1
|
Cavalcante BRR, Freitas RD, Siquara da Rocha LO, Santos RSB, Souza BSDF, Ramos PIP, Rocha GV, Gurgel Rocha CA. In silico approaches for drug repurposing in oncology: a scoping review. Front Pharmacol 2024; 15:1400029. [PMID: 38919258 PMCID: PMC11196849 DOI: 10.3389/fphar.2024.1400029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction: Cancer refers to a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body. Due to its complexity, it has been hard to find an ideal medicine to treat all cancer types, although there is an urgent need for it. However, the cost of developing a new drug is high and time-consuming. In this sense, drug repurposing (DR) can hasten drug discovery by giving existing drugs new disease indications. Many computational methods have been applied to achieve DR, but just a few have succeeded. Therefore, this review aims to show in silico DR approaches and the gap between these strategies and their ultimate application in oncology. Methods: The scoping review was conducted according to the Arksey and O'Malley framework and the Joanna Briggs Institute recommendations. Relevant studies were identified through electronic searching of PubMed/MEDLINE, Embase, Scopus, and Web of Science databases, as well as the grey literature. We included peer-reviewed research articles involving in silico strategies applied to drug repurposing in oncology, published between 1 January 2003, and 31 December 2021. Results: We identified 238 studies for inclusion in the review. Most studies revealed that the United States, India, China, South Korea, and Italy are top publishers. Regarding cancer types, breast cancer, lymphomas and leukemias, lung, colorectal, and prostate cancer are the top investigated. Additionally, most studies solely used computational methods, and just a few assessed more complex scientific models. Lastly, molecular modeling, which includes molecular docking and molecular dynamics simulations, was the most frequently used method, followed by signature-, Machine Learning-, and network-based strategies. Discussion: DR is a trending opportunity but still demands extensive testing to ensure its safety and efficacy for the new indications. Finally, implementing DR can be challenging due to various factors, including lack of quality data, patient populations, cost, intellectual property issues, market considerations, and regulatory requirements. Despite all the hurdles, DR remains an exciting strategy for identifying new treatments for numerous diseases, including cancer types, and giving patients faster access to new medications.
Collapse
Affiliation(s)
- Bruno Raphael Ribeiro Cavalcante
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Raíza Dias Freitas
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Social and Pediatric Dentistry of the School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Leonardo de Oliveira Siquara da Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
| | | | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Pablo Ivan Pereira Ramos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Center of Data and Knowledge Integration for Health (CIDACS), Salvador, Brazil
| | - Gisele Vieira Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Clarissa Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
- Department of Propaedeutics, School of Dentistry of the Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
2
|
Almowallad S, Al-Massabi R. Berberine modulates cardiovascular diseases as a multitarget-mediated alkaloid with insights into its downstream signals using in silico prospective screening approaches. Saudi J Biol Sci 2024; 31:103977. [PMID: 38510527 PMCID: PMC10951604 DOI: 10.1016/j.sjbs.2024.103977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Atherosclerosis is potentially correlated with several cardiac disorders that are greatly associated with cellular oxidative stress generation, inflammation, endothelial cells dysfunction, and many cardiovascular complications. Berberine is a natural isoquinoline alkaloid compound that widely modulates pathogenesis of atherosclerosis through its different curative potentials. This in silico screening study was designed to confirm the potent restorative properties of berberine chloride as a multitarget-mediated alkaloid against the CVDs and their complications through screening, identifying, visualizing, and evaluating its binding models, affinities, and interactions toward several CVDs-related targets as direct and/or indirect-mediated signals via inhibiting cellular ER stress and apoptotic signals and activating autophagy pathway. The drug-likeness properties of berberine were predicted using the computational QSAR/ADMET and Lipinski's RO5 analyses as well as in silico molecular docking simulations. The potent berberine-binding modes, residues-interaction patterns, and free energies of binding scores towards several CVDs-related targets were estimated using molecular docking tools. Furthermore, the pharmacokinetic properties and toxicological features of berberine were clearly determined. According to this in silico virtual screening study, berberine chloride could restore cardiac function and improve pathogenic features of atherosclerotic CVDs through alleviating ER stress and apoptotic signals, activating autophagy, improving insulin sensitivity, decreasing hyperglycemia and dyslipidemia, increasing intracellular RCT signaling, attenuating oxidative stress and vascular inflammation, and upregulating cellular antioxidant defenses in many cardiovascular tissues. In this in silico study, berberine chloride greatly modulated several potent CVDs-related targets, including SIGMAR1, GRP78, CASP3, BECN1, PIK3C3, SQSTM1/p62, LC3B, GLUT3, INSR, LDLR, LXRα, PPARγ, IL1β, IFNγ, iNOS, COX-2, MCP-1, IL10, GPx1, and SOD3.
