1
|
Morrissey SM, Kirkland LG, Phillips TK, Levit RD, Hopke A, Jensen BC. Multifaceted roles of neutrophils in cardiac disease. J Leukoc Biol 2025; 117:qiaf017. [PMID: 39936506 DOI: 10.1093/jleuko/qiaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/15/2025] [Accepted: 02/11/2025] [Indexed: 02/13/2025] Open
Abstract
Neutrophils, the most abundant leukocytes in human blood, have long been recognized as critical first responders in the innate immune system's defense against pathogens. Some of the more notable innate antimicrobial properties of neutrophils include generation of superoxide free radicals like myeloperoxidase, production of proteases that reshape the extracellular matrix allowing for easier access to infected tissues, and release of neutrophil extracellular traps, extruded pieces of DNA that ensnare bacterial and fungi. These mechanisms developed to provide neutrophils with a vast array of specialized functions to provide the host defense against infection in an acute setting. However, emerging evidence over the past few decades has revealed a far more complex and nuanced role for these neutrophil-driven processes in various chronic conditions, particularly in cardiovascular diseases. The pathophysiology of cardiac diseases involves a complex interplay of hemodynamic, neurohumoral, and inflammatory factors. Neutrophils, as key mediators of inflammation, contribute significantly to this intricate network. Their involvement extends far beyond their classical role in pathogen clearance, encompassing diverse functions that can both exacerbate tissue damage and contribute to repair processes. Here, we consider the contributions of neutrophils to myocardial infarction, heart failure, cardiac arrhythmias, and nonischemic cardiomyopathies. Understanding these complex interactions is crucial for developing novel therapeutic strategies aimed at modulating neutrophil functions in these highly morbid cardiac diseases.
Collapse
Affiliation(s)
- Samantha M Morrissey
- Department of Medicine, University of North Carolina School of Medicine, 125 MacNider Hall, Chapel Hill, NC 27599-7005, United States
| | - Logan G Kirkland
- McAllister Heart Institute, University of North Carolina School of Medicine, 111 Mason Farm Rd., Chapel Hill, NC 27599-7126, United States
| | - Tasha K Phillips
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN 37614, United States
| | - Rebecca D Levit
- Division of Cardiology, Department of Medicine, Emory University, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - Alex Hopke
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN 37614, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, PO Box 70300, Johnson City, TN 37614, United States
| | - Brian C Jensen
- Department of Medicine, University of North Carolina School of Medicine, 125 MacNider Hall, Chapel Hill, NC 27599-7005, United States
- McAllister Heart Institute, University of North Carolina School of Medicine, 111 Mason Farm Rd., Chapel Hill, NC 27599-7126, United States
- Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Rd., Chapel Hill, NC 27599-7365, United States
| |
Collapse
|
2
|
Li X, Yang JJ, Xu D. The role of inflammation in takotsubo syndrome: A new therapeutic target? J Cell Mol Med 2024; 28:e18503. [PMID: 38896112 PMCID: PMC11186299 DOI: 10.1111/jcmm.18503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Takotsubo syndrome (TTS) is a particular form of acute heart failure that can be challenging to distinguish from acute coronary syndrome at presentation. TTS was previously considered a benign self-limiting condition, but it is now known to be associated with substantial short- and long-term morbidity and mortality. Because of the poor understanding of its underlying pathophysiology, there are few evidence-based interventions to treat TTS. The hypotheses formulated so far can be grouped into endogenous adrenergic surge, psychological stress or preexisting psychiatric illness, coronary vasospasm with microvascular dysfunction, metabolic and energetic alterations, and inflammatory mechanisms. Current evidence demonstrates that the infiltration of immune cells such as macrophages and neutrophils play a pivotal role in TTS. At baseline, resident macrophages were the dominant subset in cardiac macrophages, however, it underwent a shift from resident macrophages to monocyte-derived infiltrating macrophages in TTS. Depletion of macrophages and monocytes in mice strongly protected them from isoprenaline-induced cardiac dysfunction. It is probable that immune cells, especially macrophages, may be new targets for the treatment of TTS.
Collapse
Affiliation(s)
- Xiao Li
- Department of Internal Cardiovascular MedicineSecond Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Jingmin Jing Yang
- Department of Internal Cardiovascular MedicineSecond Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Danyan Xu
- Department of Internal Cardiovascular MedicineSecond Xiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
3
|
Li MS, Wang XH, Wang H. Immunomodulation of Proton-activated G Protein-coupled Receptors in Inflammation. Curr Med Sci 2024; 44:475-484. [PMID: 38748372 DOI: 10.1007/s11596-024-2872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/22/2024] [Indexed: 06/29/2024]
Abstract
Proton-activated G protein-coupled receptors (GPCRs), initially discovered by Ludwig in 2003, are widely distributed in various tissues. These receptors have been found to modulate the immune system in several inflammatory diseases, including inflammatory bowel disease, atopic dermatitis, and asthma. Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH. This detection triggers downstream signaling pathways within the cells, ultimately influencing the function of immune cells. In this review, we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions.
