Shen YT, Zhang YZ, Zhao P, Li CZ. LncRNA MEG8 promotes TNF-α expression by sponging miR-454-3p in bone-invasive pituitary adenomas. Aging (Albany NY) 2021; 13:14342-14354. [PMID: 34016788 PMCID: PMC8202870 DOI: 10.18632/aging.203048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 02/16/2021] [Indexed: 04/12/2023]
Abstract
There are few studies on the mechanism of pituitary adenoma (PA) destroying bone. The current study aimed to investigate the role of MEG8/miR-454-3p/TNF-α in bone-invasive pituitary adenomas (BIPAs). In this study, we report that lncRNA MEG8 and TNF-α are upregulated in BIPA tissues while miR-454-3p is downregulated, which is associated with poor progression-free survival (PFS). Functional assays revealed the role of up-regulated MEG8 and down-regulated miR-454-3p in promoting bone destruction. Mechanistically, MEG8 promotes TNF-α expression by sponging miR-454-3p, which ultimately leads to the occurrence of bone destruction. The mechanism is confirmed in vivo and in vitro. Therefore, our data illustrated a new regulatory mechanism of MEG8/miR-454-3p/TNF-α in BIPAs. It may provide a useful strategy for diagnosis and treatment for BIPA patients.
Collapse
Affiliation(s)
- Hai-Bo Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Fengtai 100070, Beijing, China
| | - Bin Li
- Beijing Neurosurgical Institute, Capital Medical University, Fengtai 100070, Beijing, China
| | - Jing Guo
- Beijing Neurosurgical Institute, Capital Medical University, Fengtai 100070, Beijing, China
| | - Ya-Zhou Miao
- Beijing Neurosurgical Institute, Capital Medical University, Fengtai 100070, Beijing, China
| | - Yu-Tao Shen
- Beijing Neurosurgical Institute, Capital Medical University, Fengtai 100070, Beijing, China
| | - Ya-Zhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Fengtai 100070, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Fengtai 100070, Beijing, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Fengtai 100070, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Fengtai 100070, Beijing, China
| | - Peng Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Fengtai 100070, Beijing, China
| | - Chu-Zhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Fengtai 100070, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Fengtai 100070, Beijing, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Fengtai 100070, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Fengtai 100070, Beijing, China
| |
Collapse
|
8
|
MMP-9 Knockdown Inhibits Oral Squamous Cell Carcinoma Lymph Node Metastasis in the Nude Mouse Tongue-Xenografted Model through the RhoC/Src Pathway. ACTA ACUST UNITED AC 2021; 2021:6683391. [PMID: 33828938 PMCID: PMC8004385 DOI: 10.1155/2021/6683391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/04/2021] [Indexed: 11/17/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common types of cancers in developing countries. A major contributor to the high mortality rate of OSCC is the tendency of oral cancer cells to metastasize to lymph nodes around the head and neck during the early stages of cancer development. Matrix metalloproteinase 9 (MMP-9), an endopeptidase, can degrade the extracellular matrix and basement membrane and plays a key role in tumor invasion and metastasis. In vitro, cell migration ability was conducted by scratching assays. We also investigated the interaction abilities between OSCC cells and vascular endothelial cells (ECs) by an adhesion assay and transendothelial migration assay. And we established a BALB/c nude mouse tongue-xenografted metastasis model to investigate the role of MMP-9 and explore its potential underlying mechanism in OSCC growth, lymph node metastasis, and angiogenesis in vivo. The results showed that knockdown of MMP-9 could significantly suppress OSCC cell migration, proliferation, interactions between endothelial cells, xenografted tumor growth, and angiogenesis and simultaneously markedly inhibited OSCC cell metastasis to mouse lymphonodi cervicales superficiales, axillary lymph nodes, and even distant inguinal lymph nodes. Mechanistic studies revealed that knockdown of MMP-9 also led to a decreased expression of RhoC, Src, and F-actin by RT-PCR, western blotting, and immunohistochemistry. And the bioinformatic analysis showed that MMP-9, RhoC, and Src mRNA expression was positively and linearly correlated in OSCC on TCGA database. Together, our findings indicated that MMP-9 plays a very important role in OSCC growth, migration, angiogenesis, and lymph node metastasis, and its potential mechanism may be mediated by RhoC and Src gene expression.
