1
|
Lentini L, Perriera R, Corrao F, Melfi R, Tutone M, Carollo PS, Fiduccia I, Pace A, Ricci D, Genovese F, Colige A, Delvenne P, Grimbacher B, Moutschen M, Pibiri I. A precision medicine approach to primary immunodeficiency disease: Ataluren strikes nonsense mutations once again. Mol Ther 2025:S1525-0016(25)00220-5. [PMID: 40158206 DOI: 10.1016/j.ymthe.2025.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/31/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
Primary immunodeficiency diseases (PIDs) are associated with multiple genetic alterations including mutations of the lipopolysaccharide responsive Beige anchor (LRBA) gene. Nonsense mutations in the LRBA gene resulting in premature termination codons cause the loss of LRBA protein expression in PID. We evaluated the impact of a translational readthrough-inducing drug (TRID) ataluren as a nonsense suppression therapy in a PID patient with a homozygous stop codon mutation in exon 30 of LRBA. A precision medicine approach allowed us to pass from "in silico" to "in vitro" to the "bedside": following the in vitro treatment of patient-derived primary fibroblasts with ataluren, we observed a restoration of the LRBA protein expression and localization. In silico predictions suggested LRBA retained function after readthrough. Based on the successful experimental and computational results we treated the patient with ataluren resulting in an improvement of his clinical symptoms and quality of life. Importantly, the clinical symptoms were associated with a recovery of LRBA expression in liver biopsies post-treatment compared with pre-treatment. Our results provide a proof of concept demonstrating that ataluren, can rescue LRBA expression in PID. This work highlights the potential for personalized precision medicine approaches to be exploited for different genetic diseases due to premature termination codons.
Collapse
Affiliation(s)
- Laura Lentini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Riccardo Perriera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Federica Corrao
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Raffaella Melfi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Marco Tutone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Pietro S Carollo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Ignazio Fiduccia
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Andrea Pace
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Davide Ricci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Francesco Genovese
- Department of Diagnostic Laboratory, U.O.C. of Pathological Anatomy "G. F. Ingrassia" Hospital, ASP Palermo, Palermo, Italy
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA Institute, University of Liège, Liège, Belgium; Fonds National de la Recherche Scientifique, Liége, Belgium
| | - Philippe Delvenne
- Department of Pathology, Centre Hospitalier Universitaire of Liège, Liège, Belgium; Laboratory of Experimental Pathology, GIGA Institute, University of Liège, Liège, Belgium
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Michel Moutschen
- General Internal Medicine and Clinical Immunology, Centre Hospitalier Universitaire of Liège, Liège, Belgium; Immunobiology, GIGA Institute, University of Liège, Liège, Belgium.
| | - Ivana Pibiri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| |
Collapse
|
2
|
Pibiri I. Recent Advances: Heterocycles in Drugs and Drug Discovery. Int J Mol Sci 2024; 25:9503. [PMID: 39273451 PMCID: PMC11394722 DOI: 10.3390/ijms25179503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Interest and research focusing on the design of novel pharmaceutical agents is always growing [...].
Collapse
Affiliation(s)
- Ivana Pibiri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
3
|
Palumbo Piccionello A. Bioactive Oxadiazoles 3.0. Int J Mol Sci 2024; 25:6027. [PMID: 38892212 PMCID: PMC11173336 DOI: 10.3390/ijms25116027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Heterocycles are fundamental moieties for the construction of new compounds with perspective applications ranging from drugs to materials [...].
Collapse
Affiliation(s)
- Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| |
Collapse
|
4
|
Perriera R, Vitale E, Pibiri I, Carollo PS, Ricci D, Corrao F, Fiduccia I, Melfi R, Zizzo MG, Tutone M, Pace A, Lentini L. Readthrough Approach Using NV Translational Readthrough-Inducing Drugs (TRIDs): A Study of the Possible Off-Target Effects on Natural Termination Codons (NTCs) on TP53 and Housekeeping Gene Expression. Int J Mol Sci 2023; 24:15084. [PMID: 37894764 PMCID: PMC10606485 DOI: 10.3390/ijms242015084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Nonsense mutations cause several genetic diseases such as cystic fibrosis, Duchenne muscular dystrophy, β-thalassemia, and Shwachman-Diamond syndrome. These mutations induce the formation of a premature termination codon (PTC) inside the mRNA sequence, resulting in the synthesis of truncated polypeptides. Nonsense suppression therapy mediated by translational readthrough-inducing drugs (TRIDs) is a promising approach to correct these genetic defects. TRIDs generate a ribosome miscoding of the PTC named "translational readthrough" and restore the synthesis of full-length and potentially functional proteins. The new oxadiazole-core TRIDs NV848, NV914, and NV930 (NV) showed translational readthrough activity in nonsense-related in vitro systems. In this work, the possible off-target effect of NV molecules on natural termination codons (NTCs) was investigated. Two different in vitro approaches were used to assess if the NV molecule treatment induces NTC readthrough: (1) a study of the translational-induced p53 molecular weight and functionality; (2) the evaluation of two housekeeping proteins' (Cys-C and β2M) molecular weights. Our results showed that the treatment with NV848, NV914, or NV930 did not induce any translation alterations in both experimental systems. The data suggested that NV molecules have a specific action for the PTCs and an undetectable effect on the NTCs.
