Zheng CC, Gao L, Sun H, Zhao XY, Gao ZQ, Liu J, Guo W. Advancements in enzymatic reaction-mediated microbial transformation.
Heliyon 2024;
10:e38187. [PMID:
39430465 PMCID:
PMC11489147 DOI:
10.1016/j.heliyon.2024.e38187]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Enzymatic reaction-mediated microbial transformation has emerged as a promising technology with significant potential in various industries. These technologies offer the ability to produce enzymes on a large scale, optimize their functionality, and enable sustainable production processes. By utilizing microbial hosts and manipulating their genetic makeup, enzymes can be synthesized efficiently and tailored to meet specific industrial requirements. This leads to enhanced enzyme performance and selectivity, facilitating the development of novel processes and the production of valuable compounds. Moreover, microbial transformation and biosynthesis offer sustainable alternatives to traditional chemical methods, reducing environmental impact and promoting greener production practices. Microbial transformations enrich drug candidate diversity and enhance active ingredient potency, benefiting the pharmaceutical industry. Continued advancements in genetic engineering and bioprocess optimization drive further innovation and application development in Enzymatic reaction-mediated microbial transformation. The integration of AI for predicting enzymatic reactions and optimizing pathways marks a promising direction for future research. In summary, these technologies have the potential to revolutionize several industries by providing cost-effective, sustainable solutions.
Collapse