Collapse
Affiliation(s)
- Sanaa Almowallad
- Assistant Professor of Medical Biochemistry, Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rehab Al-Massabi
- Assistant Professor of Medical Biochemistry, Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
3
|
Fonseca G, Poltavsky I, Tkatchenko A. Force Field Analysis Software and Tools (FFAST): Assessing Machine Learning Force Fields under the Microscope. J Chem Theory Comput 2023; 19:8706-8717. [PMID: 38011895 PMCID: PMC10720330 DOI: 10.1021/acs.jctc.3c00985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
As the sophistication of machine learning force fields (MLFF) increases to match the complexity of extended molecules and materials, so does the need for tools to properly analyze and assess the practical performance of MLFFs. To go beyond average error metrics and into a complete picture of a model's applicability and limitations, we developed FFAST (force field analysis software and tools): a cross-platform software package designed to gain detailed insights into a model's performance and limitations, complete with an easy-to-use graphical user interface. The software allows the user to gauge the performance of any molecular force field,─such as popular state-of-the-art MLFF models, ─ on various popular data set types, providing general prediction error overviews, outlier detection mechanisms, atom-projected errors, and more. It has a 3D visualizer to find and picture problematic configurations, atoms, or clusters in a large data set. In this paper, the example of the MACE and NequIP models is used on two data sets of interest [stachyose and docosahexaenoic acid (DHA)]─to illustrate the use cases of the software. With this, it was found that carbons and oxygens involved in or near glycosidic bonds inside the stachyose molecule present increased prediction errors. In addition, prediction errors on DHA rise as the molecule folds, especially for the carboxylic group at the edge of the molecule. We emphasize the need for a systematic assessment of MLFF models for ensuring their successful application to the study of dynamics of molecules and materials.
Collapse
Affiliation(s)
- Gregory Fonseca
- Department of Physics and Materials
Science, University of Luxembourg, Luxembourg City L-1511, Luxembourg
| | - Igor Poltavsky
- Department of Physics and Materials
Science, University of Luxembourg, Luxembourg City L-1511, Luxembourg
| | - Alexandre Tkatchenko
- Department of Physics and Materials
Science, University of Luxembourg, Luxembourg City L-1511, Luxembourg
| |
Collapse
|
4
|
Gomes D, Correia M, Romão M, Passarinha L, Sousa A. Integrated approaches for the separation and purification of recombinant HPV16 E6 protein from Escherichia coli crude extracts. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Parthiban A, Sachithanandam V, Lalitha P, Muthukumaran J, Misra R, Jain M, Sridhar R, Mageswaran T, Purvaja R, Ramesh R. Isolation, characterisation, anticancer and anti-oxidant activities of 2-methoxy mucic acid from Rhizophora apiculata: an in vitro and in silico studies. J Biomol Struct Dyn 2023; 41:1424-1436. [PMID: 34963406 DOI: 10.1080/07391102.2021.2020688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The main objective of the present study is to isolate and characterise the novel bioactive molecule, 2-methoxy mucic acid (4) from Rhizophora apiculate Blume under the Rhizophoraceae family. In this study, the 2-methoxy mucic acid (4) was isolated for the first time from the methanolic extract of the leaves of R. apiculata. Anticancer activity of 2-methoxy mucic acid (4) was evaluated against HeLa and MDA-MB-231 cancer cell lines and they displayed promising activity with IC50 values of 22.88283 ± 0.72 µg/ml in HeLa and 2.91925 ± 0.52 µg/ml in the case of MDA-MB-231, respectively. Furthermore, the antioxidant property of 2-methoxy mucic acid (4) was found to be (IC50) 21.361 ± 0.41 µg/ml. Apart from in vitro studies, we also performed extensive in silico studies (molecular docking and molecular dynamics simulation) on four critical antiapoptotic Bcl-2 family members (Bcl-2, Bcl-w, Bcl-xL and Bcl-B) towards 2-methoxy mucic acid (4). The results revealed that this molecule showed higher binding affinity towards Bcl-B protein (ΔG = -5.8 kcal/mol) and the structural stability of this protein was significantly improved upon binding of this molecule. The present study affords vital insights into the importance of 2-methoxy mucic acid (4) from R. apiculata. Furthermore, it opens the therapeutic route for the discovery of anticancer drugs. Research HighlightsThis is a first report on a bioactive compound identified and characterised; a novel 2-methoxy mucic acid derived from methanolic crude extract from the leaves of R. apiculata from ANI.Estimated binding free energy of 2-methoxy mucic acid is found to be -5.8 kcal/mol to the anti-apoptotic Bcl-B protein.2-methoxy mucic acid showed both significant anti-cancer and anti-oxidant activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- A Parthiban
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - V Sachithanandam
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - P Lalitha
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Ranjita Misra
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - R Sridhar
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - T Mageswaran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - Ramachandran Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - Ramachandran Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| |
Collapse
|
6
|
Engrola FSS, Paquete-Ferreira J, Santos-Silva T, Correia MAS, Leisico F, Santos MFA. Screening of Buffers and Additives for Protein Stabilization by Thermal Shift Assay: A Practical Approach. Methods Mol Biol 2023; 2652:199-213. [PMID: 37093477 DOI: 10.1007/978-1-0716-3147-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Thermal shift assay (TSA), also commonly designed by differential scanning fluorimetry (DSF) or ThermoFluor, is a technique relatively easy to implement and perform, useful in a myriad of applications. In addition to versatility, it is also rather inexpensive, making it suitable for high-throughput approaches. TSA uses a fluorescent dye to monitor the thermal denaturation of the protein under study and determine its melting temperature (Tm). One of its main applications is to identify the best buffers and additives that enhance protein stability.Understanding the TSA operating mode and the main methodological steps is a central key to designing effective experiments and retrieving meaningful conclusions. This chapter intends to present a straightforward TSA protocol, with different troubleshooting tips, to screen effective protein stabilizers such as buffers and additives, as well as data treatment and analysis. TSA results provide conditions in which the protein of interest is stable and therefore suitable to carry out further biophysical and structural characterization.