Collapse
Affiliation(s)
| | | | - Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.P.); (E.V.); (P.S.C.); (D.R.); (F.C.); (I.F.); (R.M.); (M.G.Z.); (M.T.); (A.P.)
| | | | | | | | | | | | | | | | | | - Laura Lentini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.P.); (E.V.); (P.S.C.); (D.R.); (F.C.); (I.F.); (R.M.); (M.G.Z.); (M.T.); (A.P.)
| |
Collapse
|
5
|
Chiavetta RF, Titoli S, Barra V, Cancemi P, Melfi R, Di Leonardo A. Site-Specific RNA Editing of Stop Mutations in the CFTR mRNA of Human Bronchial Cultured Cells. Int J Mol Sci 2023; 24:10940. [PMID: 37446121 DOI: 10.3390/ijms241310940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
It is reported that about 10% of cystic fibrosis (CF) patients worldwide have nonsense (stop) mutations in the CFTR gene, which cause the premature termination of CFTR protein synthesis, leading to a truncated and non-functional protein. To address this issue, we investigated the possibility of rescuing the CFTR nonsense mutation (UGA) by sequence-specific RNA editing in CFTR mutant CFF-16HBEge, W1282X, and G542X human bronchial cells. We used two different base editor tools that take advantage of ADAR enzymes (adenosine deaminase acting on RNA) to edit adenosine to inosine (A-to-I) within the mRNA: the REPAIRv2 (RNA Editing for Programmable A to I Replacement, version 2) and the minixABE (A to I Base Editor). Immunofluorescence experiments show that both approaches were able to recover the CFTR protein in the CFTR mutant cells. In addition, RT-qPCR confirmed the rescue of the CFTR full transcript. These findings suggest that site-specific RNA editing may efficiently correct the UGA premature stop codon in the CFTR transcript in CFF-16HBEge, W1282X, and G542X cells. Thus, this approach, which is safer than acting directly on the mutated DNA, opens up new therapeutic possibilities for CF patients with nonsense mutations.
Collapse
Affiliation(s)
- Roberta F Chiavetta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Simona Titoli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Patrizia Cancemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
- Centro di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, 90128 Palermo, Italy
| | - Raffaella Melfi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Aldo Di Leonardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
- Centro di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
6
|
Li S, Li J, Shi W, Nie Z, Zhang S, Ma F, Hu J, Chen J, Li P, Xie X. Pharmaceuticals Promoting Premature Termination Codon Readthrough: Progress in Development. Biomolecules 2023; 13:988. [PMID: 37371567 DOI: 10.3390/biom13060988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Around 11% of all known gene lesions causing human genetic diseases are nonsense mutations that introduce a premature stop codon (PTC) into the protein-coding gene sequence. Drug-induced PTC readthrough is a promising therapeutic strategy for treating hereditary diseases caused by nonsense mutations. To date, it has been found that more than 50 small-molecular compounds can promote PTC readthrough, known as translational readthrough-inducing drugs (TRIDs), and can be divided into two major categories: aminoglycosides and non-aminoglycosides. This review summarizes the pharmacodynamics and clinical application potential of the main TRIDs discovered so far, especially some newly discovered TRIDs in the past decade. The discovery of these TRIDs brings hope for treating nonsense mutations in various genetic diseases. Further research is still needed to deeply understand the mechanism of eukaryotic cell termination and drug-induced PTC readthrough so that patients can achieve the greatest benefit from the various TRID treatments.
Collapse
Affiliation(s)
- Shan Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Juan Li
- Central Laboratory, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Genetic Study of Hematopathy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ziyan Nie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shasha Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fengdie Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jun Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianjun Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peiqiang Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Carollo PS, Tutone M, Culletta G, Fiduccia I, Corrao F, Pibiri I, Di Leonardo A, Zizzo MG, Melfi R, Pace A, Almerico AM, Lentini L. Investigating the Inhibition of FTSJ1, a Tryptophan tRNA-Specific 2'-O-Methyltransferase by NV TRIDs, as a Mechanism of Readthrough in Nonsense Mutated CFTR. Int J Mol Sci 2023; 24:9609. [PMID: 37298560 PMCID: PMC10253411 DOI: 10.3390/ijms24119609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive genetic disease caused by mutations in the CFTR gene, coding for the CFTR chloride channel. About 10% of the CFTR gene mutations are "stop" mutations that generate a premature termination codon (PTC), thus synthesizing a truncated CFTR protein. A way to bypass PTC relies on ribosome readthrough, which is the ribosome's capacity to skip a PTC, thus generating a full-length protein. "TRIDs" are molecules exerting ribosome readthrough; for some, the mechanism of action is still under debate. We investigate a possible mechanism of action (MOA) by which our recently synthesized TRIDs, namely NV848, NV914, and NV930, could exert their readthrough activity by in silico analysis and in vitro studies. Our results suggest a likely inhibition of FTSJ1, a tryptophan tRNA-specific 2'-O-methyltransferase.
