1
|
Xie Y, Liu B, Zhou Z, Gao K, Yin H, Zhao Y, Liu Q. PmHs1 pro-1 monitors Bsursaphelenchus xylophilus infection and activates defensive response in resistant Pinus massoniana. PLANT, CELL & ENVIRONMENT 2024; 47:4369-4382. [PMID: 38973616 DOI: 10.1111/pce.15025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024]
Abstract
Plant resistance (R) genes play a crucial role in the detection of effector proteins secreted by pathogens, either directly or indirectly, as well as in the subsequent activation of downstream defence mechanisms. However, little is known about how R genes regulate the defence responses of conifers, particularly Pinus massoniana, against the destructive pine wood nematode (PWN; Bursaphelenchus xylophilus). Here, we isolated and characterised PmHs1pro-1, a nematode-resistance gene of P. massoniana, using bioinformatics, molecular biology, histochemistry and transgenesis. Tissue-specific expressional pattern and localisation of PmHs1pro-1 suggested that it was a crucial positive regulator in response to PWN attack in resistant P. massoniana. Meanwhile, overexpression of PmHs1pro-1 was found to activate reactive oxygen species (ROS) metabolism-related enzymes and the expressional level of their key genes, including superoxide dismutase, peroxidase and catalase. In addition, we showed that PmHs1pro-1 directly recognised the effector protein BxSCD1of PWN, and induced the ROS burst responding to PWN invasion in resistant P. massoniana. Our findings illustrated the molecular framework of R genes directly recognising the effector protein of pathology in pine, which offered a novel insight into the plant-pathogen arms race.
Collapse
Affiliation(s)
- Yini Xie
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang, China
| | - Bin Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang, China
| | - Zhichun Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang, China
| | - Kai Gao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang, China
| | - Hengfu Yin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Yunxiao Zhao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Qinghua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
2
|
Sielemann K, Pucker B, Orsini E, Elashry A, Schulte L, Viehöver P, Müller AE, Schechert A, Weisshaar B, Holtgräwe D. Genomic characterization of a nematode tolerance locus in sugar beet. BMC Genomics 2023; 24:748. [PMID: 38057719 DOI: 10.1186/s12864-023-09823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Infection by beet cyst nematodes (BCN, Heterodera schachtii) causes a serious disease of sugar beet, and climatic change is expected to improve the conditions for BCN infection. Yield and yield stability under adverse conditions are among the main breeding objectives. Breeding of BCN tolerant sugar beet cultivars offering high yield in the presence of the pathogen is therefore of high relevance. RESULTS To identify causal genes providing tolerance against BCN infection, we combined several experimental and bioinformatic approaches. Relevant genomic regions were detected through mapping-by-sequencing using a segregating F2 population. DNA sequencing of contrasting F2 pools and analyses of allele frequencies for variant positions identified a single genomic region which confers nematode tolerance. The genomic interval was confirmed and narrowed down by genotyping with newly developed molecular markers. To pinpoint the causal genes within the potential nematode tolerance locus, we generated long read-based genome sequence assemblies of the tolerant parental breeding line Strube U2Bv and the susceptible reference line 2320Bv. We analyzed continuous sequences of the potential locus with regard to functional gene annotation and differential gene expression upon BCN infection. A cluster of genes with similarity to the Arabidopsis thaliana gene encoding nodule inception protein-like protein 7 (NLP7) was identified. Gene expression analyses confirmed transcriptional activity and revealed clear differences between susceptible and tolerant genotypes. CONCLUSIONS Our findings provide new insights into the genomic basis of plant-nematode interactions that can be used to design and accelerate novel management strategies against BCN.