Collapse
|
9
|
Pesce Viglietti AI, Giambartolomei GH, Quarleri J, Delpino MV. Brucella abortus Infection Modulates 3T3-L1 Adipocyte Inflammatory Response and Inhibits Adipogenesis. Front Endocrinol (Lausanne) 2020; 11:585923. [PMID: 33071987 PMCID: PMC7531218 DOI: 10.3389/fendo.2020.585923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/08/2020] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a prevalent global zoonotic infection but has far more impact in developing countries. The adipocytes are the most abundant cell type of adipose tissue and their secreted factors play an important role in several aspects of the innate and adaptive immune response. Here, we demonstrated the ability of Brucella abortus to infect and replicate in both adipocytes and its precursor cells (pre-adipocytes) derived from 3T3-L1 cell line. Additionally, infection of pre-adipocytes also inhibited adipogenesis in a mechanism independent of bacterial viability and dependent on lipidated outer membrane protein (L-Omp19). B. abortus infection was able to modulate the secretion of IL-6 and the matrix metalloproteases (MMPs) -2 and-9 in pre-adipocytes and adipocytes, and also modulated de transcription of adiponectin, leptin, and resistin in differentiated adipocytes. B. abortus-infected macrophages also modulate adipocyte differentiation involving a TNF-α dependent mechanism, thus suggesting a plausible interplay between B. abortus, adipocytes, and macrophages. In conclusion, B. abortus is able to alter adipogenesis process in adipocytes and its precursors directly after their infection, or merely their exposure to the B. abortus lipoproteins, and indirectly through soluble factors released by B. abortus-infected macrophages.
Collapse
Affiliation(s)
- Ayelén Ivana Pesce Viglietti
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
Ågren MS, auf dem Keller U. Matrix Metalloproteinases: How Much Can They Do? Int J Mol Sci 2020; 21:ijms21082678. [PMID: 32290531 PMCID: PMC7215854 DOI: 10.3390/ijms21082678] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Zinc-dependent matrix metalloproteinases (MMPs) belong to metzincins that comprise not only 23 human MMPs but also other metalloproteinases, such as 21 human ADAMs (a disintegrin and metalloproteinase domain) and 19 secreted ADAMTSs (a disintegrin and metalloproteinase thrombospondin domain). The many setbacks from the clinical trials of broad-spectrum MMP inhibitors for cancer indications in the late 1990s emphasized the extreme complexity of the participation of these proteolytic enzymes in biology. This editorial mini-review summarizes the Special Issue, which includes four review articles and 10 original articles that highlight the versatile roles of MMPs, ADAMs, and ADAMTSs, in normal physiology as well as in neoplastic and destructive processes in tissue. In addition, we briefly discuss the unambiguous involvement of MMPs in wound healing.
Collapse
Affiliation(s)
- Magnus S. Ågren
- Digestive Disease Center and Copenhagen Wound Healing Center, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2400 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-3863-5954
| | - Ulrich auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| |
Collapse
|
11
|
Baj J, Brzozowska K, Forma A, Maani A, Sitarz E, Portincasa P. Immunological Aspects of the Tumor Microenvironment and Epithelial-Mesenchymal Transition in Gastric Carcinogenesis. Int J Mol Sci 2020; 21:E2544. [PMID: 32268527 PMCID: PMC7177728 DOI: 10.3390/ijms21072544] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Infection with Helicobacter pylori, a Gram-negative, microaerophilic pathogen often results in gastric cancer in a subset of affected individuals. This explains why H. pylori is the only bacterium classified as a class I carcinogen by the World Health Organization. Several studies have pinpointed mechanisms by which H. pylori alters signaling pathways in the host cell to cause diseases. In this article, the authors have reviewed 234 studies conducted over a span of 18 years (2002-2020). The studies investigated the various mechanisms associated with gastric cancer induction. For the past 1.5 years, researchers have discovered new mechanisms contributing to gastric cancer linked to H. pylori etiology. Alongside alteration of the host signaling pathways using oncogenic CagA pathways, H. pylori induce DNA damage in the host and alter the methylation of DNA as a means of perturbing downstream signaling. Also, with H. pylori, several pathways in the host cell are activated, resulting in epithelial-to-mesenchymal transition (EMT), together with the induction of cell proliferation and survival. Studies have shown that H. pylori enhances gastric carcinogenesis via a multifactorial approach. What is intriguing is that most of the targeted mechanisms and pathways appear common with various forms of cancer.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (A.M.)
| | - Karolina Brzozowska
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Alicja Forma
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (A.M.)
| | - Amr Maani
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (A.M.)
| | - Elżbieta Sitarz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
12
|
The effect of ellagic acid on caspase-3/bcl-2/Nrf-2/NF-kB/TNF-α /COX-2 gene expression product apoptosis pathway: a new approach for muscle damage therapy. Mol Biol Rep 2020; 47:2573-2582. [DOI: 10.1007/s11033-020-05340-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
|
13
|
Peritoneal metastatic gastric carcinoma cells exhibit more malignant behavior when co-cultured with HMrSV5 cells. Aging (Albany NY) 2020; 12:3238-3248. [PMID: 32139657 PMCID: PMC7066899 DOI: 10.18632/aging.102803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/19/2020] [Indexed: 01/20/2023]
Abstract
Metastasis and recurrence are major causes of death in gastric cancer patients. Because there are no obvious clinical symptoms during the early stages of metastasis, we sought to isolate highly invasive metastatic gastric cancer cells for future drug screening. We first established a mouse model to observe gastric cancer metastasis in vivo. The incidence of peritoneal metastasis of gastric cancer was much higher than liver or lymph metastasis. Peritoneal metastatic and non-metastatic NUGC-4 cells were isolated from the mouse model. Cell proliferation was measured using CCK-8 assays, while migration and invasion were investigated in Transwell assays. Proteins involved in epithelial-mesenchymal transition were detected by Western blotting. Metastatic gastric carcinoma cells were more proliferative and invasive than primary NUGC-4 cells. The supernatants of metastatic gastric carcinoma cells notably altered the morphology of HMrSV5 peritoneal mesothelial cells and promoted their epithelial-mesenchymal transition. Moreover, primary or metastatic gastric cancer cells co-cultured with HMrSV5 cells markedly increased cancer cell proliferation and invasiveness. Moreover, peritoneal metastatic gastric carcinoma cells in the presence of HMrSV5 cells exhibited most malignant behaviors. Thus, peritoneal metastatic gastric carcinoma cells exhibited high capacities for proliferation and invasion, and could be used as a new drug screening tool for the treatment of advanced gastric cancer and peritoneal metastatic gastric cancer.