Collapse
Affiliation(s)
| | - Marco Tutone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (P.S.C.); (G.C.); (I.F.); (F.C.); (I.P.); (A.D.L.); (M.G.Z.); (R.M.); (A.P.); (A.M.A.)
| | | | | | | | | | | | | | | | | | | | - Laura Lentini
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (P.S.C.); (G.C.); (I.F.); (F.C.); (I.P.); (A.D.L.); (M.G.Z.); (R.M.); (A.P.); (A.M.A.)
| |
Collapse
|
8
|
Recoding of Nonsense Mutation as a Pharmacological Strategy. Biomedicines 2023; 11:biomedicines11030659. [PMID: 36979640 PMCID: PMC10044939 DOI: 10.3390/biomedicines11030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Approximately 11% of genetic human diseases are caused by nonsense mutations that introduce a premature termination codon (PTC) into the coding sequence. The PTC results in the production of a potentially harmful shortened polypeptide and activation of a nonsense-mediated decay (NMD) pathway. The NMD pathway reduces the burden of unproductive protein synthesis by lowering the level of PTC mRNA. There is an endogenous rescue mechanism that produces a full-length protein from a PTC mRNA. Nonsense suppression therapies aim to increase readthrough, suppress NMD, or are a combination of both strategies. Therefore, treatment with translational readthrough-inducing drugs (TRIDs) and NMD inhibitors may increase the effectiveness of PTC suppression. Here we discuss the mechanism of PTC readthrough and the development of novel approaches to PTC suppression. We also discuss the toxicity and bioavailability of therapeutics used to stimulate PTC readthrough.
Collapse
|
9
|
Epicutaneous Sensitization and Food Allergy: Preventive Strategies Targeting Skin Barrier Repair-Facts and Challenges. Nutrients 2023; 15:nu15051070. [PMID: 36904070 PMCID: PMC10005101 DOI: 10.3390/nu15051070] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Food allergy represents a growing public health and socio-economic problem with an increasing prevalence over the last two decades. Despite its substantial impact on the quality of life, current treatment options for food allergy are limited to strict allergen avoidance and emergency management, creating an urgent need for effective preventive strategies. Advances in the understanding of the food allergy pathogenesis allow to develop more precise approaches targeting specific pathophysiological pathways. Recently, the skin has become an important target for food allergy prevention strategies, as it has been hypothesized that allergen exposure through the impaired skin barrier might induce an immune response resulting in subsequent development of food allergy. This review aims to discuss current evidence supporting this complex interplay between the skin barrier dysfunction and food allergy by highlighting the crucial role of epicutaneous sensitization in the causality pathway leading to food allergen sensitization and progression to clinical food allergy. We also summarize recently studied prophylactic and therapeutic interventions targeting the skin barrier repair as an emerging food allergy prevention strategy and discuss current evidence controversies and future challenges. Further studies are needed before these promising strategies can be routinely implemented as prevention advice for the general population.
Collapse
|
10
|
Kawai S, Takashima S, Ando M, Shintaku S, Takeda S, Otake K, Ito Y, Fukui M, Yamamoto M, Shoji Y, Shirahase H, Kitao T. Synthesis and Evaluation of Novel Triaryl Derivatives with Readthrough-Inducing Activity. Chem Pharm Bull (Tokyo) 2023; 71:701-716. [PMID: 37661376 DOI: 10.1248/cpb.c23-00387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The readthrough mechanism, which skips the premature termination codon and restores the biosynthesis of the defective enzyme, is an emerging therapeutic tactic for nonsense mutation-related diseases, such as Hurler syndrome, a type of mucopolysaccharidosis. In the present study, novel triaryl derivatives were synthesized and their readthrough-inducing activities were evaluated by a luciferase reporter assay with a partial α-L-iduronidase (IDUA) DNA sequence containing the Q70X nonsense mutation found in Hurler syndrome and by measuring the enzyme activity of IDUA knockout cells transfected with the mutant IDUA gene. KY-516, a representative compound in which the meta position carboxyl group of the left ring of the clinically used ataluren was converted to the para position sulfamoylamino group, the central ring to triazole, and the right ring to cyanobenzene, exhibited the most potent readthrough-inducing activity in the Q70X/luciferase reporter assay. In Q70X mutant IDUA transgenic cells, KY-516 significantly increased enzyme activity at 0.1 µM. After the oral administration of KY-516 (10 mg/kg), the highest plasma concentration of KY-516 was above 5 µM in rats. These results indicate that KY-516, a novel triaryl derivative, exhibits potent readthrough-inducing activity and has potential as a therapeutic agent for Hurler syndrome.