Collapse
Affiliation(s)
- Filipa S S Engrola
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - João Paquete-Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Teresa Santos-Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Márcia A S Correia
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| | - Francisco Leisico
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, Grenoble, France.
| | - Marino F A Santos
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| |
Collapse
|
7
|
Thalhammer A, Bröker NK. Biophysical Approaches for the Characterization of Protein-Metabolite Interactions. Methods Mol Biol 2023; 2554:199-229. [PMID: 36178628 DOI: 10.1007/978-1-0716-2624-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With an estimate of hundred thousands of protein molecules per cell and the number of metabolites several orders of magnitude higher, protein-metabolite interactions are omnipresent. In vitro analyses are one of the main pillars on the way to establish a solid understanding of how these interactions contribute to maintaining cellular homeostasis. A repertoire of biophysical techniques is available by which protein-metabolite interactions can be quantitatively characterized in terms of affinity, specificity, and kinetics in a broad variety of solution environments. Several of those provide information on local or global conformational changes of the protein partner in response to ligand binding. This review chapter gives an overview of the state-of-the-art biophysical toolbox for the study of protein-metabolite interactions. It briefly introduces basic principles, highlights recent examples from the literature, and pinpoints promising future directions.
Collapse
Affiliation(s)
- Anja Thalhammer
- Physical Biochemistry, University of Potsdam, Potsdam, Germany.
| | - Nina K Bröker
- Physical Biochemistry, University of Potsdam, Potsdam, Germany
- Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
8
|
Mushtaq AU, Ådén J, Ali K, Gröbner G. Domain-specific insight into the recognition of BH3-death motifs by the pro-survival Bcl-2 protein. Biophys J 2022; 121:4517-4525. [PMID: 36325615 PMCID: PMC9748362 DOI: 10.1016/j.bpj.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/09/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022] Open
Abstract
Programmed mammalian cell death (apoptosis) is an essential mechanism in life that tightly regulates embryogenesis and removal of dysfunctional cells. In its intrinsic (mitochondrial) pathway, opposing members of the Bcl-2 (B cell lymphoma 2) protein family meet at the mitochondrial outer membrane (MOM) to control its integrity. Any imbalance can cause disorders, with upregulation of the cell-guarding antiapoptotic Bcl-2 protein itself being common in many, often incurable, cancers. Normally, the Bcl-2 protein itself is embedded in the MOM where it sequesters cell-killing apoptotic proteins such as Bax (Bcl-2-associated X protein) that would otherwise perforate the MOM and subsequently cause cell death. However, the molecular basis of Bcl-2's ability to recognize those apoptotic proteins via their common BH3 death motifs remains elusive due to the lack of structural insight. By employing nuclear magnetic resonance on fully functional human Bcl-2 protein in membrane-mimicking micelles, we identified glycine residues across all functional domains of the Bcl-2 protein and could monitor their residue-specific individual response upon the presence of a Bax-derived 36aa long BH3 domain. The observed chemical shift perturbations allowed us to determine the response and individual affinity of each glycine residue and provide an overall picture of the individual roles by which Bcl-2's functional domains engage in recognizing and inhibiting apoptotic proteins via their prominent BH3 motifs. This way, we provide a unique residue- and domain-specific insight into the molecular functioning of Bcl-2 at the membrane level, an insight also opening up for interfering with this cell-protecting mechanism in cancer therapy.
Collapse
Affiliation(s)
| | - Jörgen Ådén
- Department of Chemistry, University of Umeå, Umeå, Sweden
| | - Katan Ali
- Department of Chemistry, University of Umeå, Umeå, Sweden
| | | |
Collapse
|
9
|
Ahmad W, Ansari MA, Alsayari A, Almaghaslah D, Wahab S, Alomary MN, Jamal QMS, Khan FA, Ali A, Alam P, Elderdery AY. In Vitro, Molecular Docking and In Silico ADME/Tox Studies of Emodin and Chrysophanol against Human Colorectal and Cervical Carcinoma. Pharmaceuticals (Basel) 2022; 15:1348. [PMID: 36355520 PMCID: PMC9697597 DOI: 10.3390/ph15111348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 08/11/2023] Open
Abstract
Anthraquinones (AQs) are present in foods, dietary supplements, pharmaceuticals, and traditional treatments and have a wide spectrum of pharmacological activities. In the search for anti-cancer drugs, AQ derivatives are an important class. In this study, anthraquinone aglycons chrysophanol (Chr), emodin (EM) and FDA-approved anticancer drug fluorouracil were analyzed by molecular docking studies against receptor molecules caspase-3, apoptosis regulator Bcl-2, TRAF2 and NCK-interacting protein kinase (TNIK) and cyclin-dependent protein kinase 2 (CDK2) as novel candidates for future anticancer therapeutic development. The ADMET SAR database was used to predict the toxicity profile and pharmacokinetics of the Chr and EM. Furthermore, in silico results were validated by the in vitro anticancer activity against HCT-116 and HeLa cell lines to determine the anticancer effect. According to the docking studies simulated by the docking program AutoDock Vina 4.0, Chr and EM had good binding energies against the target proteins. It has been observed that Chr and EM show stronger molecular interaction than that of the FDA-approved anticancer drug fluorouracil. In the in vitro results, Chr and EM demonstrated promising anticancer activity in HCT-116 and HeLa cells. These findings lay the groundwork for the potential use of Chr and EM in the treatment of human colorectal and cervical carcinomas.
