1
|
Martinez-Navarrete G, Castaño-Castaño S, Morales-Navas M, Nieto-Escámez F, Sánchez-Santed F, Fernandez E. Impact of transcranial Direct Current Stimulation on stereoscopic vision and retinal structure in adult amblyopic rodents. Eye Brain 2024; 16:75-88. [PMID: 39498234 PMCID: PMC11533879 DOI: 10.2147/eb.s474573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/23/2024] [Indexed: 11/07/2024] Open
Abstract
Purpose The impact of visual deprivation on retinal structure is widely debated. Experimental models, like monocular deprivation through lid suture, provide insights into the consequences of lacking visual experience during development. This deprivation delays primary visual cortex (CV1) maturation due to improper neural connection consolidation, which remains plastic beyond the critical period. However, few studies have used Optical Coherence Tomography (OCT) to investigate structural alterations in the retina of animal models following monocular deprivation. Instead, some studies have focused on the ganglion cell layer using post-mortem histological techniques in amblyopia models induced by monocular deprivation. Methods In this study, we used Cliff test to assess stereoscopic vision and spectral domain optical coherence tomography (SD-OCT) to evaluate retinal changes in an in vivo model of visual deprivation treated with Transcranial Direct Current Stimulation (tDCS). Results The depth perception test initially revealed differences between individuals with amblyopia and the control group. However, after 8 tDCS sessions, amblyopic subjects matched the control group's performance, which remained stable Additionally, significant changes were observed in retinal structures post-tDCS treatment. Specifically, the thickness of the Nerve Fiber Layer + Ganglion Cell Layer + Inner Plexiform Layer (NFL+GCL+IPL) increased significantly in amblyopic eyes (p<0.001). Moreover, significant retinal thickening, including the Nerve Fiber Layer + Ganglion Cell Layer + Inner Plexiform Layer (NFL+GCL+IPL) and the entire retina, was observed post-tDCS treatment (p<0.05), highlighting the critical role of tDCS in ameliorating amblyopia. Additionally, treated animals exhibited reduced thickness in the Inner Nuclear Layer (INL) and Outer Nuclear Layer (ONL). Conclusion tDCS treatment effectively restores amblyopic individuals' stereoscopic vision, aligning their performance with controls, while impacting retinal structure, highlighting its potential in ameliorating amblyopia's visual deficits.
Collapse
Affiliation(s)
- Gema Martinez-Navarrete
- Neuroprosthesis and Neuroengineering Research Group, Institute of Bioengineering (IB), University Miguel Hernández (UMH), Elche, 03020, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Sergio Castaño-Castaño
- Department Psychology, University of Oviedo, Plaza Feijoo S/N, Oviedo, 33003, Spain
- Department of Psychology, University of Almería, Ctra. Sacramento S/N, La Cañada de San Urbano, Almería, 04120, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
- Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Miguel Morales-Navas
- Department of Psychology, University of Almería, Ctra. Sacramento S/N, La Cañada de San Urbano, Almería, 04120, Spain
| | - Francisco Nieto-Escámez
- Department of Psychology, University of Almería, Ctra. Sacramento S/N, La Cañada de San Urbano, Almería, 04120, Spain
- Neuropsychological Evaluation and Rehabilitation Center (CERNEP), Ctra. Sacramento S/N, La Cañada de San Urbano, Almería, 04120, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology, University of Almería, Ctra. Sacramento S/N, La Cañada de San Urbano, Almería, 04120, Spain
| | - Eduardo Fernandez
- Neuroprosthesis and Neuroengineering Research Group, Institute of Bioengineering (IB), University Miguel Hernández (UMH), Elche, 03020, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
2
|
Melecchi A, Amato R, Dal Monte M, Rusciano D, Bagnoli P, Cammalleri M. Restored retinal physiology after administration of niacin with citicoline in a mouse model of hypertensive glaucoma. Front Med (Lausanne) 2023; 10:1230941. [PMID: 37731716 PMCID: PMC10508956 DOI: 10.3389/fmed.2023.1230941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Much interest has been addressed to antioxidant dietary supplements that are known to lower the risk of developing glaucoma or delay its progression. Among them, niacin and citicoline protect retinal ganglion cells (RGCs) from degeneration by targeting mitochondria, though at different levels. A well-established mouse model of RGC degeneration induced by experimental intraocular pressure (IOP) elevation was used to investigate whether a novel combination of niacin/citicoline has better efficacy over each single component in preserving RGC health in response to IOP increase. Methods Ocular hypertension was induced by an intracameral injection of methylcellulose that clogs the trabecular meshwork. Electroretinography and immunohistochemistry were used to evaluate RGC function and density. Oxidative, inflammatory and apoptotic markers were evaluated by Western blot analysis. Results The present results support an optimal efficacy of niacin with citicoline at their best dosage in preventing RGC loss. In fact, about 50% of RGCs were spared from death leading to improved electroretinographic responses to flash and pattern stimulation. Upregulated levels of oxidative stress and inflammatory markers were also consistently reduced by almost 50% after niacin with citicoline thus providing a significant strength to the validity of their combination. Conclusion Niacin combined with citicoline is highly effective in restoring RGC physiology but its therapeutic potential needs to be further explored. In fact, the translation of the present compound to humans is limited by several factors including the mouse modeling, the higher doses of the supplements that are necessary to demonstrate their efficacy over a short follow up period and the scarce knowledge of their transport to the bloodstream and to the eventual target tissues in the eye.