Collapse
Affiliation(s)
- Shota Kawai
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Shunsuke Takashima
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Masafumi Ando
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Sayaka Shintaku
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Shigemitsu Takeda
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Kazuya Otake
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Yuma Ito
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Masaki Fukui
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Megumi Yamamoto
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Yoshimichi Shoji
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Hiroaki Shirahase
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Tatsuya Kitao
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| |
Collapse
|
11
|
Corrao F, Zizzo MG, Tutone M, Melfi R, Fiduccia I, Carollo PS, Leonardo AD, Caldara G, Perriera R, Pace A, Belmonte B, Sammataro S, Pibiri I, Lentini L. Nonsense codons suppression. An acute toxicity study of three optimized TRIDs in murine model, safety and tolerability evaluation. Biomed Pharmacother 2022; 156:113886. [DOI: 10.1016/j.biopha.2022.113886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/02/2022] Open
|
12
|
Evaluation of Pharmacological Rescue of Melanocortin-4 Receptor Nonsense Mutations by Aminoglycoside. Life (Basel) 2022; 12:life12111793. [PMID: 36362948 PMCID: PMC9697516 DOI: 10.3390/life12111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The melanocortin-4 receptor (MC4R) is critical for central satiety regulation, therefore presenting a potent target for pharmacological obesity treatment. Melanocortin-4 receptor mutations prevalently cause monogenetic obesity. A possibility of overcoming stop mutations is aminoglycoside-mediated translational readthrough. Promising results were achieved in COS-7 cells, but data for human cell systems are still missing, so uncertainty surrounds this potential treatment. In transfected HEK-293 cells, we tested whether translational readthrough by aminoglycoside Geneticin combined with high-affinity ligand setmelanotide, which is effective in proopiomelanocortin or leptin receptor deficiency patients, is a treatment option for affected patients. Five MC4R nonsense mutants (W16X, Y35X_D37V, E61X, W258X, Q307X) were investigated. Confocal microscopy and cell surface expression assays revealed the importance of the mutations’ position within the MC4R. N-terminal mutants were marginally expressed independent of Geneticin treatment, whereas mutants with nonsense mutations in transmembrane helix 6 or helix 8 showed wild-type-like expression. For functional analysis, Gs and Gq/11 signaling were measured. N-terminal mutants (W16X, Y35X_D37V) showed no cAMP formation after challenge with alpha-MSH or setmelanotide, irrespective of Geneticin treatment. Similarly, Gs activation was almost impossible in W258X and Q307X with wild-type-like cell surface expression. Results for Gq/11 signaling were comparable. Based on our data, this approach improbably represents a therapeutic option.
Collapse
|
13
|
Cheng X, Zhou T, Yang Z, Zhou J, Gao M, Huang Y, Su Z. Premature termination codon: a tunable protein translation approach. Biotechniques 2022; 73:80-89. [PMID: 35796100 DOI: 10.2144/btn-2022-0046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cellular protein-protein interactions are largely dependent on the activities of signaling proteins. Here, we present a technique to tune gene expression at translation level based on G418-inducible readthrough premature termination codon (PTC-on). To demonstrate how this PTC-on can control the expression level of a cellular signaling protein to regulate signal transduction, we settled a p53 PTC-on system in p53-null H1299 cells. After treating with G418, the cells expressed full-length p53 protein in a dose-dependent manner. We further demonstrated to use this PTC-on approach to dissect p53-dependent and p53-independent apoptosis in response to the DNA double strand breaks in H1299 cells. In principle, the PTC-on can be used as a general approach for exploring the functions of any other signaling proteins.
Collapse
Affiliation(s)
- Xiyao Cheng
- School of Light Industry and Food Engineering, Guanxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning, Guangxi, 530004, China.,Protein Engineering & Biopharmaceutical Sciences Laboratory, Hubei University of Technology, 28 Nanli Road, Wuhan, Hubei, 430068, China
| | - Ting Zhou
- Protein Engineering & Biopharmaceutical Sciences Laboratory, Hubei University of Technology, 28 Nanli Road, Wuhan, Hubei, 430068, China
| | - Zixin Yang
- Protein Engineering & Biopharmaceutical Sciences Laboratory, Hubei University of Technology, 28 Nanli Road, Wuhan, Hubei, 430068, China
| | - Jingjing Zhou
- Protein Engineering & Biopharmaceutical Sciences Laboratory, Hubei University of Technology, 28 Nanli Road, Wuhan, Hubei, 430068, China
| | - Meng Gao
- Protein Engineering & Biopharmaceutical Sciences Laboratory, Hubei University of Technology, 28 Nanli Road, Wuhan, Hubei, 430068, China
| | - Yongqi Huang
- Protein Engineering & Biopharmaceutical Sciences Laboratory, Hubei University of Technology, 28 Nanli Road, Wuhan, Hubei, 430068, China
| | - Zhengding Su
- Protein Engineering & Biopharmaceutical Sciences Laboratory, Hubei University of Technology, 28 Nanli Road, Wuhan, Hubei, 430068, China
| |
Collapse
|
14
|
Karousis ED, Mühlemann O. The broader sense of nonsense. Trends Biochem Sci 2022; 47:921-935. [PMID: 35780009 DOI: 10.1016/j.tibs.2022.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 12/21/2022]
Abstract