Collapse
Affiliation(s)
- Katharina Sielemann
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615, Bielefeld, Germany
| | - Boas Pucker
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology & Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106, Braunschweig, Germany
| | - Elena Orsini
- Strube Research GmbH & Co. KG, Hauptstraße 1, 38387, Söllingen, Germany
| | | | - Lukas Schulte
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Prisca Viehöver
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Andreas E Müller
- Strube Research GmbH & Co. KG, Hauptstraße 1, 38387, Söllingen, Germany
| | - Axel Schechert
- Strube Research GmbH & Co. KG, Hauptstraße 1, 38387, Söllingen, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Daniela Holtgräwe
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
3
|
Liu Q, Zhang C, Fang H, Yi L, Li M. Indispensable Biomolecules for Plant Defense Against Pathogens: NBS-LRR and "nitrogen pool" Alkaloids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023:111752. [PMID: 37268110 DOI: 10.1016/j.plantsci.2023.111752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
In a complex natural environment, plants have evolved intricate and subtle defense response regulatory mechanisms for survival. Plant specific defenses, including the disease resistance protein nucleotide-binding site leucine-rich repeat (NBS-LRR) protein and metabolite derived alkaloids, are key components of these complex mechanisms. The NBS-LRR protein can specifically recognize the invasion of pathogenic microorganisms to trigger the immune response mechanism. Alkaloids, synthesized from amino acids or their derivatives, can also inhibit pathogens. This study reviews NBS-LRR protein activation, recognition, and downstream signal transduction in plant protection, as well as the synthetic signaling pathways and regulatory defense mechanisms associated with alkaloids. In addition, we clarify the basic regulation mechanism and summarize their current applications and the development of future applications in biotechnology for these plant defense molecules. Studies on the NBS-LRR protein and alkaloid plant disease resistance molecules may provide a theoretical foundation for the cultivation of disease resistant crops and the development of botanical pesticides.
Collapse
Affiliation(s)
- Qian Liu
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China; Baotou Medical College, Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Inner Mongolia Engineering Research Center of The Planting and Development of Astragalus membranaceus of the Geoherbs, Baotou, China
| | - Chunhong Zhang
- Baotou Medical College, Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Inner Mongolia Engineering Research Center of The Planting and Development of Astragalus membranaceus of the Geoherbs, Baotou, China
| | - Huiyong Fang
- Hebei University of Chinese Medicine, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.
| | - Letai Yi
- Inner Mongolia Medical University, Hohhot, China.
| | - Minhui Li
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China; Baotou Medical College, Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Inner Mongolia Engineering Research Center of The Planting and Development of Astragalus membranaceus of the Geoherbs, Baotou, China; Inner Mongolia Institute of Traditional Chinese and Mongolian Medicine, Hohhot, China.
| |
Collapse
|
4
|
Amas JC, Thomas WJW, Zhang Y, Edwards D, Batley J. Key Advances in the New Era of Genomics-Assisted Disease Resistance Improvement of Brassica Species. PHYTOPATHOLOGY 2023:PHYTO08220289FI. [PMID: 36324059 DOI: 10.1094/phyto-08-22-0289-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Disease resistance improvement remains a major focus in breeding programs as diseases continue to devastate Brassica production systems due to intensive cultivation and climate change. Genomics has paved the way to understand the complex genomes of Brassicas, which has been pivotal in the dissection of the genetic underpinnings of agronomic traits driving the development of superior cultivars. The new era of genomics-assisted disease resistance breeding has been marked by the development of high-quality genome references, accelerating the identification of disease resistance genes controlling both qualitative (major) gene and quantitative resistance. This facilitates the development of molecular markers for marker assisted selection and enables genome editing approaches for targeted gene manipulation to enhance the genetic value of disease resistance traits. This review summarizes the key advances in the development of genomic resources for Brassica species, focusing on improved genome references, based on long-read sequencing technologies and pangenome assemblies. This is further supported by the advances in pathogen genomics, which have resulted in the discovery of pathogenicity factors, complementing the mining of disease resistance genes in the host. Recognizing the co-evolutionary arms race between the host and pathogen, it is critical to identify novel resistance genes using crop wild relatives and synthetic cultivars or through genetic manipulation via genome-editing to sustain the development of superior cultivars. Integrating these key advances with new breeding techniques and improved phenotyping using advanced data analysis platforms will make disease resistance improvement in Brassica species more efficient and responsive to current and future demands.