Collapse
Affiliation(s)
- Min-Shan Li
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, 430030, China
| | - Xiang-Hong Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, 430030, China
| | - Heng Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, 430030, China.
| |
Collapse
|
4
|
Harrington EO, Kumar A, Leandre V, Wilson ZS, Guarino B, Braza J, Lefort CT, Klinger JR. Natriuretic peptide receptor-C mediates the inhibitory effect of atrial natriuretic peptide on neutrophil recruitment to the lung during acute lung injury. Am J Physiol Lung Cell Mol Physiol 2022; 323:L438-L449. [PMID: 35943160 PMCID: PMC9529260 DOI: 10.1152/ajplung.00477.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 01/08/2023] Open
Abstract
Atrial natriuretic peptide (ANP) protects against acute lung injury (ALI), but the receptor that mediates this effect is not known. Transgenic mice with 0 (knockout), 1 (heterozygote), or 2 (wild-type) functional copies of Npr3, the gene that encodes for natriuretic peptide receptor-C (NPR-C), were treated with intravenous infusion of ANP or saline vehicle before oropharyngeal aspiration of Pseudomonas aeruginosa (PA103) or saline vehicle. Lung injury was assessed 4 h following aspiration by measurement of lung wet/dry (W/D) weight, whole lung leukocyte and cytokine levels, and protein, leukocyte, and cytokine concentration in bronchoalveolar lavage fluid (BALF). PA103 induced acute lung injury as evidenced by increases in lung W/D ratio and protein concentration in BALF. The severity of PA103-induced lung injury did not differ between NPR-C genotypes. Treatment with intravenous ANP infusion reduced PA103-induced increases in lung W/D and BALF protein concentration in all three NPRC genotypes. PA103 increased the percentage of leukocytes that were neutrophils and cytokine levels in whole lung and BALF in NPR-C wild-type and knockout mice. This effect was blunted by ANP in wild-type mice but not in the NPR-C knockout mice. NPR-C does not mediate the protective effect of ANP on endothelial cell permeability in settings of PA103-induced injury but may mediate the effect of ANP on inhibition of the recruitment of neutrophils to the lung and thereby attenuate the release of inflammatory cytokines.
Collapse
Affiliation(s)
- Elizabeth O Harrington
- Vascular Research Lab, Providence Veterans Administration Medical Center, Providence, Rhode Island
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital, Providence, Rhode Island
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Ashok Kumar
- Vascular Research Lab, Providence Veterans Administration Medical Center, Providence, Rhode Island
| | - Verida Leandre
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island
| | - Zachary S Wilson
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island
| | - Brianna Guarino
- Vascular Research Lab, Providence Veterans Administration Medical Center, Providence, Rhode Island
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital, Providence, Rhode Island
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Julie Braza
- Vascular Research Lab, Providence Veterans Administration Medical Center, Providence, Rhode Island
| | - Craig T Lefort
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, Rhode Island
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - James R Klinger
- Vascular Research Lab, Providence Veterans Administration Medical Center, Providence, Rhode Island
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital, Providence, Rhode Island
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
5
|
Uhlig M, Hein M, Habigt MA, Tolba RH, Braunschweig T, Helmedag MJ, Klinge U, Koch A, Trautwein C, Mechelinck M. Acute myocardial injury secondary to severe acute liver failure: A retrospective analysis supported by animal data. PLoS One 2021; 16:e0256790. [PMID: 34460845 PMCID: PMC8405020 DOI: 10.1371/journal.pone.0256790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/17/2021] [Indexed: 11/29/2022] Open
Abstract
To investigate whether acute liver failure (ALF) leads to secondary acute myocardial injury, 100 ALF patients that were retrospectively identified in a single center based on ICD 10 codes and 8 rats from an experimental study that died early after bile duct ligation (BDL) were examined. Creatine kinase (CK), creatine kinase-MB isoenzyme (CKMB) and cardiac troponin-I (cTnI) were analyzed as markers of myocardial injury. For histological analysis, hematoxylin-eosin (HE), elastic Van Gieson (EVG), CD41 and myeloperoxidase were used to stain rat hearts. Major adverse cardiac events (MACEs) were a critical factor for mortality (p = 0.037) in human ALF. Deceased patients exhibited higher levels of CKMB than survivors (p = 0.023). CKMB was a predictor of mortality in ALF (p = 0.013). Animals that died early after BDL exhibited increased cTnI, CKMB, tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) levels compared to controls (cTnI: p = 0.011, CKMB: p = 0.008, TNFα: p = 0.003, IL-6: p = 0.006). These animals showed perivascular lesions and wavy fibers, microthrombi and neutrophilic infiltration in the heart. MACEs are decisive for mortality in human ALF, and elevated CKMB values indicate that this might be due to structural myocardial damage. Accordingly, CKMB was found to have predictive value for mortality in ALF. The results are substantiated by data from a rat BDL model demonstrating diffuse myocardial injury.