The term 'nonsense-mediated mRNA decay' (NMD) was initially coined to describe the translation-dependent degradation of mRNAs harboring premature termination codons (PTCs), but it is meanwhile known that NMD also targets many canonical mRNAs with numerous biological implications. The molecular mechanisms determining on which RNAs NMD ensues are only partially understood. Considering the broad range of NMD-sensitive RNAs and the variable degrees of their degradation, we highlight here the hallmarks of mammalian NMD and point out open questions. We review the links between NMD and disease by summarizing the role of NMD in cancer, neurodegeneration, and viral infections. Finally, we describe strategies to modulate NMD activity and specificity as potential therapeutic approaches for various diseases.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Oliver Mühlemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
15
|
Huang S, Bhattacharya A, Ghelfi MD, Li H, Fritsch C, Chenoweth DM, Goldman YE, Cooperman BS. Ataluren binds to multiple protein synthesis apparatus sites and competitively inhibits release factor-dependent termination. Nat Commun 2022; 13:2413. [PMID: 35523781 PMCID: PMC9076611 DOI: 10.1038/s41467-022-30080-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic diseases are often caused by nonsense mutations, but only one TRID (translation readthrough inducing drug), ataluren, has been approved for clinical use. Ataluren inhibits release factor complex (RFC) termination activity, while not affecting productive binding of near-cognate ternary complex (TC, aa-tRNA.eEF1A.GTP). Here we use photoaffinity labeling to identify two sites of ataluren binding within rRNA, proximal to the decoding center (DC) and the peptidyl transfer center (PTC) of the ribosome, which are directly responsible for ataluren inhibition of termination activity. A third site, within the RFC, has as yet unclear functional consequences. Using single molecule and ensemble fluorescence assays we also demonstrate that termination proceeds via rapid RFC-dependent hydrolysis of peptidyl-tRNA followed by slow release of peptide and tRNA from the ribosome. Ataluren is an apparent competitive inhibitor of productive RFC binding, acting at or before the hydrolysis step. We propose that designing more potent TRIDs which retain ataluren's low toxicity should target areas of the RFC binding site proximal to the DC and PTC which do not overlap the TC binding site.
Collapse
Affiliation(s)
- Shijie Huang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- GSK, 14200 Shady Grove Rd, Rockville, MD, 20850, USA
| | - Arpan Bhattacharya
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mikel D Ghelfi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hong Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clark Fritsch
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yale E Goldman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Yu J, Tang B, He X, Zou P, Zeng Z, Xiao R. Nonsense Suppression Therapy: An Emerging Treatment for Hereditary Skin Diseases. Acta Derm Venereol 2022; 102:adv00658. [DOI: 10.2340/actadv.v102.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nonsense mutations cause the premature termination of protein translation via premature termination codons (PTCs), leading to the synthesis of incomplete functional proteins and causing large numbers of genetic disorders. The emergence of nonsense suppression therapy is considered to be an effective method for the treatment of hereditary diseases, but its application in hereditary skin diseases is relatively limited. This review summarizes the current research status of nonsense suppression therapy for hereditary skin diseases, and discusses the potential opportunities and challenges of applying new technologies related to nonsense suppression therapy to dermatology. Further research is needed into the possible use of nonsense suppression therapy as a strategy for the safer and specific treatment of hereditary skin diseases.
Collapse
|
17
|
Marzullo P, Vasto S, Buscemi S, Pace A, Nuzzo D, Palumbo Piccionello A. Ammonium Formate-Pd/C as a New Reducing System for 1,2,4-Oxadiazoles. Synthesis of Guanidine Derivatives and Reductive Rearrangement to Quinazolin-4-Ones with Potential Anti-Diabetic Activity. Int J Mol Sci 2021; 22:12301. [PMID: 34830187 PMCID: PMC8621334 DOI: 10.3390/ijms222212301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
1,2,4-Oxadiazole is a heterocycle with wide reactivity and many useful applications. The reactive O-N bond is usually reduced using molecular hydrogen to obtain amidine derivatives. NH4CO2H-Pd/C is here demonstrated as a new system for the O-N reduction, allowing us to obtain differently substituted acylamidine, acylguanidine and diacylguanidine derivatives. The proposed system is also effective for the achievement of a reductive rearrangement of 5-(2'-aminophenyl)-1,2,4-oxadiazoles into 1-alkylquinazolin-4(1H)-ones. The alkaloid glycosine was also obtained with this method. The obtained compounds were preliminarily tested for their biological activity in terms of their cytotoxicity, induced oxidative stress, α-glucosidase and DPP4 inhibition, showing potential application as anti-diabetics.
Collapse
Affiliation(s)
- Paola Marzullo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, 90128 Palermo, Italy; (P.M.); (S.B.); (A.P.); (D.N.)
| | - Sonya Vasto
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, 90128 Palermo, Italy; (P.M.); (S.B.); (A.P.); (D.N.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Silvestre Buscemi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, 90128 Palermo, Italy; (P.M.); (S.B.); (A.P.); (D.N.)
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, 90128 Palermo, Italy; (P.M.); (S.B.); (A.P.); (D.N.)
| | - Domenico Nuzzo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, 90128 Palermo, Italy; (P.M.); (S.B.); (A.P.); (D.N.)