Collapse
Affiliation(s)
- Junrey C Amas
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| | - William J W Thomas
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| | - Yueqi Zhang
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| | - David Edwards
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| | - Jacqueline Batley
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| |
Collapse
|
5
|
Tang G, Zhong X, Hong W, Li J, Shu Y, Liu L. Generation and Identification of the Number of Copies of Exogenous Genes and the T-DNA Insertion Site in SCN-Resistance Transformation Event ZHs1-2. Int J Mol Sci 2022; 23:6849. [PMID: 35743297 PMCID: PMC9245598 DOI: 10.3390/ijms23126849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) causes an estimated economic loss of about USD 3 billion each year in soybean (Glycine max L.) production worldwide. Overexpression of resistance genes against SCN provides a powerful approach to develop SCN resistance cultivars in soybean. The clarification of molecular characterization in transformation events is a prerequisite for ecological risk assessment, food safety, and commercial release of genetically modified crops. Here, we generated transgenic events harboring the BCN (beet cyst nematode) resistance Hs1pro-1 gene using the Agrobacterium-mediated method in soybean, evaluated their resistance to SCN infection, and clarified the molecular characterization of one of the transformation events. Five independent and stable inheritable transformation events were generated by an Agrobacterium-mediated transformation method. SCN resistance tests showed the average number of developed females per plant and female index (FI) in T4 ZHs1-1, ZHs1-2, ZHs1-3, ZHs1-4, and ZHs1-5 transformation events were significantly lower than that in the nontransgenic control. Among these, the ZHs1-2 transformation event had the lowest number of developed females per plant and FI. Southern hybridization showed the exogenous target Hs1pro-1 gene was inserted in one copy and the Bar gene was inserted two copies in the ZHs1-2 transformation event. The exogenous T-DNA fragment was integrated in the reverse position of Chr02: 5351566-5231578 (mainly the Bar gene expression cassette) and in the forward position of Chr03: 17083358-17083400 (intact T-DNA, including Hs1pro-1 and Bar gene expression cassette) using a whole genome sequencing method (WGS). The results of WGS method and Southern hybridization were consistent. All the functional elements of exogenous T-DNA fragments were verified by PCR using specific primer pairs in the T5 and T6 ZHs1-2 transformation events. These results demonstrated that the overexpression of Hs1pro-1 gene enhanced SCN resistance, and provide an important reference for the biosafety assessment and the labeling detection in transformation event ZHs1-2.
Collapse
Affiliation(s)
- Guixiang Tang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Department of Agronomy, Zhejiang University, Hangzhou 310058, China; (X.Z.); (W.H.); (J.L.); (Y.S.); (L.L.)
| | | | | | | | | | | |
Collapse
|
6
|
Kumar D, Rajwanshi R, Singh P, Yusuf MA, Sarin NB. Pyramiding of γ-TMT and gly I transgenes in Brassica juncea enhances salinity and drought stress tolerance. PHYSIOLOGIA PLANTARUM 2022; 174:e13618. [PMID: 35199363 DOI: 10.1111/ppl.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
We previously generated Brassica juncea lines overexpressing either glyoxalase I (gly I) or γ-tocopherol methyltransferase (γ-TMT) involved in the glyoxalase system and tocopherol biosynthesis, respectively. These transgenic plants showed tolerance to multiple abiotic stresses. As tolerance is a complex trait that can be improved by pyramiding of several characteristics in a single genotype, we generated in this study B. juncea plants coexpressing gly I and γ-TMT by crossing the previously generated stable transgenic lines. The performance of the newly generated B. juncea lines coexpressing gly I and γ-TMT was compared with that of wild-type and the single transgenic lines under non-stressed and NaCl and mannitol stress conditions. Our results show a more robust antioxidant response of B. juncea plants coexpressing gly I and γ-TMT compared to the other lines in terms of higher chlorophyll retention, relative water content, antioxidant enzyme and proline levels, and photosynthetic efficiency and lower oxidative damage. The differences in response to the stress of the different lines were reflected in their yield parameters. Overall, we demonstrate that the pyramiding of multiple genes involved in antioxidant pathways could be a viable and useful approach for achieving higher abiotic stress tolerance in crop plants.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ravi Rajwanshi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, New Delhi, India
| | - Preeti Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohd Aslam Yusuf
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Bioengineering, Integral University, Lucknow, India
| | | |
Collapse
|
7
|
