1
|
Kahnert K, Soattin L, Mills RW, Wilson C, Maurya S, Sorrentino A, Al-Othman S, Tikhomirov R, van de Vegte YJ, Hansen FB, Achter J, Hu W, Zi M, Smith M, van der Harst P, Olesen MS, Boisen Olsen K, Banner J, Jensen THL, Zhang H, Boyett MR, D’Souza A, Lundby A. Proteomics couples electrical remodelling to inflammation in a murine model of heart failure with sinus node dysfunction. Cardiovasc Res 2024; 120:927-942. [PMID: 38661182 PMCID: PMC11218694 DOI: 10.1093/cvr/cvae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 04/26/2024] Open
Abstract
AIMS In patients with heart failure (HF), concomitant sinus node dysfunction (SND) is an important predictor of mortality, yet its molecular underpinnings are poorly understood. Using proteomics, this study aimed to dissect the protein and phosphorylation remodelling within the sinus node in an animal model of HF with concurrent SND. METHODS AND RESULTS We acquired deep sinus node proteomes and phosphoproteomes in mice with heart failure and SND and report extensive remodelling. Intersecting the measured (phospho)proteome changes with human genomics pharmacovigilance data, highlighted downregulated proteins involved in electrical activity such as the pacemaker ion channel, Hcn4. We confirmed the importance of ion channel downregulation for sinus node physiology using computer modelling. Guided by the proteomics data, we hypothesized that an inflammatory response may drive the electrophysiological remodeling underlying SND in heart failure. In support of this, experimentally induced inflammation downregulated Hcn4 and slowed pacemaking in the isolated sinus node. From the proteomics data we identified proinflammatory cytokine-like protein galectin-3 as a potential target to mitigate the effect. Indeed, in vivo suppression of galectin-3 in the animal model of heart failure prevented SND. CONCLUSION Collectively, we outline the protein and phosphorylation remodeling of SND in heart failure, we highlight a role for inflammation in electrophysiological remodelling of the sinus node, and we present galectin-3 signalling as a target to ameliorate SND in heart failure.
Collapse
Affiliation(s)
- Konstantin Kahnert
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Luca Soattin
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Robert W Mills
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Claire Wilson
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Svetlana Maurya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Andrea Sorrentino
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Sami Al-Othman
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Roman Tikhomirov
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
- National Heart and Lung Institute, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), 72 Du Cane Road, London W12 0NN, UK
| | - Yordi J van de Vegte
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Finn B Hansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Jonathan Achter
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Wei Hu
- Department of Physics & Astronomy, Biological Physics Group, University of Manchester, Manchester, UK
| | - Min Zi
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Matthew Smith
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
- National Heart and Lung Institute, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), 72 Du Cane Road, London W12 0NN, UK
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Durrer Center for Cardiogenetic Research, Netherlands Heart Institute, Utrecht, the Netherlands
| | - Morten S Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Kristine Boisen Olsen
- Department of Forensic Medicine, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jytte Banner
- Department of Forensic Medicine, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | | | - Henggui Zhang
- Department of Physics & Astronomy, Biological Physics Group, University of Manchester, Manchester, UK
| | - Mark R Boyett
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Alicia D’Souza
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
- National Heart and Lung Institute, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), 72 Du Cane Road, London W12 0NN, UK
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| |
Collapse
|
2
|
Asjad E, Dobrzynski H. MicroRNAs: Midfielders of Cardiac Health, Disease and Treatment. Int J Mol Sci 2023; 24:16207. [PMID: 38003397 PMCID: PMC10671258 DOI: 10.3390/ijms242216207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that play a role in post-transcriptional gene regulation. It is generally accepted that their main mechanism of action is the negative regulation of gene expression, through binding to specific regions in messenger RNA (mRNA) and repressing protein translation. By interrupting protein synthesis, miRNAs can effectively turn genes off and influence many basic processes in the body, such as developmental and apoptotic behaviours of cells and cardiac organogenesis. Their importance is highlighted by inhibiting or overexpressing certain miRNAs, which will be discussed in the context of coronary artery disease, atrial fibrillation, bradycardia, and heart failure. Dysregulated levels of miRNAs in the body can exacerbate or alleviate existing disease, and their omnipresence in the body makes them reliable as quantifiable markers of disease. This review aims to provide a summary of miRNAs as biomarkers and their interactions with targets that affect cardiac health, and intersperse it with current therapeutic knowledge. It intends to succinctly inform on these topics and guide readers toward more comprehensive works if they wish to explore further through a wide-ranging citation list.