Collapse
|
14
|
Li C, Qin Y, Zhong Y, Qin Y, Wei Y, Li L, Xie Y. Fentanyl inhibits the progression of gastric cancer through the suppression of MMP-9 via the PI3K/Akt signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:118. [PMID: 32175411 PMCID: PMC7049026 DOI: 10.21037/atm.2019.12.161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Fentanyl is a drug commonly used for perioperative and postoperative analgesia. Previous studies have confirmed that fentanyl can affect the progression of gastric cancer; however, this effect has not yet been elucidated. The purpose of our study was thus to investigate the role of fentanyl in gastric cancer and clarify its potential mechanisms. METHODS A CCK-8 assay was used to determine the proliferation of MGC-803 cells, while Transwell assay and wound healing assay were used to determine the invasion and migration abilities, respectively. Apoptosis and the cell cycle were assessed by flow cytometry, and the ultrastructure of the cells was examined with a transmission electron microscope. The mRNA expression levels of serine-threonine protein kinase 1 (Akt-1), matrix metalloproteinase-9 (MMP-9), and death-associated protein kinase 1 (DAPK1) were evaluated by real-time (RT) quantitative PCR. The protein expression of p-Akt, MMP-9, and caspase-9 was detected by western blot analysis. To study the interaction of fentanyl with the phosphatidylinositol-3-kinase (PI3K)/Akt/MMP-9 pathway, PI3K inhibitor (LY294002) and MMP-9 inhibitor (SB-3CT) were used to treat the MGC-803 cells. RESULTS Findings indicated that fentanyl inhibits the proliferation, invasion, and migration of MGC-803 cells. Specifically, fentanyl inhibits the expression of MMP-9 and enhances the expression of apoptosis-promoting factors such as caspase-9 and DAPK1 through the PI3K/Akt signaling pathway. Cell cycle arrest was observed in the G0/G1 phase. Furthermore, the inhibition of PI3K/Akt/MMP-9 by LY294002 and SB-3CT enhanced the anticancer effects of fentanyl. CONCLUSIONS Fentanyl inhibits the proliferation, invasion and migration of gastric cancer cells by inhibiting the PI3K/Akt/MMP-9 pathway, which could be very useful for gastric cancer treatment.
Collapse
Affiliation(s)
- Chunlai Li
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yi Qin
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yu Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yinying Qin
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yi Wei
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | | | | |
Collapse
|
15
|
Cui X, Zhang H, Cao A, Cao L, Hu X. Cytokine TNF-α promotes invasion and metastasis of gastric cancer by down-regulating Pentraxin3. J Cancer 2020; 11:1800-1807. [PMID: 32194791 PMCID: PMC7052870 DOI: 10.7150/jca.39562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/20/2019] [Indexed: 01/04/2023] Open
Abstract
As a novel multifaceted player in cancer, Pentraxin3(PTX3) was recognized to be a possible factor related with tumor development. Recent researches have indicated that PTX3 is involved in immune response, inflammation, as well as cancer, and is greatly controlled by numerous cytokines. Tumor necrosis factor (TNF-α) is an imperative cytokine that demonstrates an extensive array of biological consequences in gastric cancer advancement. Here, we inspected the expression of PTX3 in gastric carcinoma tissues along with gastric cell lines and established that PTX3 was suggestively inferior in gastric cancer tissue and cells. The treatment of the gastric cell lines BGC-823 as well as SGC-7901 with rhTNF-α caused substantial decrease in the expression of PTX3. Furthermore, PTX3 controlled the capability of cell migration, invasion as well as epithelial-mesenchymal transition (EMT) in gastric cancer cell lines mediated by TNF-α. Additionally, PTX3 upregulation inhibited tumorigenicity in vivo and could be reversed by exogenous TNF-α. Conversely, overexpression of PTX3 inhibited progress both in vitro as well as in vivo in gastric cancer mediated by TNF-α. Further studies are necessary to demonstrate the mechanism of interaction between PTX3 and cytokines.
Collapse
Affiliation(s)
- Xinye Cui
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011,China
| | - Han Zhang
- Department of Pathology, Dalian Medical University, Dalian 116044, People's Republic of China
| | - An'na Cao
- Department of Pathology, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Liang Cao
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011,China
| | - Xiang Hu
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011,China
| |
Collapse
|