1
|
Paissoni C, Puri S, Broggini L, Sriramoju MK, Maritan M, Russo R, Speranzini V, Ballabio F, Nuvolone M, Merlini G, Palladini G, Hsu STD, Ricagno S, Camilloni C. A conformational fingerprint for amyloidogenic light chains. eLife 2025; 13:RP102002. [PMID: 40028903 PMCID: PMC11875538 DOI: 10.7554/elife.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.
Collapse
Affiliation(s)
| | - Sarita Puri
- Department of Bioscience, University of MilanMilanItaly
- Indian Institute of Science Education and Research PunePuneIndia
| | - Luca Broggini
- Institute of Molecular and Translational Cardiology, IRCCS, Policlinico San DonatoMilanItaly
| | | | | | - Rosaria Russo
- Department of Pathophysiology and Transplantation, University of MilanMilanItaly
| | | | | | - Mario Nuvolone
- Department of Molecular Medicine, University of PaviaPaviaItaly
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Giampaolo Merlini
- Department of Molecular Medicine, University of PaviaPaviaItaly
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Giovanni Palladini
- Department of Molecular Medicine, University of PaviaPaviaItaly
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia SinicaTaipeiTaiwan
- Institute of Biochemical Sciences, National Taiwan UniversityTaipeiTaiwan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM), Hiroshima UniversityHigashi-HiroshimaJapan
| | - Stefano Ricagno
- Department of Bioscience, University of MilanMilanItaly
- Institute of Molecular and Translational Cardiology, IRCCS, Policlinico San DonatoMilanItaly
| | | |
Collapse
|
2
|
Tammara V, Das A. A Self-Consistent Molecular Mechanism of β 2-Microglobulin Aggregation. J Phys Chem B 2024; 128:12425-12442. [PMID: 39656191 DOI: 10.1021/acs.jpcb.4c06611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Despite the consensus on the origin of dialysis-related amyloidosis (DRA) being β2-microglobulin (β2m) aggregation, the debate on the underlying mechanism persists because of the continuous emergence of β2m variant- and pH-dependent contradictory results. By characterizing the native monomeric (initiation) and aggregated fibrillar (termination) states of β2m via a combination of two enhanced sampling approaches, we here propose a mechanism that explains the heterogeneous behavior of wild-type (WT) and pathogenic (V27M and D76N) β2m variants in physiological and disease-pertinent acidic pH environments. It appears that the higher retainment of monomeric native folds at neutral pH (native-like) distinguishes pathogenic β2m mutants from the WT (moderate loss). However, at acidic pH, all three variants behave similarly in producing a substantial amount of partially unfolded states (conformational switch, propensity), though with different extents (WT < V27M < D76N). Whereas at the fibrillar end, all β2m variants display a pH-dependent protofilament separation pathway and a higher protofilament binding affinity (stability) at acidic pH, where the relative order of binding affinity (WT < V27M < D76N) remains consistent with pH modulation. Combining these observations, we conclude that β2m variants possibly shift from native-like aggregation to conformational switch-initiated fibrillation as the pH is altered from neutral to acidic. The combined propensity-stability approach based on the initiation and termination points of β2m aggregation not only assists us in deciphering the mechanism but also emphasizes the protagonistic roles of both terminal points in the overall aggregation process.
Collapse
Affiliation(s)
- Vaishnavi Tammara
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Atanu Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Maya-Martinez R, Xu Y, Guthertz N, Walko M, Karamanos TK, Sobott F, Breeze AL, Radford SE. Dimers of D76N-β 2-microglobulin display potent antiamyloid aggregation activity. J Biol Chem 2022; 298:102659. [PMID: 36328246 PMCID: PMC9712992 DOI: 10.1016/j.jbc.2022.102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022] Open
Abstract
Self-association of WT β2-microglobulin (WT-β2m) into amyloid fibrils is associated with the disorder dialysis related amyloidosis. In the familial variant D76N-β2m, the single amino acid substitution enhances the aggregation propensity of the protein dramatically and gives rise to a disorder that is independent of renal dysfunction. Numerous biophysical and structural studies on WT- and D76N-β2m have been performed in order to better understand the structure and dynamics of the native proteins and their different potentials to aggregate into amyloid. However, the structural properties of transient D76N-β2m oligomers and their role(s) in assembly remained uncharted. Here, we have utilized NMR methods, combined with photo-induced crosslinking, to detect, trap, and structurally characterize transient dimers of D76N-β2m. We show that the crosslinked D76N-β2m dimers have different structures from those previously characterized for the on-pathway dimers of ΔN6-β2m and are unable to assemble into amyloid. Instead, the crosslinked D76N-β2m dimers are potent inhibitors of amyloid formation, preventing primary nucleation and elongation/secondary nucleation when added in substoichiometric amounts with D76N-β2m monomers. The results highlight the specificity of early protein-protein interactions in amyloid formation and show how mapping these interfaces can inform new strategies to inhibit amyloid assembly.