Collapse
Affiliation(s)
- Moritz Uhlig
- Department of Anesthesiology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Marc Hein
- Department of Anesthesiology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Moriz A. Habigt
- Department of Anesthesiology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - René H. Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Till Braunschweig
- Department of Pathology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Marius J. Helmedag
- Department of General, Visceral and Transplantation Surgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Uwe Klinge
- Department of General, Visceral and Transplantation Surgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Alexander Koch
- Department of Gastroenterology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Christian Trautwein
- Department of Gastroenterology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mare Mechelinck
- Department of Anesthesiology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute for Laboratory Animal Science and Experimental Surgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Wang Z, Zhao L, He S. Relation between neutrophil-to-lymphocyte ratio and mortality in patients with hypertrophic cardiomyopathy. Biomark Med 2020; 14:1693-1701. [PMID: 33346698 DOI: 10.2217/bmm-2020-0463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: We assessed the prognostic value of neutrophil-to-lymphocyte ratio (NLR) for all-cause mortality in patients with hypertrophic cardiomyopathy (HCM). Methods & results: A total of 354 HCM patients were enrolled. There were 44 all-cause mortality in total. Patients in the third tertile of NLR had the highest all-cause mortality rate of 5.2 per 100 person-years. Patients in tertile 3 had a significantly higher risk of all-cause mortality with adjusted hazard ratio of 2.4 (95% CI: 1.0-5.4; p = 0.040) when compared with that of patients in tertile 1. No significant interactions between NLR and other variables were observed during subgroup analysis. Conclusion: NLR was an independent risk factor for all-cause mortality in HCM patients.
Collapse
Affiliation(s)
- Ziqiong Wang
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Liming Zhao
- Department of Cardiovascular Medicine, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, China
| | - Sen He
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Lachmet-Thebaud L, Marchandot B, Matsushita K, Sato C, Dagrenat C, Greciano S, De Poli F, Leddet P, Peillex M, Hess S, Carmona A, Jimenez C, Heger J, Reydel A, Ohlmann P, Jesel L, Morel O. Impact of residual inflammation on myocardial recovery and cardiovascular outcome in Takotsubo patients. ESC Heart Fail 2020; 8:259-269. [PMID: 33207039 PMCID: PMC7835625 DOI: 10.1002/ehf2.12945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022] Open
Abstract
Aims Recent insights have emphasized the importance of myocardial and systemic inflammation in Takotsubo syndrome (TTS). In a large registry of unselected patients, we sought to evaluate whether residual high inflammatory response (RHIR) could impact cardiovascular outcome after TTS. Methods and results Patients with TTS were retrospectively included between 2008 and 2018 in three general hospitals. Three hundred eighty‐five patients with TTS were split into three subgroups, according to tertiles of C‐reactive protein (CRP) levels at discharge (CRP <5.2 mg/L, CRP range 5.2 to 19 mg/L, and CRP >19 mg/L). The primary endpoint was the impact of RHIR, defined as CRP >19 mg/L at discharge, on cardiac death or hospitalization for heart failure. Follow up was obtained in 382 patients (99%) after a median of 747 days. RHIR patients were more likely to have a history of cancer or a physical trigger. Left ventricular ejection fraction (LVEF) at admission and at discharge were comparable between groups. By contrast, RHIR was associated with lower LVEF at follow up (61.7% vs. 60.7% vs. 57.9%; P = 0.004) and increased cardiac late mortality (0% vs. 0% vs. 10%; P = 0.001). By multivariate Cox regression analysis, RHIR was an independent predictor of cardiac death or hospitalization for heart failure (hazard ratio: 1.87; 95% confidence interval: 1.08 to 3.25; P = 0.025). Conclusions Residual high inflammatory response was associated with impaired LVEF at follow up and was evidenced as an independent factor of cardiovascular events. All together, these findings underline RHIR patients as a high‐risk subgroup, to target in future clinical trials with specific therapies to attenuate RHIR.