Collapse
Affiliation(s)
| | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Dario Rusciano
- Research Center, Fidia Farmaceutici S.p.A, Catania, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| | - Maurizio Cammalleri
- Department of Biology, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Xia M, Zhang E, Yao F, Xia Z, Zhou M, Ran X, Xia X. Regional differences of the sclera in the ocular hypertensive rat model induced by circumlimbal suture. EYE AND VISION (LONDON, ENGLAND) 2023; 10:2. [PMID: 36597143 PMCID: PMC9811703 DOI: 10.1186/s40662-022-00319-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/15/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE To describe the regional differences of the sclera in ocular hypertension (OHT) models with the inappropriate extension of the ocular axis. METHODS To discover the regional differences of the sclera at the early stage, OHT models were established using circumlimbal suture (CS) or sclerosant injection (SI). Axial length (AL) was measured by ultrasound and magnetic resonance imaging. The glaucoma-associated distinction was determined by intraocular pressure (IOP) and retrograde tracing of retinal ganglion cells (RGCs). The central thickness of the ganglion cell complex (GCC) was measured by optical coherence tomography. RGCs and collagen fibrils were detected using a transmission electron microscope, furthermore, anti-alpha smooth muscle actin (αSMA) was determined in the early stage after the operation. RESULTS Compared with the control group, the eyes in OHT models showed an increased IOP (P < 0.001 in the CS group, P = 0.001 in the SI group), growing AL (P = 0.026 in the CS group, P = 0.043 in the SI group), reduction of central RGCs (P < 0.001 in the CS group, P = 0.017 in the SI group), thinning central GCC (P < 0.001 in the CS group), and a distinctive expression of αSMA in the central sclera in the early 4-week stage after the operation (P = 0.002 in the CS group). Compared with the SI group, the eye in the CS group showed a significantly increased AL (7.1 ± 0.4 mm, P = 0.031), reduction of central RGCs (2121.1 ± 87.2 cells/mm2, P = 0.001), thinning central GCC (71.4 ± 0.8 pixels, P = 0.015), and a distinctive expression of αSMA (P = 0.005). Additionally, ultrastructural changes in RGCs, scleral collagen fibers, and collagen crimp were observed in the different regions. Increased collagen volume fraction in the posterior segment of the eyeball wall (30.2 ± 3.1%, P = 0.022) was observed by MASSON staining in the CS group. CONCLUSION Regional differences of the sclera in the ocular hypertensive rat model induced by CS may provide a reference for further treatment of scleral-related eye disorders.
Collapse
Affiliation(s)
- Mingfang Xia
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.469519.60000 0004 1758 070XDepartment of Ophthalmology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750004 Ningxia China
| | - Endong Zhang
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Fei Yao
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Zhaohua Xia
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Mingmin Zhou
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Xufang Ran
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Xiaobo Xia
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| |
Collapse
|
4
|
Miralles de Imperial-Ollero JA, Vidal-Villegas B, Gallego-Ortega A, Nadal-Nicolás FM, Salinas-Navarro M, Norte-Muñoz M, Di Pierdomenico J, Galindo-Romero C, Agudo-Barriuso M, Vidal-Sanz M, Valiente-Soriano FJ. Methods to Identify Rat and Mouse Retinal Ganglion Cells in Retinal Flat-Mounts. Methods Mol Biol 2023; 2708:175-194. [PMID: 37558971 DOI: 10.1007/978-1-0716-3409-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The identification of distinct retinal ganglion cell (RGC) populations in flat-mounted retinas is key to investigating pathological or pharmacological effects in these cells. In this chapter, we review the main techniques for detecting the total population of RGCs and various of their subtypes in whole-mounted retinas of pigmented and albino rats and mice, four of the animal strains most studied by the scientific community in the retina field. These methods are based on the studies published by the Vidal-Sanz's laboratory.