Collapse
Affiliation(s)
- Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Martin Walko
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
4
|
Sivanathan PC, Ooi KS, Mohammad Haniff MAS, Ahmadipour M, Dee CF, Mokhtar NM, Hamzah AA, Chang EY. Lifting the Veil: Characteristics, Clinical Significance, and Application of β-2-Microglobulin as Biomarkers and Its Detection with Biosensors. ACS Biomater Sci Eng 2022; 8:3142-3161. [PMID: 35848712 DOI: 10.1021/acsbiomaterials.2c00036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Because β-2-microglobulin (β2M) is a surface protein that is present on most nucleated cells, it plays a key role in the human immune system and the kidney glomeruli to regulate homeostasis. The primary clinical significance of β2M is in dialysis-related amyloidosis, a complication of end-stage renal disease caused by a gradual accumulation of β2M in the blood. Therefore, the function of β2M in kidney-related diseases has been extensively studied to evaluate its glomerular and tubular functions. Because increased β2M shedding due to rapid cell turnover may indicate other underlying medical conditions, the possibility to use β2M as a versatile biomarker rose in prominence across multiple disciplines for various applications. Therefore, this work has reviewed the recent use of β2M to detect various diseases and its progress as a biomarker. While the use of state-of-the-art β2M detection requires sophisticated tools, high maintenance, and labor cost, this work also has reported the use of biosensor to quantify β2M over the past decade. It is hoped that a portable and highly efficient β2M biosensor device will soon be incorporated in point-of-care testing to provide safe, rapid, and reliable test results.
Collapse
Affiliation(s)
- P C Sivanathan
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
| | - Kai Shen Ooi
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia.,Department of Paediatrics, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia
| | | | - Mohsen Ahmadipour
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
| | - Chang Fu Dee
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Azrul Azlan Hamzah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
| | - Edward Y Chang
- Department of Material Science and Engineering, International College of Semiconductor Technology, National Yang Ming Chiao Tung University, 30010 Hsinchu, Taiwan
| |
Collapse
|
5
|
Mehta D, Singh H, Haridas V, Chaudhuri TK. Molecular Insights into the Inhibition of Dialysis-Related β2m Amyloidosis Orchestrated by a Bispidine Peptidomimetic Analogue. Biochemistry 2022; 61:1473-1484. [PMID: 35749234 DOI: 10.1021/acs.biochem.2c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dialysis-related amyloidosis (DRA) is considered an inescapable consequence of renal failure. Upon prolonged hemodialysis, it involves accumulation of toxic β2-microglobulin (β2m) amyloids in bones and joints. Current treatment methods are plagued with high cost, low specificity, and low capacity. Through our in vitro and in cellulo studies, we introduce a peptidomimetic-based approach to help develop future therapeutics against DRA. Our study reports the ability of a nontoxic, core-modified, bispidine peptidomimetic analogue "B(LVI)2" to inhibit acid-induced amyloid fibrillation of β2m (Hβ2m). Using thioflavin-T, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and transmission electron microscopy analysis, we demonstrate that B(LVI)2 delays aggregation lag time of Hβ2m amyloid fibrillation and reduces the yield of Hβ2m amyloid fibrils in a dose-dependent manner. Our findings suggest a B(LVI)2-orchestrated alteration in the route of Hβ2m amyloid fibrillation resulting in the formation of noncytotoxic, morphologically distinct amyloid-like species. Circular dichroism data show gradual sequestration of Hβ2m species in a soluble nonamyloidogenic noncytotoxic conformation in the presence of B(LVI)2. Dynamic light scattering measurements indicate incompetence of Hβ2m species in the presence of B(LVI)2 to undergo amyloid-competent intermolecular associations. Overall, our study reports the antifibrillation property of a novel peptidomimetic with the potential to bring a paradigm shift in therapeutic approaches against DRA.