Collapse
Affiliation(s)
- Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
- Complementary and Alternative Medicine Unit, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Dalia Almaghaslah
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
- Complementary and Alternative Medicine Unit, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11941, Saudi Arabia
| | - Abozer Y. Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
10
|
Parthiban A, Sachithanandam V, Lalitha P, Elumalai D, Asha RN, Jeyakumar TC, Muthukumaran J, Jain M, Jayabal K, Mageswaran T, Sridhar R, Purvaja R, Ramesh R. Isolation and biological evaluation 7-hydroxy flavone from Avicennia officinalis L: insights from extensive in vitro, DFT, molecular docking and molecular dynamics simulation studies. J Biomol Struct Dyn 2022; 41:2848-2860. [PMID: 35193476 DOI: 10.1080/07391102.2022.2039771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The flavonoid based 7-hydroxy flavone (PubChem CID: 5281894; molecular formula: C15H10O3) molecule has been isolated for the first time from the methanolic extract from the leaves of Avicennia officinalis L. in the tropical mangrove ecosystem of Andaman and Nicobar Islands (ANI), India. The molecular structure of bioactive compound was characterized by spectroscopic analysis, including FT-IR, 1H, 13C NMR spectroscopy and ESI-HRMS and elucidated as 7-hydroxy flavone. An anticancer activity of isolated 7-hydroxy flavone was evaluated by in vitro study against two different human cancer cell lines namely, HeLa (cervical cells) and MDA-MB231 (breast cells) and they exhibited promising anticancer activity with IC50 values are 22.5602 ± 0.21 µg/mL and 3.86474 ± 0.35 µg/mL, respectively. The antioxidant property of 7-hydroxy flavone at a standard concentration of 50 µg, was found to be (IC50) 5.5486 ± 0.81 µg/mL. In summary, this investigation provides evidence that 7-hydroxy flavone exhibits both anticancer and antioxidant properties. Meanwhile, the antimicrobial activity ability of 7-hydroxy flavone were also evaluated using three Gram positive and two Gram negative strain exhibited no antimicrobial activities. Density-functional theory (DFT) studies confirm the structure is global minima in the PES, from the optimized geometry FMO and MESP map analyzed. Further, the molecular docking and molecular dynamics simulation studies result shows that 7-hydroxy flavone has the better binding ability with anti-apoptotic Bcl-2 protein with the estimated free energy of binding of -6.3 kcal/mol. This bioactive compound may be act as drug candidate for treating various kinds of cancers. HighlightsA 7-hydroxy flavone molecule has been isolated from Avicennia officinalis.The isolated pure compound was subjected to spectral analysis such as FT-IR, 1H NMR, 13C NMR spectral data and HRMS analysis for skeleton of the molecule.The anticancer activity of 7-hydroxy flavone studied against Cervical (HeLa) cancer cell lines and breast (MDA-MB231) cancer cell lines with the IC50 values of 22.5602 ± 0.21 µg/mL and 3.86474 ± 0.35 µg/mL), respectively.The antioxidant properties of 7-hydroxy flavone were found to be (IC50) 5.5486 ± 0.81 µg/mL at a standard concentration of 50 µg.DFT, molecular docking and MD simulation results explained that 7-hydroxy flavone could be the most promising candidate to inhibit the function of anti-apoptotic Bcl-2 protein in cancerous cell.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- A Parthiban
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| | - V Sachithanandam
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| | - P Lalitha
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| | | | - Radhakrishnan Nandini Asha
- Department of Chemistry, Pondicherry University, Puducherry, India.,Department of Chemistry, Pope's College (Autonomous), Thoothukudi, Tamil Nadu, India
| | - Thayalaraj Christopher Jeyakumar
- Department of Chemistry, Pondicherry University, Puducherry, India.,Department of Chemistry, The American College, Madurai, Tamil Nadu, India
| | - J Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, P.C, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, P.C, India
| | | | - T Mageswaran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| | - R Sridhar
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
R Hamre J, Klimov DK, McCoy MD, Jafri MS. Machine learning-based prediction of drug and ligand binding in BCL-2 variants through molecular dynamics. Comput Biol Med 2022; 140:105060. [PMID: 34920365 DOI: 10.1016/j.compbiomed.2021.105060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/13/2021] [Accepted: 11/20/2021] [Indexed: 12/13/2022]
Abstract
Venetoclax is a BH3 (BCL-2 Homology 3) mimetic used to treat leukemia and lymphoma by inhibiting the anti-apoptotic BCL-2 protein thereby promoting apoptosis of cancerous cells. Acquired resistance to Venetoclax via specific variants in BCL-2 is a major problem for the successful treatment of cancer patients. Replica exchange molecular dynamics (REMD) simulations combined with machine learning were used to define the average structure of variants in aqueous solution to predict changes in drug and ligand binding in BCL-2 variants. The variant structures all show shifts in residue positions that occlude the binding groove, and these are the primary contributors to drug resistance. Correspondingly, we established a method that can predict the severity of a variant as measured by the inhibitory constant (Ki) of Venetoclax by measuring the structure deviations to the binding cleft. In addition, we also applied machine learning to the phi and psi angles of the amino acid backbone to the ensemble of conformations that demonstrated a generalizable method for drug resistant predictions of BCL-2 proteins that elucidates changes where detailed understanding of the structure-function relationship is less clear.