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica (CNR-IBF), 90146 Palermo, Italy
| | - Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, 90128 Palermo, Italy; (P.M.); (S.B.); (A.P.); (D.N.)
| |
Collapse
|
18
|
Dębińska A. New Treatments for Atopic Dermatitis Targeting Skin Barrier Repair via the Regulation of FLG Expression. J Clin Med 2021; 10:jcm10112506. [PMID: 34198894 PMCID: PMC8200961 DOI: 10.3390/jcm10112506] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
Atopic dermatitis (AD) is one of the most common chronic, inflammatory skin disorders with a complex etiology and a broad spectrum of clinical phenotypes. Despite its high prevalence and effect on the quality of life, safe and effective systemic therapies approved for long-term management of AD are limited. A better understanding of the pathogenesis of atopic dermatitis in recent years has contributed to the development of new therapeutic approaches that target specific pathophysiological pathways. Skin barrier dysfunction and immunological abnormalities are critical in the pathogenesis of AD. Recently, the importance of the downregulation of epidermal differentiation complex (EDC) molecules caused by external and internal stimuli has been extensively emphasized. The purpose of this review is to discuss the innovations in the therapy of atopic dermatitis, including biologics, small molecule therapies, and other drugs by highlighting regulatory mechanisms of skin barrier-related molecules, such as filaggrin (FLG) as a crucial pathway implicated in AD pathogenesis.
Collapse
Affiliation(s)
- Anna Dębińska
- 1st Department and Clinic of Paediatrics, Allergology and Cardiology, Wroclaw Medical University, Chałubińskiego 2a, 50-368 Wrocław, Poland
| |
Collapse
|
19
|
Ataluren and aminoglycosides stimulate read-through of nonsense codons by orthogonal mechanisms. Proc Natl Acad Sci U S A 2021; 118:2020599118. [PMID: 33414181 PMCID: PMC7812769 DOI: 10.1073/pnas.2020599118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nonsense mutations giving rise to premature stop codons (PSCs) cause many diseases, creating the need to develop safe and effective translational read-through–inducing drugs (TRIDs). The current best-characterized TRIDs are ataluren and aminoglycosides. Only ataluren has been approved for clinical use, albeit in a limited context. Here, we provide rate measurements of elementary steps in a single eukaryotic translation elongation cycle, allowing us to demonstrate that ataluren and the aminoglycoside G418 employ orthogonal mechanisms in stimulating PSC read-through: ataluren by inhibiting release factor-dependent termination of protein synthesis and G418 by increasing functional near-cognate transfer RNA mispairing, which permits continuation of synthesis. We conclude that development of new TRIDs combatting PSC diseases should prioritize those directed toward inhibiting termination. During protein synthesis, nonsense mutations, resulting in premature stop codons (PSCs), produce truncated, inactive protein products. Such defective gene products give rise to many diseases, including cystic fibrosis, Duchenne muscular dystrophy (DMD), and some cancers. Small molecule nonsense suppressors, known as TRIDs (translational read-through–inducing drugs), stimulate stop codon read-through. The best characterized TRIDs are ataluren, which has been approved by the European Medicines Agency for the treatment of DMD, and G418, a structurally dissimilar aminoglycoside. Previously [1], we applied a highly purified in vitro eukaryotic translation system to demonstrate that both aminoglycosides like G418 and more hydrophobic molecules like ataluren stimulate read-through by direct interaction with the cell’s protein synthesis machinery. Our results suggested that they might do so by different mechanisms. Here, we pursue this suggestion through a more-detailed investigation of ataluren and G418 effects on read-through. We find that ataluren stimulation of read-through derives exclusively from its ability to inhibit release factor activity. In contrast, G418 increases functional near-cognate tRNA mispairing with a PSC, resulting from binding to its tight site on the ribosome, with little if any effect on release factor activity. The low toxicity of ataluren suggests that development of new TRIDs exclusively directed toward inhibiting termination should be a priority in combatting PSC diseases. Our results also provide rate measurements of some of the elementary steps during the eukaryotic translation elongation cycle, allowing us to determine how these rates are modified when cognate tRNA is replaced by near-cognate tRNA ± TRIDs.
Collapse
|
20
|
Jamalpoor A, Othman A, Levtchenko EN, Masereeuw R, Janssen MJ. Molecular Mechanisms and Treatment Options of Nephropathic Cystinosis. Trends Mol Med 2021; 27:673-686. [PMID: 33975805 DOI: 10.1016/j.molmed.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/15/2022]
Abstract
Nephropathic cystinosis is a severe, monogenic systemic disorder that presents early in life and leads to progressive organ damage, particularly affecting the kidneys. It is caused by mutations in the CTNS gene, which encodes the lysosomal transporter cystinosin, resulting in intralysosomal accumulation of cystine. Recent studies demonstrated that the loss of cystinosin is associated with disrupted autophagy dynamics, accumulation of distorted mitochondria, and increased oxidative stress, leading to abnormal proliferation and dysfunction of kidney cells. We discuss these molecular mechanisms driving nephropathic cystinosis. Further, we consider how unravelling molecular mechanisms supports the identification and development of new strategies for cystinosis by the use of small molecules, biologicals, and genetic rescue of the disease in vitro and in vivo.