Collapse
Affiliation(s)
- Emman Asjad
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Halina Dobrzynski
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland
| |
Collapse
|
3
|
Adenosine and Adenosine Receptors: Advances in Atrial Fibrillation. Biomedicines 2022; 10:biomedicines10112963. [PMID: 36428533 PMCID: PMC9687155 DOI: 10.3390/biomedicines10112963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in the world. Because the key to developing innovative therapies that limit the onset and the progression of AF is to fully understand the underlying molecular mechanisms of AF, the aim of the present narrative review is to report the most recent advances in the potential role of the adenosinergic system in the pathophysiology of AF. After a comprehensive approach describing adenosinergic system signaling and the mechanisms of the initiation and maintenance of AF, we address the interactions of the adenosinergic system's signaling with AF. Indeed, adenosine release can activate four G-coupled membrane receptors, named A1, A2A, A2B and A3. Activation of the A2A receptors can promote the occurrence of delayed depolarization, while activation of the A1 receptors can shorten the action potential's duration and induce the resting membrane's potential hyperpolarization, which promote pulmonary vein firing, stabilize the AF rotors and allow for functional reentry. Moreover, the A2B receptors have been associated with atrial fibrosis homeostasis. Finally, the adenosinergic system can modulate the autonomous nervous system and is associated with AF risk factors. A question remains regarding adenosine release and the adenosine receptors' activation and whether this would be a cause or consequence of AF.
Collapse
|
4
|
Chin CG, Elimam AM, Lin FJ, Chen YC, Lin YK, Lu YY, Higa S, Chen SA, Hsieh MH, Chen YJ. Effects of Adrenomedullin on Atrial Electrophysiology and Pulmonary Vein Arrhythmogenesis. Int J Mol Sci 2022; 23:ijms232214064. [PMID: 36430541 PMCID: PMC9696567 DOI: 10.3390/ijms232214064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022] Open
Abstract
Adrenomedullin, a peptide with vasodilatory, natriuretic, and diuretic effects, may be a novel agent for treating heart failure. Heart failure is associated with an increased risk of atrial fibrillation (AF), but the effects of adrenomedullin on atrial arrhythmogenesis remain unclear. This study investigated whether adrenomedullin modulates the electrophysiology of the atria (AF substrate) or pulmonary vein (PV; AF trigger) arrhythmogenesis. Conventional microelectrode or whole-cell patch clamps were used to study the effects of adrenomedullin (10, 30, and 100 pg/mL) on the electrical activity, mechanical response, and ionic currents of isolated rabbit PV and sinoatrial node tissue preparations and single PV cardiomyocytes. At 30 and 100 pg/mL, adrenomedullin significantly reduced the spontaneous beating rate of the PVs from 2.0 ± 0.4 to 1.3 ± 0.5 and 1.1 ± 0.5 Hz (reductions of 32.9% ± 7.1% and 44.9 ± 8.4%), respectively, and reduced PV diastolic tension by 12.8% ± 4.1% and 14.5% ± 4.1%, respectively. By contrast, adrenomedullin did not affect sinoatrial node beating. In the presence of L-NAME (a nitric oxide synthesis inhibitor, 100 μM), adrenomedullin (30 pg/mL) did not affect the spontaneous beating rate or diastolic tension of the PVs. In the single-cell experiments, adrenomedullin (30 pg/mL) significantly reduced the L-type calcium current (ICa-L) and reverse-mode current of the sodium-calcium exchanger (NCX). Adrenomedullin reduces spontaneous PV activity and PV diastolic tension by reducing ICa-L and NCX current and thus may be useful for treating atrial tachyarrhythmia.
Collapse
Affiliation(s)
- Chye-Gen Chin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei 11696, Taiwan
| | - Ahmed Moustafa Elimam
- Division of Cardiovascular Medicine, Department of Internal Medicine, Mansoura International Hospital, Mansoura 35511, Egypt
| | - Fong-Jhih Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei 11696, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa 901-2131, Japan
| | - Shih-Ann Chen
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Ming-Hsiung Hsieh
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei 11696, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Correspondence: (M.-H.H.); (Y.-J.C.); Tel.: +886-0970746502 (Y.-J.C.); Fax: +886-2-2933-9378 (Y.-J.C.)
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei 11696, Taiwan
- Correspondence: (M.-H.H.); (Y.-J.C.); Tel.: +886-0970746502 (Y.-J.C.); Fax: +886-2-2933-9378 (Y.-J.C.)