Collapse
Affiliation(s)
- John R Hamre
- School of Systems Biology, George Mason University, Manassas, VA, USA.
| | - Dmitri K Klimov
- School of Systems Biology, George Mason University, Manassas, VA, USA.
| | - Matthew D McCoy
- Innovation Center for Biomedical Informatics, Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington DC, USA.
| | - M Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA and Center for Biomedical Technology and Engineering, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Pessoa JC, Santos MF, Correia I, Sanna D, Sciortino G, Garribba E. Binding of vanadium ions and complexes to proteins and enzymes in aqueous solution. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Barroca-Ferreira J, Cruz-Vicente P, Santos MFA, Rocha SM, Santos-Silva T, Maia CJ, Passarinha LA. Enhanced Stability of Detergent-Free Human Native STEAP1 Protein from Neoplastic Prostate Cancer Cells upon an Innovative Isolation Procedure. Int J Mol Sci 2021; 22:10012. [PMID: 34576175 PMCID: PMC8472055 DOI: 10.3390/ijms221810012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The STEAP1 is a cell-surface antigen over-expressed in prostate cancer, which contributes to tumor progression and aggressiveness. However, the molecular mechanisms underlying STEAP1 and its structural determinants remain elusive. METHODS The fraction capacity of Butyl- and Octyl-Sepharose matrices on LNCaP lysates was evaluated by manipulating the ionic strength of binding and elution phases, followed by a Co-Immunoprecipitation (Co-IP) polishing. Several potential stabilizing additives were assessed, and the melting temperature (Tm) values ranked the best/worst compounds. The secondary structure of STEAP1 was identified by circular dichroism. RESULTS The STEAP1 was not fully captured with 1.375 M (Butyl), in contrast with interfering heterologous proteins, which were strongly retained and mostly eluted with water. This single step demonstrated higher selectivity of Butyl-Sepharose for host impurities removal from injected crude samples. Co-IP allowed recovering a purified fraction of STEAP1 and contributed to unveil potential physiologically interacting counterparts with the target. A Tm of ~55 °C was determined, confirming STEAP1 stability in the purification buffer. A predominant α-helical structure was identified, ensuring the protein's structural stability. CONCLUSIONS A method for successfully isolating human STEAP1 from LNCaP cells was provided, avoiding the use of detergents to achieve stability, even outside a membrane-mimicking environment.
Collapse
Affiliation(s)
- Jorge Barroca-Ferreira
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (J.B.-F.); (P.C.-V.); (S.M.R.); (C.J.M.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; (M.F.A.S.); (T.S.-S.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Pedro Cruz-Vicente
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (J.B.-F.); (P.C.-V.); (S.M.R.); (C.J.M.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; (M.F.A.S.); (T.S.-S.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Marino F. A. Santos
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; (M.F.A.S.); (T.S.-S.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Sandra M. Rocha
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (J.B.-F.); (P.C.-V.); (S.M.R.); (C.J.M.)
| | - Teresa Santos-Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; (M.F.A.S.); (T.S.-S.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Cláudio J. Maia
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (J.B.-F.); (P.C.-V.); (S.M.R.); (C.J.M.)
| | - Luís A. Passarinha
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (J.B.-F.); (P.C.-V.); (S.M.R.); (C.J.M.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; (M.F.A.S.); (T.S.-S.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- Laboratório de Fármaco-Toxicologia-UBIMedical, University of Beira Interior, 6201-284 Covilhã, Portugal
| |
Collapse
|
14
|
Lv X, Jiang Y, Wang X, Xie H, Dou G, Wang J, Yang W, Wang H, Li Z, Zhang X, Chen Z. Computational study on novel natural inhibitors targeting BCL2. Med Oncol 2021; 38:94. [PMID: 34259934 PMCID: PMC8280014 DOI: 10.1007/s12032-021-01513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/23/2021] [Indexed: 11/28/2022]
Abstract
Ideal lead compounds and candidate drugs with inhibitory effect on BCL2 were screened from ZINC database, which laid a foundation for drug development and compound improvement of drug treatment for diffuse large B-cell lymphoma (DLCBL). Identification of potential BCL2 inhibitors by computer-aided virtual screening. Libdock was applied to 17,931 compounds and the top 20 were selected for further analysis. Selected compounds were performed absorption, distribution, metabolism, and excretion (ADME) and toxicity prediction. The binding affinity between the selected ligands and BCL2 was confirmed by Molecular docking. The new natural compounds, ZINC00000255131 and ZINC00013298233, were found to bind closely with BCL2. Furthermore, they all scored lower in ames-induced mutagenicity, rodent carcinogenicity, non-developmental toxicity potential, and cytochrome P4502D6 tolerance. Molecular dynamics simulation shows that the combinations of ZINC00000255131 and ZINC00013298233 with BCL2 in the natural environment are more stable. Two new compounds, ZINC00000255131 and ZINC00013298233, were found to be potential inhibitors of BCL2. These compounds have been proved to be safe, which is of great significance for the development and improvement of DLCBL drugs.