Yang R, Li S, Yang X, Zhu X, Fan H, Xuan Y, Chen L, Liu X, Wang Y, Duan Y. Fluorescent Soybean Hairy Root Construction and Its Application in the Soybean-Nematode Interaction: An Investigation. BIOLOGY 2021; 10:biology10121353. [PMID: 34943269 PMCID: PMC8699024 DOI: 10.3390/biology10121353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The soybean cyst nematode is a pathogen that is parasitic on soybean roots and causes high yield losses. To control it, it is necessary to study resistance genes and their mechanisms. The existing means take half a year but our new method can accelerate the process. We built new tools and integrated the advantages of current technologies to develop an FHR-SCN system. This method shortens the experimental period from half a year to six weeks. Researchers can differentiate between the roots that are transgenic and those that are not with a blue light flashlight and filter. Using this method, we verified a gene that could provide an additional contribution to resistance against the nematode. In addition, we used a transgenic soybean to verify and further indicate that this resistance was caused by an increase of jasmonic acid. The FHR-SCN pathosystem will accelerate the study of the soybean resistant gene. Abstract Background: The yield of soybean is limited by the soybean cyst nematode (SCN, Heterodera glycines). Soybean transformation plays a key role in gene function research but the stable genetic transformation of soybean usually takes half a year. Methods: Here, we constructed a vector, pNI-GmUbi, in an Agrobacterium rhizogenes-mediated soybean hypocotyl transformation to induce fluorescent hairy roots (FHRs). Results: We describe the operation of FHR-SCN, a fast, efficient and visual operation pathosystem to study the gene functions in the soybean-SCN interaction. With this method, FHRs were detected after 25 days in 4 cultivars (Williams 82, Zhonghuang 13, Huipizhiheidou and Peking) and at least 66.67% of the composite plants could be used to inoculate SCNs. The demographics of the SCN could be started 12 days post-SCN inoculation. Further, GmHS1pro-1 was overexpressed in the FHRs and GmHS1pro-1 provided an additional resistance in Williams 82. In addition, we found that jasmonic acid and JA-Ile increased in the transgenic soybean, implying that the resistance was mainly caused by affecting the content of JA and JA-Ile. Conclusions: In this study, we established a pathosystem, FHR-SCN, to verify the functional genes in soybeans and the SCN interaction. We also verified that GmHS1pro-1 provides additional resistance in both FHRs and transgenic soybeans, and the resistance may be caused by an increase in JA and JA-Ile contents.
Collapse
Affiliation(s)
- Ruowei Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (R.Y.); (X.Y.); (X.Z.); (H.F.); (Y.X.); (L.C.)
| | - Shuang Li
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an 716000, China;
| | - Xiaowen Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (R.Y.); (X.Y.); (X.Z.); (H.F.); (Y.X.); (L.C.)
| | - Xiaofeng Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (R.Y.); (X.Y.); (X.Z.); (H.F.); (Y.X.); (L.C.)
| | - Haiyan Fan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (R.Y.); (X.Y.); (X.Z.); (H.F.); (Y.X.); (L.C.)
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (R.Y.); (X.Y.); (X.Z.); (H.F.); (Y.X.); (L.C.)
| | - Lijie Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (R.Y.); (X.Y.); (X.Z.); (H.F.); (Y.X.); (L.C.)
| | - Xiaoyu Liu
- College of Science, Shenyang Agricultural University, Shenyang 110866, China;
| | - Yuanyuan Wang
- College of Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence: (Y.W.); (Y.D.)
| | - Yuxi Duan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (R.Y.); (X.Y.); (X.Z.); (H.F.); (Y.X.); (L.C.)
- Correspondence: (Y.W.); (Y.D.)
| |
Collapse
|
8
|
Shaw RK, Shen Y, Zhao Z, Sheng X, Wang J, Yu H, Gu H. Molecular Breeding Strategy and Challenges Towards Improvement of Downy Mildew Resistance in Cauliflower ( Brassica oleracea var. botrytis L.). FRONTIERS IN PLANT SCIENCE 2021; 12:667757. [PMID: 34354719 PMCID: PMC8329456 DOI: 10.3389/fpls.2021.667757] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Cauliflower (Brassica oleracea var. botrytis L.) is one of the important, nutritious and healthy vegetable crops grown and consumed worldwide. But its production is constrained by several destructive fungal diseases and most importantly, downy mildew leading to severe yield and quality losses. For sustainable cauliflower production, developing resistant varieties/hybrids with durable resistance against broad-spectrum of pathogens is the best strategy for a long term and reliable solution. Identification of novel resistant resources, knowledge of the genetics of resistance, mapping and cloning of resistance QTLs and identification of candidate genes would facilitate molecular breeding for disease resistance in cauliflower. Advent of next-generation sequencing technologies (NGS) and publishing of draft genome sequence of cauliflower has opened the flood gate for new possibilities to develop enormous amount of genomic resources leading to mapping and cloning of resistance QTLs. In cauliflower, several molecular breeding approaches such as QTL mapping, marker-assisted backcrossing, gene pyramiding have been carried out to develop new resistant cultivars. Marker-assisted selection (MAS) would be beneficial in improving the precision in the selection of improved cultivars against multiple pathogens. This comprehensive