| |
Collapse
|
5
|
Xue JB, Val-Blasco A, Davoodi M, Gómez S, Yaniv Y, Benitah JP, Gómez AM. Heart failure in mice induces a dysfunction of the sinus node associated with reduced CaMKII signaling. J Gen Physiol 2022; 154:213178. [PMID: 35452507 PMCID: PMC9040062 DOI: 10.1085/jgp.202112895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Dysfunction of the sinoatrial node (SAN), the natural heart pacemaker, is common in heart failure (HF) patients. SAN spontaneous activity relies on various ion currents in the plasma membrane (voltage clock), but intracellular Ca2+ ([Ca2+]i) release via ryanodine receptor 2 (RYR2; Ca2+ clock) plays an important synergetic role. Whereas remodeling of voltage-clock components has been revealed in HF, less is known about possible alterations to the Ca2+ clock. Here, we analyzed [Ca2+]i handling in SAN from a mouse HF model after transverse aortic constriction (TAC) and compared it with sham-operated animals. ECG data from awake animals showed slower heart rate in HF mice upon autonomic nervous system blockade, indicating intrinsic sinus node dysfunction. Confocal microscopy analyses of SAN cells within whole tissue showed slower and less frequent [Ca2+]i transients in HF. This correlated with fewer and smaller spontaneous Ca2+ sparks in HF SAN cells, which associated with lower RYR2 protein expression level and reduced phosphorylation at the CaMKII site. Moreover, PLB phosphorylation at the CaMKII site was also decreased in HF, which could lead to reduced sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) function and lower sarcoplasmic reticulum Ca2+ content, further depressing the Ca2+ clock. The inhibition of CaMKII with KN93 slowed [Ca2+]i transient rate in both groups, but this effect was smaller in HF SAN, consistent with less CaMKII activation. In conclusion, our data uncover that the mechanism of intrinsic pacemaker dysfunction in HF involves reduced CaMKII activation.
Collapse
Affiliation(s)
- Jian-Bin Xue
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Almudena Val-Blasco
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Moran Davoodi
- Biomedical Engineering, Technion Institute, Haifa, Israel
| | - Susana Gómez
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Yael Yaniv
- Biomedical Engineering, Technion Institute, Haifa, Israel
| | - Jean-Pierre Benitah
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Ana María Gómez
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| |
Collapse
|
6
|
Shetty SS, Krumerman A. Putative protective effects of sodium-glucose cotransporter 2 inhibitors on atrial fibrillation through risk factor modulation and off-target actions: potential mechanisms and future directions. Cardiovasc Diabetol 2022; 21:119. [PMID: 35764968 PMCID: PMC9241300 DOI: 10.1186/s12933-022-01552-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Atrial fibrillation, the most common cardiac arrhythmia, results in substantial morbidity and mortality related to its increased risks of stroke, heart failure, and impaired cognitive function. The incidence and prevalence of atrial fibrillation in the general population is rising, making atrial fibrillation treatment and management of its risk factors highly relevant clinical targets. One well-studied risk factor for the development of atrial fibrillation is diabetes mellitus. Inhibitors of sodium-glucose cotransporter 2 (SGLT2), common medications used to treat diabetes mellitus, have been observed to decrease the incidence of atrial fibrillation. This review discusses the SGLT2 and its role in glucose homeostasis, molecules inhibiting the transporter, possible physiological mechanisms responsible for the decreased incident atrial fibrillation in patients treated with SGLT2 inhibitors and proposes mechanistic studies to further our understanding of the biological processes involved.
Collapse
Affiliation(s)
- Syona S Shetty
- Montefiore Medical Center, 110 E 210th Street, Bronx, NY, USA.
| | | |
Collapse
|
7
|
Koike H, Fujino T, Wada R, Yao S, Akitsu K, Shinohara M, Kinoshita T, Yuzawa H, Ikeda T. The Inducibility and Focus of Atrial Fibrillation after Ablation in Patients with Tachycardia‐Induced Heart Failure. Pacing Clin Electrophysiol 2022; 45:330-339. [DOI: 10.1111/pace.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/11/2021] [Accepted: 01/30/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Hideki Koike
- Department of Cardiovascular Medicine Toho University Faculty of Medicine Tokyo Japan
| | - Tadashi Fujino
- Department of Cardiovascular Medicine Toho University Faculty of Medicine Tokyo Japan
| | - Ryo Wada
- Department of Cardiovascular Medicine Toho University Faculty of Medicine Tokyo Japan
| | - Shintaro Yao
- Department of Cardiovascular Medicine Toho University Faculty of Medicine Tokyo Japan
| | - Katsuya Akitsu
- Department of Cardiovascular Medicine Toho University Faculty of Medicine Tokyo Japan
| | - Masaya Shinohara
- Department of Cardiovascular Medicine Toho University Faculty of Medicine Tokyo Japan
| | - Toshio Kinoshita
- Department of Cardiovascular Medicine Toho University Faculty of Medicine Tokyo Japan
| | - Hitomi Yuzawa
- Department of Cardiovascular Medicine Toho University Faculty of Medicine Tokyo Japan
| | - Takanori Ikeda
- Department of Cardiovascular Medicine Toho University Faculty of Medicine Tokyo Japan
| |
Collapse
|
8
|