Collapse
Affiliation(s)
- Xiaye Lv
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Hematology, The First Clinical Medical School of Lanzhou University, No.1, Donggangxi Rd, Chengguan District, Lanzhou, 730000 Gansu China
| | - Yuting Jiang
- Clinical College, Jilin University, Street Xinmin 70, Changchun, China
| | - Xinhui Wang
- Department of Oncology, First People’s Hospital of Xinxiang, Street Yiheng 63, Xinxiang, China
| | - HaoQun Xie
- Clinical College, Jilin University, Street Xinmin 70, Changchun, China
| | - Gaojing Dou
- Department of Breast Surgery, The First Hospital of Jilin University, Street Xinmin 71, Changchun, China
| | - Jing Wang
- Clinical College, Jilin University, Street Xinmin 70, Changchun, China
| | - Wenzhuo Yang
- Clinical College, Jilin University, Street Xinmin 70, Changchun, China
| | - Hongyu Wang
- Clinical College, Jilin University, Street Xinmin 70, Changchun, China
| | - Zijian Li
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Xiangheng Zhang
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhenghe Chen
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
15
|
Ramos J, Laux V, Haertlein M, Boeri Erba E, McAuley KE, Forsyth VT, Mossou E, Larsen S, Langkilde AE. Structural insights into protein folding, stability and activity using in vivo perdeuteration of hen egg-white lysozyme. IUCRJ 2021; 8:372-386. [PMID: 33953924 PMCID: PMC8086161 DOI: 10.1107/s2052252521001299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
This structural and biophysical study exploited a method of perdeuterating hen egg-white lysozyme based on the expression of insoluble protein in Escherichia coli followed by in-column chemical refolding. This allowed detailed comparisons with perdeuterated lysozyme produced in the yeast Pichia pastoris, as well as with unlabelled lysozyme. Both perdeuterated variants exhibit reduced thermal stability and enzymatic activity in comparison with hydrogenated lysozyme. The thermal stability of refolded perdeuterated lysozyme is 4.9°C lower than that of the perdeuterated variant expressed and secreted in yeast and 6.8°C lower than that of the hydrogenated Gallus gallus protein. However, both perdeuterated variants exhibit a comparable activity. Atomic resolution X-ray crystallographic analyses show that the differences in thermal stability and enzymatic function are correlated with refolding and deuteration effects. The hydrogen/deuterium isotope effect causes a decrease in the stability and activity of the perdeuterated analogues; this is believed to occur through a combination of changes to hydrophobicity and protein dynamics. The lower level of thermal stability of the refolded perdeuterated lysozyme is caused by the unrestrained Asn103 peptide-plane flip during the unfolded state, leading to a significant increase in disorder of the Lys97-Gly104 region following subsequent refolding. An ancillary outcome of this study has been the development of an efficient and financially viable protocol that allows stable and active perdeuterated lysozyme to be more easily available for scientific applications.
Collapse
Affiliation(s)
- Joao Ramos
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Valerie Laux
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Michael Haertlein
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Elisabetta Boeri Erba
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Institut de Biologie Structurale, Université de Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Katherine E. McAuley
- Diamond Light Source, Didcot OX11 0DE, United Kingdom
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - V. Trevor Forsyth
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Faculty of Natural Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, United Kingdom
| | - Estelle Mossou
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Faculty of Natural Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, United Kingdom
| | - Sine Larsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Annette E. Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
16
|
Mushtaq AU, Ådén J, Clifton LA, Wacklin-Knecht H, Campana M, Dingeldein APG, Persson C, Sparrman T, Gröbner G. Neutron reflectometry and NMR spectroscopy of full-length Bcl-2 protein reveal its membrane localization and conformation. Commun Biol 2021; 4:507. [PMID: 33907308 PMCID: PMC8079415 DOI: 10.1038/s42003-021-02032-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
B-cell lymphoma 2 (Bcl-2) proteins are the main regulators of mitochondrial apoptosis. Anti-apoptotic Bcl-2 proteins possess a hydrophobic tail-anchor enabling them to translocate to their target membrane and to shift into an active conformation where they inhibit pro-apoptotic Bcl-2 proteins to ensure cell survival. To address the unknown molecular basis of their cell-protecting functionality, we used intact human Bcl-2 protein natively residing at the mitochondrial outer membrane and applied neutron reflectometry and NMR spectroscopy. Here we show that the active full-length protein is entirely buried into its target membrane except for the regulatory flexible loop domain (FLD), which stretches into the aqueous exterior. The membrane location of Bcl-2 and its conformational state seems to be important for its cell-protecting activity, often infamously upregulated in cancers. Most likely, this situation enables the Bcl-2 protein to sequester pro-apoptotic Bcl-2 proteins at the membrane level while sensing cytosolic regulative signals via its FLD region.