Collapse
Affiliation(s)
- Juan A Miralles de Imperial-Ollero
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Beatriz Vidal-Villegas
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Francisco M Nadal-Nicolás
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Manuel Salinas-Navarro
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - María Norte-Muñoz
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Caridad Galindo-Romero
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain.
| | - Francisco J Valiente-Soriano
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain.
| |
Collapse
|
5
|
Fujishiro T, Honjo M, Kawasaki H, Aihara M. Visual cortex damage in a ferret model of ocular hypertension. Jpn J Ophthalmol 2022; 66:205-212. [PMID: 35044565 DOI: 10.1007/s10384-022-00901-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE We aimed to analyze the changes in the visual cortex of a ferret model of ocular hypertension (OH) using cytochrome oxidase (CO) staining. STUDY DESIGN Experimental. METHODS OH was induced in 9 ferrets by means of injection of cultured conjunctival cells into the anterior chamber of the right eye. Three ferrets were used as the controls. CO staining was performed to assess the metabolic intensity at the II-III and IVC layers of the visual cortex. RESULTS The intensities of CO staining in the right and left II-III layers of the primary visual cortex (V1) in the OH ferrets were 39.8 ± 10.3 and 41.9 ± 9.2 arbitrary units, respectively. In the control ferrets, the intensity was 88.1 ± 8.1 arbitrary units. The intensity of CO staining of the II-III layers obtained from the OH eyes was significantly lower than that from the control eyes (unpaired t test, P < .01). The intensities of CO staining in the right and left IVC layers of V1 in the OH ferrets were 60.3 ± 12.8 and 60.0 ± 13.5 arbitrary units, respectively. In the control ferrets, the intensity was 111.4 ± 9.6 arbitrary units. The CO staining intensity of the IVC layer obtained from the OH eyes was significantly lower than that from the control eyes (unpaired t test, P < .01). CONCLUSION The CO staining intensity was reduced in the visual cortex from OH eyes. This study revealed that OH causes metabolic change in the visual cortex.
Collapse
Affiliation(s)
- Takashi Fujishiro
- Department of Ophthalmology, University of Tokyo School of Medicine, 7-3-1 Hongo Bunkyoku, Tokyo, 113-8655, Japan
| | - Megumi Honjo
- Department of Ophthalmology, University of Tokyo School of Medicine, 7-3-1 Hongo Bunkyoku, Tokyo, 113-8655, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawashi, Kanazawa, Japan
| | - Makoto Aihara
- Department of Ophthalmology, University of Tokyo School of Medicine, 7-3-1 Hongo Bunkyoku, Tokyo, 113-8655, Japan.
| |
Collapse
|
6
|
Kim YK, Kim SN, Min CH, Park M, Kim DW, Ha A, Kim YJ, Choy YB, Park KH. Novel glaucoma model in rats using photo-crosslinked azidobenzoic acid-modified chitosan. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112112. [PMID: 33965116 DOI: 10.1016/j.msec.2021.112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
An experimental model of pressure-induced optic nerve damage promises to greatly expand understanding of the cellular events leading to retinal ganglion cell (RGC) death and of how they are influenced by intraocular pressure (IOP) and other risk factors associated with glaucoma. In this work, we propose a novel strategy employing photo-crosslinkable azidobenzoic acid-modified chitosan (Az-CH) for long-term, persistent elevation of IOP. For this purpose, a solution of Az-CH was injected into the anterior chamber of experimental rat eyes, which were subsequently irradiated with ultraviolet (UV) light to form an Az-CH gel that hindered aqueous outflow and effected prolonged IOP elevation thereby. The control eyes were treated as follows: (1) intracameral injection of Az-CH without UV irradiation, (2) intracameral injection of saline solution without UV irradiation or (3) no injection with UV irradiation. A significant IOP increase was observed in the experimental eyes, which was continuously higher for the whole testing period of 12 weeks after one-time treatment with Az-CH injection and UV irradiation. Also, a more significant loss of RGCs, one of the major features of glaucoma, was observed in experimental eyes than in the control eyes. Therefore, the strategy presented herein can be a novel experimental model to study the mechanism of RGC damage by elevated IOP over the course of a prolonged period.