Collapse
Affiliation(s)
- Devanshu Mehta
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Hanuman Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
6
|
Smith HI, Guthertz N, Cawood EE, Maya-Martinez R, Breeze AL, Radford SE. The role of the I T-state in D76N β 2-microglobulin amyloid assembly: A crucial intermediate or an innocuous bystander? J Biol Chem 2020; 295:12474-12484. [PMID: 32661194 PMCID: PMC7458819 DOI: 10.1074/jbc.ra120.014901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/06/2020] [Indexed: 02/05/2023] Open
Abstract
The D76N variant of human β2-microglobulin (β2m) is the causative agent of a hereditary amyloid disease. Interestingly, D76N-associated amyloidosis has a distinctive pathology compared with aggregation of WT-β2m, which occurs in dialysis-related amyloidosis. A folding intermediate of WT-β2m, known as the IT-state, which contains a nonnative trans Pro-32, has been shown to be a key precursor of WT-β2m aggregation in vitro However, how a single amino acid substitution enhances the rate of aggregation of D76N-β2m and gives rise to a different amyloid disease remained unclear. Using real-time refolding experiments monitored by CD and NMR, we show that the folding mechanisms of WT- and D76N-β2m are conserved in that both proteins fold slowly via an IT-state that has similar structural properties. Surprisingly, however, direct measurement of the equilibrium population of IT using NMR showed no evidence for an increased population of the IT-state for D76N-β2m, ruling out previous models suggesting that this could explain its enhanced aggregation propensity. Producing a kinetically trapped analog of IT by deleting the N-terminal six amino acids increases the aggregation rate of WT-β2m but slows aggregation of D76N-β2m, supporting the view that although the folding mechanisms of the two proteins are conserved, their aggregation mechanisms differ. The results exclude the IT-state as the origin of the rapid aggregation of D76N-β2m, suggesting that other nonnative states must cause its high aggregation rate. The results highlight how a single substitution at a solvent-exposed site can affect the mechanism of aggregation and the resulting disease.
Collapse
Affiliation(s)
- Hugh I Smith
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Emma E Cawood
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
7
|
Trehalose Effect on the Aggregation of Model Proteins into Amyloid Fibrils. Life (Basel) 2020; 10:life10050060. [PMID: 32414105 PMCID: PMC7281244 DOI: 10.3390/life10050060] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Protein aggregation into amyloid fibrils is a phenomenon that attracts attention from a wide and composite part of the scientific community. Indeed, the presence of mature fibrils is associated with several neurodegenerative diseases, and in addition these supramolecular aggregates are considered promising self-assembling nanomaterials. In this framework, investigation on the effect of cosolutes on protein propensity to aggregate into fibrils is receiving growing interest, and new insights on this aspect might represent valuable steps towards comprehension of highly complex biological processes. In this work we studied the influence exerted by the osmolyte trehalose on fibrillation of two model proteins, that is, lysozyme and insulin, investigated during concomitant variation of the solution ionic strength due to NaCl. In order to monitor both secondary structures and the overall tridimensional conformations, we have performed UV spectroscopy measurements with Congo Red, Circular Dichroism, and synchrotron Small Angle X-ray Scattering. For both proteins we describe the effect of trehalose in changing the fibrillation pattern and, as main result, we observe that ionic strength in solution is a key factor in determining trehalose efficiency in slowing down or blocking protein fibrillation. Ionic strength reveals to be a competitive element with respect to trehalose, being able to counteract its inhibiting effects toward amyloidogenesis. Reported data highlight the importance of combining studies carried out on cosolutes with valuation of other physiological parameters that may affect the aggregation process. Also, the obtained experimental results allow to hypothesize a plausible mechanism adopted by the osmolyte to preserve protein surface and prevent protein fibrillation.
Collapse
|