Collapse
Affiliation(s)
| | - Jörgen Ådén
- Department of Chemistry, University of Umeå, Umeå, Sweden
| | - Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science&Innovation Campus, Didcot, Oxfordshire, UK
| | - Hanna Wacklin-Knecht
- European Spallation Source ERIC, ESS, Lund, Sweden
- Department of Chemistry, Division of Physical Chemistry, Lund University, Lund, Sweden
| | - Mario Campana
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science&Innovation Campus, Didcot, Oxfordshire, UK
| | | | - Cecilia Persson
- The Swedish NMR Center, University of Gothenburg, Gothenburg, Sweden
| | | | | |
Collapse
|
17
|
Sahu SN, Satpathy SS, Mohanty C, Pattanayak SK. Computational study to evaluate the potency of phytochemicals in Boerhavia diffusa and the impact of point mutation on cyclin-dependent kinase 2-associated protein 1. J Biomol Struct Dyn 2021; 40:8587-8601. [PMID: 33876720 DOI: 10.1080/07391102.2021.1914169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A protein's function is closely related to its structural properties. Mutations can affect the functionality of a protein. Different cancer tissues have found disordered expression of the cyclin-dependent kinase 2-associated Protein 1 (CDK2AP1) gene. A protein molecule's conformational flexibility affects its interaction with phytochemicals and their biological partners at various levels. Boerhavia diffusa has been investigated most extensively for its medicinal activities like anticancer properties. It contains many bioactive compounds like Boeravinone A, Boeravinone B, Boeravinone C, Boeravinone D, Boeravinone E, Boeravinone F, Boeravinone G, Boeravinone H, Boeravinone I and Boeravinone J. We have studied to analyse the binding efficacy properties as well as essential dynamic behaviour, free energy landscape of both the native and mutant protein CDK2AP1 with bioactive compounds from Boerhavia diffusa plant extracts through computational approaches by homology modelling, docking and molecular dynamics simulation. From the molecular docking study, we found that. Boeravinone J have best binding affinity (-7.9 kcal/mol) towards the native protein of CDKAP1 compared to others phytochemicals. However, we found the binding energy for H23R and C105R (mutation point) -7.8 and -7.6 kcal/mol, respectively. A single minima energy point (from 100 ns molecular dynamics simulation study) was found in the H23R mutant with Boeravinone J complex suggested that minimum structural changes with less conformational mobility compared C105A mutant model.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Satya Narayan Sahu
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Sneha Shriparna Satpathy
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Chandana Mohanty
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | | |
Collapse
|
18
|
Sahin K, Orhan MD, Avsar T, Durdagi S. Hybrid In Silico and TR-FRET-Guided Discovery of Novel BCL-2 Inhibitors. ACS Pharmacol Transl Sci 2021; 4:1111-1123. [PMID: 34151203 DOI: 10.1021/acsptsci.0c00210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 12/31/2022]
Abstract
B-Cell lymphoma 2 (BCL-2) regulates cell death in humans. In this study, combined multiscale in silico approaches and in vitro studies were employed. A small-molecule library that includes more than 210 000 compounds was used. The predicted therapeutic activity value (TAV) of the compounds in this library was computed with the binary cancer quantitative structure-activity relationships (QSAR) model. The molecules with a high calculated TAV were used in 26 individual toxicity QSAR models. As a result of this screening protocol, 288 nontoxic molecules with high predicted TAV were identified. These selected hits were then screened against the BCL-2 target protein using hybrid docking and molecular dynamics (MD) simulations. The interaction energies of identified compounds were compared with two known BCL-2 inhibitors. Then, the short MD simulations were carried out by initiating the best docking poses of 288 molecules. Average MM/GBSA energies were computed, and long MD simulations were employed to selected hits. The same calculations were also applied for two known BCL-2 inhibitors. Moreover, a five-site (AHRRR) structure-based pharmacophore model was constructed, and this model was used in the screening of the same database. On the basis of hybrid data-driven ligand identification study, final hits were selected and used in in vitro studies. Based on results of the time-resolved fluorescence resonance energy transfer (TR-FRET) analysis, further filtration was carried out for the U87-MG cell line tests. MTT cell proliferation assay analysis results showed that selected three potent compounds were significantly effective on glioma cells.