Collapse
Affiliation(s)
- Lucie Lachmet-Thebaud
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Université de Strasbourg, BP 426, Strasbourg, 67091, France
| | - Benjamin Marchandot
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Université de Strasbourg, BP 426, Strasbourg, 67091, France
| | - Kensuke Matsushita
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Université de Strasbourg, BP 426, Strasbourg, 67091, France.,UMR INSERM 1260 Regenerative Nanomedicine, Université de Strasbourg, Strasbourg, France
| | - Chisato Sato
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Université de Strasbourg, BP 426, Strasbourg, 67091, France.,Department of Cardiovascular Center, Showa University Koto-Toyosu Hospital, Tokyo, Japan
| | - Charlotte Dagrenat
- Pole d'activité cardiovasculaire, Centre Hospitalier de Haguenau, Haguenau, France
| | - Stephane Greciano
- Pole d'activité cardiovasculaire, Hôpitaux Civils de Colmar, Colmar, France
| | - Fabien De Poli
- Pole d'activité cardiovasculaire, Centre Hospitalier de Haguenau, Haguenau, France
| | - Pierre Leddet
- Pole d'activité cardiovasculaire, Centre Hospitalier de Haguenau, Haguenau, France
| | - Marilou Peillex
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Université de Strasbourg, BP 426, Strasbourg, 67091, France
| | - Sébastien Hess
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Université de Strasbourg, BP 426, Strasbourg, 67091, France
| | - Adrien Carmona
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Université de Strasbourg, BP 426, Strasbourg, 67091, France
| | - Charline Jimenez
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Université de Strasbourg, BP 426, Strasbourg, 67091, France
| | - Joe Heger
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Université de Strasbourg, BP 426, Strasbourg, 67091, France
| | - Antje Reydel
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Université de Strasbourg, BP 426, Strasbourg, 67091, France
| | - Patrick Ohlmann
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Université de Strasbourg, BP 426, Strasbourg, 67091, France
| | - Laurence Jesel
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Université de Strasbourg, BP 426, Strasbourg, 67091, France.,UMR INSERM 1260 Regenerative Nanomedicine, Université de Strasbourg, Strasbourg, France
| | - Olivier Morel
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Université de Strasbourg, BP 426, Strasbourg, 67091, France.,UMR INSERM 1260 Regenerative Nanomedicine, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Neutrophils from hereditary hemochromatosis patients are protected from iron excess and are primed. Blood Adv 2020; 4:3853-3863. [PMID: 32810223 DOI: 10.1182/bloodadvances.2020002198] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Iron is required for the oxidative response of neutrophils to allow the production of reactive oxygen species (ROS). However, neutrophil function may be severely altered in conditions of iron overload, as observed in chronically transfused patients. Therefore, a tight regulation of neutrophil iron homeostasis seems to be critical for avoiding iron toxicity. Hepcidin is the key iron regulator in organisms; however, no studies have investigated its role in maintaining neutrophil iron homeostasis or characterized neutrophil function in patients with hereditary hemochromatosis (HH), a common iron overload genetic disorder that results from a defect in hepcidin production. To explore these issues, we studied 2 mouse models of iron overload: an experimentally induced iron overload model (EIO), in which hepcidin is increased, and a genetic HH model of iron overload with a deletion of hepatic hepcidin. We found that iron-dependent increase of hepatic hepcidin results in neutrophil intracellular iron trapping and consecutive defects in oxidative burst activity. In contrast, in both HH mouse models and HH patients, the lack of hepcidin expression protects neutrophils from toxic iron accumulation. Moreover, systemic iron overload correlated with a surprising neutrophil priming and resulted in a more powerful oxidative burst. Indeed, important factors in neutrophil priming and activation, such as tumor necrosis factor α (TNF-α), VCAM-1, and ICAM-1 are increased in the plasma of HH patients and are associated with an increase in HH neutrophil phagocytosis capacity and a decrease in L-selectin surface expression. This is the first study to characterize neutrophil iron homeostasis and associated functions in patients with HH.
Collapse
|
9
|
Abstract
Investigations into the mixed muscle-secretory phenotype of cardiomyocytes from the atrial appendages of the heart led to the discovery that these cells produce, in a regulated manner, two polypeptide hormones - the natriuretic peptides - referred to as atrial natriuretic factor or atrial natriuretic peptide (ANP) and brain or B-type natriuretic peptide (BNP), thereby demonstrating an endocrine function for the heart. Studies on the gene encoding ANP (NPPA) initiated the field of modern research into gene regulation in the cardiovascular system. Additionally, ANP and BNP were found to be the natural ligands for cell membrane-bound guanylyl cyclase receptors that mediate the effects of natriuretic peptides through the generation of intracellular cGMP, which interacts with specific enzymes and ion channels. Natriuretic peptides have many physiological actions and participate in numerous pathophysiological processes. Important clinical entities associated with natriuretic peptide research include heart failure, obesity and systemic hypertension. Plasma levels of natriuretic peptides have proven to be powerful diagnostic and prognostic biomarkers of heart disease. Development of pharmacological agents that are based on natriuretic peptides is an area of active research, with vast potential benefits for the treatment of cardiovascular disease.
Collapse
|