review emphasizes the fascinating recent advances made in the application of molecular breeding approach for resistance against an important pathogen; Downy Mildew (Hyaloperonospora parasitica) affecting cauliflower and Brassica oleracea crops and highlights the QTLs identified imparting resistance against this pathogen. We have also emphasized the critical research areas as future perspectives to bridge the gap between availability of genomic resources and its utility in identifying resistance genes/QTLs to breed downy mildew resistant cultivars. Additionally, we have also discussed the challenges and the way forward to realize the full potential of molecular breeding for downy mildew resistance by integrating marker technology with conventional breeding in the post-genomics era. All this information will undoubtedly provide new insights to the researchers in formulating future breeding strategies in cauliflower to develop durable resistant cultivars against the major pathogens in general and downy mildew in particular.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
9
|
Kaur B, Bhatia D, Mavi GS. Eighty years of gene-for-gene relationship and its applications in identification and utilization of R genes. J Genet 2021. [DOI: 10.1007/s12041-021-01300-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Poveda J, Francisco M, Cartea ME, Velasco P. Development of Transgenic Brassica Crops Against Biotic Stresses Caused by Pathogens and Arthropod Pests. PLANTS 2020; 9:plants9121664. [PMID: 33261092 PMCID: PMC7761317 DOI: 10.3390/plants9121664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/28/2020] [Accepted: 11/25/2020] [Indexed: 11/26/2022]
Abstract
The Brassica genus includes one of the 10 most agronomically and economically important plant groups in the world. Within this group, we can find examples such as broccoli, cabbage, cauliflower, kale, Brussels sprouts, turnip or rapeseed. Their cultivation and postharvest are continually threatened by significant stresses of biotic origin, such as pathogens and pests. In recent years, numerous research groups around the world have developed transgenic lines within the Brassica genus that are capable of defending themselves effectively against these enemies. The present work compiles all the existing studies to date on this matter, focusing in a special way on those of greater relevance in recent years, the choice of the gene of interest and the mechanisms involved in improving plant defenses. Some of the main transgenic lines developed include coding genes for chitinases, glucanases or cry proteins, which show effective results against pathogens such as Alternaria brassicae, Leptosphaeria maculans or Sclerotinia sclerotiorum, or pests such as Lipaphis erysimi or Plutella xylostella.
Collapse
Affiliation(s)
- Jorge Poveda
- Correspondence: ; Tel.: +34-986-85-48-00 (ext. 232)
| | | | | | | |
Collapse
|
11
|
Neik TX, Amas J, Barbetti M, Edwards D, Batley J. Understanding Host-Pathogen Interactions in Brassica napus in the Omics Era. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1336. [PMID: 33050509 PMCID: PMC7599536 DOI: 10.3390/plants9101336] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Brassica napus (canola/oilseed rape/rapeseed) is an economically important crop, mostly found in temperate and sub-tropical regions, that is cultivated widely for its edible oil. Major diseases of Brassica crops such as Blackleg, Clubroot, Sclerotinia Stem Rot, Downy Mildew, Alternaria Leaf Spot and White Rust have caused significant yield and economic losses in rapeseed-producing countries worldwide, exacerbated by global climate change, and, if not remedied effectively, will threaten global food security. To gain further insights into the host-pathogen interactions in relation to Brassica diseases, it is critical that we review current knowledge in this area and discuss how omics technologies can offer promising results and help to push boundaries in our understanding of the resistance mechanisms. Omics technologies, such as genomics, proteomics, transcriptomics and metabolomics approaches, allow us to understand the host and pathogen, as well as the interaction between the two species at a deeper level. With these integrated data in multi-omics and systems biology, we are able to breed high-quality disease-resistant Brassica crops in a more holistic, targeted and accurate way.
Collapse
Affiliation(s)
- Ting Xiang Neik
- Sunway College Kuala Lumpur, Bandar Sunway 47500, Selangor, Malaysia;
| | - Junrey Amas
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| | - Martin Barbetti
- School of Agriculture and Environment and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| |
Collapse
|
12
|
Martínez-Gómez P. Editorial for Special Issue "Plant Genetics and Molecular Breeding". Int J Mol Sci 2019; 20:ijms20112659. [PMID: 31151169 PMCID: PMC6600240 DOI: 10.3390/ijms20112659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 02/01/2023] Open
Abstract
The development of new plant varieties is a long and tedious process involving the generation of large seedling populations to select the best individuals [...].
Collapse
Affiliation(s)
- Pedro Martínez-Gómez
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Espinardo, Murcia, Spain.
| |
Collapse
|