Collapse
Affiliation(s)
- Young Kook Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Se-Na Kim
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Chang Hee Min
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Min Park
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Dai Woo Kim
- Department of Ophthalmology, Kyungpook National University Hospital, Daegu, Republic of Korea; Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ahnul Ha
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Ophthalmology, Jeju National University Hospital, Jeju-si, Republic of Korea; Department of Ophthalmology, Jeju National University School of Medicine, Jeju-si, Republic of Korea
| | - Yu Jeong Kim
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Bin Choy
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Ki Ho Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Gallego-Ortega A, Norte-Muñoz M, Miralles de Imperial-Ollero JA, Bernal-Garro JM, Valiente-Soriano FJ, de la Villa Polo P, Avilés-Trigueros M, Villegas-Pérez MP, Vidal-Sanz M. Functional and morphological alterations in a glaucoma model of acute ocular hypertension. PROGRESS IN BRAIN RESEARCH 2020; 256:1-29. [PMID: 32958209 DOI: 10.1016/bs.pbr.2020.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To study short and long-term effects of acute ocular hypertension (AOHT) on inner and outer retinal layers, in adult Sprague-Dawley rats AOHT (87mmHg) was induced for 90min and the retinas were examined longitudinally in vivo with electroretinogram (ERG) recordings and optical coherent tomography (OCT) from 1 to 90 days (d). Ex vivo, the retinas were analyzed for rod (RBC) and cone (CBC) bipolar cells, with antibodies against protein kinase Cα and recoverin, respectively in cross sections, and for cones, horizontal (HZ) and ganglion (RGC) cells with antibodies against arrestin, calbindin and Brn3a, respectively in wholemounts. The inner retina thinned progressively up to 7d with no further changes, while the external retina had a normal thickness until 30d, with a 20% thinning between 30 and 90d. Functionally, the a-wave showed an initial reduction by 24h and a further reduction from 30 to 90d. All other main ERG waves were significantly reduced by 1d without significant recovery by 90d. Radial sections showed a normal population of RBCs but their terminals were reduced. The CBCs showed a progressive decrease with a loss of 56% by 30d. In wholemount retinas, RGCs diminished to 40% by 3d and to 16% by 30d without further loss. Cones diminished to 58% and 35% by 3 and 7d, respectively and further decreased between 30 and 90d. HZs showed normal values throughout the study. In conclusion, AOHT affects both the inner and outer retina, with a more pronounced degeneration of the cone than the rod pathway.
Collapse
Affiliation(s)
- Alejandro Gallego-Ortega
- Department of Ophthalmology, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - María Norte-Muñoz
- Department of Ophthalmology, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | | | - José Manuel Bernal-Garro
- Department of Ophthalmology, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Francisco Javier Valiente-Soriano
- Department of Ophthalmology, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Pedro de la Villa Polo
- Department of Systems Biology, University of Alcalá, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Marcelino Avilés-Trigueros
- Department of Ophthalmology, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - María Paz Villegas-Pérez
- Department of Ophthalmology, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Manuel Vidal-Sanz
- Department of Ophthalmology, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
8
|
Fujishiro T, Honjo M, Kawasaki H, Asaoka R, Yamagishi R, Aihara M. Structural Changes and Astrocyte Response of the Lateral Geniculate Nucleus in a Ferret Model of Ocular Hypertension. Int J Mol Sci 2020; 21:ijms21041339. [PMID: 32079216 PMCID: PMC7072923 DOI: 10.3390/ijms21041339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023] Open
Abstract
We investigated structural changes and astrocyte responses of the lateral geniculate nucleus (LGN) in a ferret model of ocular hypertension (OH). In 10 ferrets, OH was induced via the injection of cultured conjunctival cells into the anterior chamber of the right eye; six normal ferrets were used as controls. Anterograde axonal tracing with cholera toxin B revealed that atrophic damage was evident in the LGN layers receiving projections from OH eyes. Immunohistochemical analysis with antibodies against NeuN, glial fibrillary acidic protein (GFAP), and Iba-1 was performed to specifically label neurons, astrocytes, and microglia in the LGN. Significantly decreased NeuN immunoreactivity and increased GFAP and Iba-1 immunoreactivities were observed in the LGN layers receiving projections from OH eyes. Interestingly, the changes in the immunoreactivities were significantly different among the LGN layers. The C layers showed more severe damage than the A and A1 layers. Secondary degenerative changes in the LGN were also observed, including neuronal damage and astrocyte reactions in each LGN layer. These results suggest that our ferret model of OH is valuable for investigating damages during the retina–brain transmission of the visual pathway in glaucoma. The vulnerability of the C layers was revealed for the first time.
Collapse
Affiliation(s)
- Takashi Fujishiro
- Department of Ophthalmology, University of Tokyo School of Medicine, Tokyo 113-8655, Japan; (T.F.); (M.H.); (R.A.); (R.Y.)
| | - Megumi Honjo
- Department of Ophthalmology, University of Tokyo School of Medicine, Tokyo 113-8655, Japan; (T.F.); (M.H.); (R.A.); (R.Y.)
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Ryo Asaoka
- Department of Ophthalmology, University of Tokyo School of Medicine, Tokyo 113-8655, Japan; (T.F.); (M.H.); (R.A.); (R.Y.)
| | - Reiko Yamagishi
- Department of Ophthalmology, University of Tokyo School of Medicine, Tokyo 113-8655, Japan; (T.F.); (M.H.); (R.A.); (R.Y.)
| | - Makoto Aihara
- Department of Ophthalmology, University of Tokyo School of Medicine, Tokyo 113-8655, Japan; (T.F.); (M.H.); (R.A.); (R.Y.)
- Correspondence: ; Tel.: +81-3-3815-5411; Fax: +81-3-3817-0798
| |
Collapse
|