Collapse
Affiliation(s)
- Kader Sahin
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34353, Turkey
| | - Muge Didem Orhan
- Neuroscience Program, Health Sciences Institute, Bahcesehir University, Istanbul 34353, Turkey.,Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul 34353, Turkey
| | - Timucin Avsar
- Neuroscience Program, Health Sciences Institute, Bahcesehir University, Istanbul 34353, Turkey.,Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul 34353, Turkey.,Department of Medical Biology, School of Medicine, Bahcesehir University, Istanbul 34353, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34353, Turkey.,Neuroscience Program, Health Sciences Institute, Bahcesehir University, Istanbul 34353, Turkey.,Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul 34353, Turkey.,Virtual Drug Screening and Development Laboratory, School of Medicine, Bahcesehir University, Istanbul 34353, Turkey
| |
Collapse
|
19
|
Sachithanandam V, Lalitha P, Parthiban A, Muthukumaran J, Jain M, Misra R, Mageswaran T, Sridhar R, Purvaja R, Ramesh R. A comprehensive in silico and in vitro studies on quinizarin: a promising phytochemical derived from Rhizophora mucronata Lam. J Biomol Struct Dyn 2021; 40:7218-7229. [PMID: 33682626 DOI: 10.1080/07391102.2021.1894983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mangrove plants are a great source of phytomedicines, since from the beginning of human civilization and the origin of traditional medicines. In the present study, ten different mangrove leaf methanolic extracts were screened for the type of phytochemicals followed by assessing antimicrobial, anti-oxidant and anti-cancer activities. The efficient methanolic crude extract of Rhizospora mucornata was further purified and characterized for the presence of the bioactive compound. Based on UV-visible spectroscopy, FTIR, NMR and HRMS analysis, the bioactive compound was 1,4-dihydroanthraquinone; also termed as Quinizarin. This identified compound was potential in exhibiting antimicrobial, antioxidant, and cytotoxic activity. Quinizarin inhibited the growth of Bacillus cereus and Klebsiella aerogenes with minimum inhibitory concentration (MIC) of 0.78 and 1.5 mg/ml. The DPPH free radical scavenging assay revealed the maximum activity of 99.8% at the concentration of 200 µg/ml with an IC50 value of 12.67 ± 0.41 µg/ml. Cytotoxic assay against HeLa (cervical) and MDA-MB231(breast) cancer cell lines revealed IC50 values to be 4.60 ± 0.26 and 3.89 ± 0.15 µg/ml. Together the results of molecular docking and molecular dynamics simulation studies explained that Quinizarin molecule showed stronger binding affinity (-6.2 kcal/mol) and significant structural stability towards anti-apoptotic Bcl-2 protein. Thus, the study put forth the promising role of the natural molecule - Quinizarin isolated from R. mucornata in the formulation of therapeutic drugs against bacterial infections and cancer. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- V Sachithanandam
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - P Lalitha
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - A Parthiban
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Ranjita Misra
- Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - T Mageswaran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - R Sridhar
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| |
Collapse
|
20
|
Associations of BCL2 CA-Repeat Polymorphism and Breast Cancer Susceptibility in Isfahan Province of Iran. Biochem Genet 2020; 59:506-515. [PMID: 33151448 DOI: 10.1007/s10528-020-10013-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023]
Abstract
BCL2 apoptosis regulator (BCL2) is a cause of tumorigenesis whose CA-repeat promoter polymorphisms has inconsistent association with various types of cancers. The association of BCL2 polymorphism with breast cancer was investigated in the Isfahan province of Iran. PCRamplification of the CA-repeat was followed by polyacrylamide gel electrophoresis and direct sequencing for 120 breast cancer women and an equal number of corresponding healthy control individuals. Seven different alleles, ranging from 11 to 17 CA-repeats were observed. Short alleles with 11 to 14 repeats were protective (OR 0.363, P = 0.001), but large alleles with 15 to 17 repeats were threatening against breast cancer development (OR 2.780, P = 0.001). Accordingly, genotypes with large alleles showed a higher risk of breast cancer development (OR 3.400, P = 0.004). ERS1\ERBB2 positive breast cancer patients, but not PGRpositive ones, showed protection against breast cancer (OR 0.405, OR 0.346 respectively). In conclusion, women with at least one large allele of BCL2 were 3.4 times at higher risk of breast cancer development in the Isfahan province of Iran.
Collapse
|
21
|
In vitro evaluation and molecular docking of QS-21 and quillaic acid from Quillaja saponaria Molina as gastric cancer agents. Sci Rep 2020; 10:10534. [PMID: 32601436 PMCID: PMC7324585 DOI: 10.1038/s41598-020-67442-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/01/2020] [Indexed: 12/28/2022] Open
Abstract
The cytotoxic mechanism of the saponin QS-21 and its aglycone quillaic acid (QA) was studied on human gastric cancer cells (SNU1 and KATO III). Both compounds showed in vitro cytotoxic activity with IC50 values: 7.1 μM (QS-21) and 13.6 μM (QA) on SNU1 cells; 7.4 μM (QS-21) and 67 μM (QA) on KATO III cells. QS-21 and QA induce apoptosis on SNU1 and KATO III, as demonstrated by TUNEL, Annexin-V and Caspase Assays. Additionally, we performed in silico docking studies simulating the binding of both triterpenic compounds to key proteins involved in apoptotic pathways. The binding energies (∆Gbin) thus calculated, suggest that the pro-apoptotic protein Bid might be a plausible target involved in the apoptotic effect of both triterpenic compounds. Although QA shows some antiproliferative effects on SNU1 cells cultured in vitro, our results suggest that QS-21 is a more powerful antitumor agent, which merits further investigation regarding their properties as potential therapeutic agents for gastric cancer.
Collapse
|