Chan CS, Lin YS, Lin YK, Chen YC, Kao YH, Hsu CC, Chen SA, Chen YJ. Atrial arrhythmogenesis in a rabbit model of chronic obstructive pulmonary disease. Transl Res 2020; 223:25-39. [PMID: 32438072 DOI: 10.1016/j.trsl.2020.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/25/2020] [Accepted: 04/16/2020] [Indexed: 02/02/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) increases the risk of atrial fibrillation (AF), however, its arrhythmogenic mechanisms are unclear. This study investigated the effects of COPD on AF triggers (pulmonary veins, PVs) and substrates (atria), and their potential underlying mechanisms. Electrocardiographic, echocardiographic, and biochemical studies were conducted in control rabbits and rabbits with human leukocyte elastase (0.3 unit/kg)-induced COPD. Conventional microelectrode, Western blotting, and histological examinations were performed on PV, left atrium (LA), right atrium, and sinoatrial node (SAN) preparations from control rabbits and those with COPD. The rabbits with COPD had a higher incidence of atrial premature complexes, PV burst firing and delayed afterdepolarizations, higher sympathetic activity, larger LA, and faster PV spontaneous activity than did the control rabbits; but they exhibited a slower SAN beating rate. The LA of the rabbits with COPD had a shorter action potential duration and longer tachyarrhythmia induced by tachypacing (20 Hz) and isoproterenol (1 μM). Additionally, the rabbits with COPD had higher fibrosis in the PVs, LA, and SAN. H89 (10 μM), KN93 (1 μM), and KB-R7943 (10 μM) significantly suppressed burst firing and delayed afterdepolarizations in the PVs of the rabbits with COPD. Moreover, compared with the control rabbits, those with COPD had lower expression levels of the β1 adrenergic receptor, Cav 1.2, and Na+/Ca2+ exchanger in the PVs; Cav 1.2 in the LA; and hyperpolarization-activated cyclic nucleotide-gated K+ channel 4 in the SAN. COPD increases atrial arrhythmogenesis by modulating the distinctive electrophysiological characteristics of the PVs, LA, and SAN.
Collapse
Affiliation(s)
- Chao-Shun Chan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - You Shuei Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chun Hsu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cardiovascular Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Long VP, Bonilla IM, Baine S, Glynn P, Kumar S, Schober K, Mowrey K, Weiss R, Lee NY, Mohler PJ, Györke S, Hund TJ, Fedorov VV, Carnes CA. Chronic heart failure increases negative chronotropic effects of adenosine in canine sinoatrial cells via A1R stimulation and GIRK-mediated I Kado. Life Sci 2019; 240:117068. [PMID: 31751583 DOI: 10.1016/j.lfs.2019.117068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
AIMS Bradycardia contributes to tachy-brady arrhythmias or sinus arrest during heart failure (HF). Sinoatrial node (SAN) adenosine A1 receptors (ADO A1Rs) are upregulated in HF, and adenosine is known to exert negative chronotropic effects on the SAN. Here, we investigated the role of A1R signaling at physiologically relevant ADO concentrations on HF SAN pacemaker cells. MAIN METHODS Dogs with tachypacing-induced chronic HF and normal controls (CTL) were studied. SAN tissue was collected for A1R and GIRK mRNA quantification. SAN cells were isolated for perforated patch clamp recordings and firing rate (bpm), slope of slow diastolic depolarization (SDD), and maximum diastolic potential (MDP) were measured. Action potentials (APs) and currents were recorded before and after addition of 1 and 10 μM ADO. To assess contributions of A1R and G protein-coupled Inward Rectifier Potassium Current (GIRK) to ADO effects, APs were measured after the addition of DPCPX (selective A1R antagonist) or TPQ (selective GIRK blocker). KEY FINDINGS A1R and GIRK mRNA expression were significantly increased in HF. In addition, ADO induced greater rate slowing and membrane hyperpolarization in HF vs CTL (p < 0.05). DPCPX prevented ADO-induced rate slowing in CTL and HF cells. The ADO-induced inward rectifying current, IKado, was observed significantly more frequently in HF than in CTL. TPQ prevented ADO-induced rate slowing in HF. SIGNIFICANCE An increase in A1R and GIRK expression enhances IKAdo, causing hyperpolarization, and subsequent negative chronotropic effects in canine chronic HF at relevant [ADO]. GIRK blockade may be a useful strategy to mitigate bradycardia in HF.
Collapse
Affiliation(s)
- Victor P Long
- College of Pharmacy, The Ohio State University, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Ingrid M Bonilla
- College of Pharmacy, The Ohio State University, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Stephen Baine
- College of Pharmacy, The Ohio State University, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Patric Glynn
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Sanjay Kumar
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Karsten Schober
- College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | | | - Raul Weiss
- Division of Cardiovascular Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Nam Y Lee
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Peter J Mohler
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Sandor Györke
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Thomas J Hund
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Vadim V Fedorov
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Cynthia A Carnes
- College of Pharmacy, The Ohio State University, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|