Collapse
Affiliation(s)
- Amer Jamalpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Amr Othman
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Elena N Levtchenko
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven & KU Leuven, Leuven, Belgium
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands.
| | - Manoe J Janssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Tarasenko MV, Kotlyarova VD, Baykov SV, Shetnev AA. 2-(1,2,4-Oxadiazol-5-yl)anilines Based on Amidoximes and Isatoic Anhydrides: Synthesis and Structure Features. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221050030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Palumbo Piccionello A. Editorial for Special Issue "Bioactive Oxadiazoles". Int J Mol Sci 2021; 22:ijms22083988. [PMID: 33924410 PMCID: PMC8068963 DOI: 10.3390/ijms22083988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies-STEBICEF, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
23
|
Luna S, Torices L, Mingo J, Amo L, Rodríguez-Escudero I, Ruiz-Ibarlucea P, Erramuzpe A, Cortés JM, Tejada MI, Molina M, Nunes-Xavier CE, López JI, Cid VJ, Pulido R. A global analysis of the reconstitution of PTEN function by translational readthrough of PTEN pathogenic premature termination codons. Hum Mutat 2021; 42:551-566. [PMID: 33600059 DOI: 10.1002/humu.24186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/15/2021] [Accepted: 02/14/2021] [Indexed: 12/29/2022]
Abstract
The PTEN tumor suppressor gene is mutated with high incidence in tumors and in the germline of patients with cancer predisposition or with macrocephaly associated with autism. PTEN nonsense mutations generating premature termination codons (PTC) and producing nonfunctional truncated PTEN proteins are frequent in association with human disease. However, there are no studies addressing the restoration of full-length PTEN proteins from the PTC-mutated PTEN gene by translational readthrough. Here, we have performed a global translational and functional readthrough analysis of the complete collection of PTEN PTC somatic or hereditary mutations found in tumors or in the germline of patients (disease-associated PTEN PTCome), and we set standards for the analysis of the potential of readthrough functional reconstitution in disease-relevant genes. Our analysis indicates that prevalent pathogenic PTEN PTC mutations are susceptible to PTEN functional restoration in response to readthrough-inducing compounds. Comprehensive readthrough analyses of disease-associated PTComes will be valuable tools for the implementation of readthrough-based precision interventions in specific groups of patients.
Collapse
Affiliation(s)
- Sandra Luna
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Leire Torices
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Janire Mingo
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Laura Amo
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Isabel Rodríguez-Escudero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, UCM & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | | | - Asier Erramuzpe
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Jesús M Cortés
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| | - María I Tejada
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - María Molina
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, UCM & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Caroline E Nunes-Xavier
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - José I López
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | - Víctor J Cid
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, UCM & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Rafael Pulido
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
24
|
Self JE, Lee H. Novel therapeutics in nystagmus: what has the genetics taught us so far? THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:2633004021998714. [PMID: 37181109 PMCID: PMC10032456 DOI: 10.1177/2633004021998714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 05/16/2023]
Abstract
Nystagmus is a disorder characterised by uncontrolled, repetitive, to-and-fro movement of the eyes. It can occur as a seemingly isolated disorder but is most commonly the first, or most obvious, feature in a host of ophthalmic and systemic disorders. The number of underlying causes is vast, and recent improvements in the provision of genetic testing have shown that many conditions can include nystagmus as a feature, but that phenotypes overlap significantly. Therefore, an increase in the understanding of the genetic causes of nystagmus has shown that successful novel therapeutics for 'nystagmus' can target either specific underlying disorders and mechanisms (aiming to treat the underlying condition as a whole), or a final common pathway (aiming to treat the nystagmus directly). Plain language summary Novel treatments for a disorder of eye movement (nystagmus): what has the genetics taught us so far? Nystagmus is a disorder of eye movement characterised by uncontrolled, to-and-fro movements. It can occur as an isolated disorder, in conditions affecting other parts of the eye, in conditions affecting multiple other parts of the body or secondary to neurological diseases (brain diseases). In recent years, advances in genetic testing methods and increase in genetic testing in healthcare systems have provided a greater understanding of the underlying causes of nystagmus. They have highlighted the bewildering number of genetic causes that can result in what looks like a very similar eye movement disorder.In recent years, new classes of drugs have been developed for some of the causes of nystagmus, and some new drugs have been developed for other conditions which have the potential to work in certain types of nystagmus. For these reasons, genetics has taught us that identifying new possible treatments for nystagmus can either be dependent on identifying the underlying genetic cause and aiming to treat that, or aiming to treat the nystagmus per se by targeting a final common pathway. A toolkit based on specific treatments for specific conditions is more to have meaningful impact on 'nystagmus' than pursuing a panacea based on a 'one size fits all' approach.
Collapse
Affiliation(s)
- Jay E Self
- Clinical and Experimental Sciences, Faculty of
Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD,
UK
- University Hospital Southampton, Southampton,
UK
| | - Helena Lee
- Clinical and Experimental Sciences, Faculty of
Medicine, University of Southampton, Southampton, UK
- University Hospital Southampton, Southampton,
UK
| |
Collapse
|
25
|
Cole JD, Rodriguez C, Norat P, Gao J, Provencio I, Netland PA, Liu X. Neural damage and neuroprotection with glaucoma development in aniridia. CURRENT NEUROBIOLOGY 2021; 12:14-19. [PMID: 38125639 PMCID: PMC10732493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Affiliation(s)
- James D Cole
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Carlos Rodriguez
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Pedro Norat
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Jingyi Gao
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Ignacio Provencio
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | - Peter A Netland
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
26
|
Sensing through Non-Sensing Ocular Ion Channels. Int J Mol Sci 2020; 21:ijms21186925. [PMID: 32967234 PMCID: PMC7554890 DOI: 10.3390/ijms21186925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. In the eye, ion channels are involved in various physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their interacting subunit coding genes, which contribute significantly to an array of blindness, termed ocular channelopathies. These mutations result in either a loss- or gain-of channel functions affecting the structure, assembly, trafficking, and localization of channel proteins. A dominant-negative effect is caused in a few channels formed by the assembly of several subunits that exist as homo- or heteromeric proteins. Here, we review the role of different mutations in switching a “sensing” ion channel to “non-sensing,” leading to ocular channelopathies like Leber’s congenital amaurosis 16 (LCA16), cone dystrophy, congenital stationary night blindness (CSNB), achromatopsia, bestrophinopathies, retinitis pigmentosa, etc. We also discuss the various in vitro and in vivo disease models available to investigate the impact of mutations on channel properties, to dissect the disease mechanism, and understand the pathophysiology. Innovating the potential pharmacological and therapeutic approaches and their efficient delivery to the eye for reversing a “non-sensing” channel to “sensing” would be life-changing.
Collapse
|
27
|
Pibiri I, Melfi R, Tutone M, Di Leonardo A, Pace A, Lentini L. Targeting Nonsense: Optimization of 1,2,4-Oxadiazole TRIDs to Rescue CFTR Expression and Functionality in Cystic Fibrosis Cell Model Systems. Int J Mol Sci 2020; 21:ijms21176420. [PMID: 32899265 PMCID: PMC7504161 DOI: 10.3390/ijms21176420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF) patients develop a severe form of the disease when the cystic fibrosis transmembrane conductance regulator (CFTR) gene is affected by nonsense mutations. Nonsense mutations are responsible for the presence of a premature termination codon (PTC) in the mRNA, creating a lack of functional protein. In this context, translational readthrough-inducing drugs (TRIDs) represent a promising approach to correct the basic defect caused by PTCs. By using computational optimization and biological screening, we identified three new small molecules showing high readthrough activity. The activity of these compounds has been verified by evaluating CFTR expression and functionality after treatment with the selected molecules in cells expressing nonsense–CFTR–mRNA. Additionally, the channel functionality was measured by the halide sensitive yellow fluorescent protein (YFP) quenching assay. All three of the new TRIDs displayed high readthrough activity and low toxicity and can be considered for further evaluation as a therapeutic approach toward the second major cause of CF.
Collapse
Affiliation(s)
- Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.M.); (M.T.); (A.D.L.); (A.P.)
- Correspondence: (I.P.); (L.L.); Tel.: +39-091-238-97545 (I.P.); +39-091-238-97341 (L.L.)
| | - Raffaella Melfi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.M.); (M.T.); (A.D.L.); (A.P.)
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.M.); (M.T.); (A.D.L.); (A.P.)
| | - Aldo Di Leonardo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.M.); (M.T.); (A.D.L.); (A.P.)
- Centro di OncoBiologia Sperimentale (COBS), via San Lorenzo Colli, 90145 Palermo, Italy
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.M.); (M.T.); (A.D.L.); (A.P.)
| | - Laura Lentini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.M.); (M.T.); (A.D.L.); (A.P.)
- Correspondence: (I.P.); (L.L.); Tel.: +39-091-238-97545 (I.P.); +39-091-238-97341 (L.L.)
| |
Collapse
|
28
|
French LS, Mellough CB, Chen FK, Carvalho LS. A Review of Gene, Drug and Cell-Based Therapies for Usher Syndrome. Front Cell Neurosci 2020; 14:183. [PMID: 32733204 PMCID: PMC7363968 DOI: 10.3389/fncel.2020.00183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Usher syndrome is a genetic disorder causing neurosensory hearing loss and blindness from retinitis pigmentosa (RP). Adaptive techniques such as braille, digital and optical magnifiers, mobility training, cochlear implants, or other assistive listening devices are indispensable for reducing disability. However, there is currently no treatment to reduce or arrest sensory cell degeneration. There are several classes of treatments for Usher syndrome being investigated. The present article reviews the progress this research has made towards delivering commercial options for patients with Usher syndrome.
Collapse
Affiliation(s)
- Lucy S French
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Carla B Mellough
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia.,Department of Ophthalmology, Perth Children's Hospital, Nedlands, WA, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
29
|
Nonsense Suppression Therapy: New Hypothesis for the Treatment of Inherited Bone Marrow Failure Syndromes. Int J Mol Sci 2020; 21:ijms21134672. [PMID: 32630050 PMCID: PMC7369780 DOI: 10.3390/ijms21134672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a group of cancer-prone genetic diseases characterized by hypocellular bone marrow with impairment in one or more hematopoietic lineages. The pathogenesis of IBMFS involves mutations in several genes which encode for proteins involved in DNA repair, telomere biology and ribosome biogenesis. The classical IBMFS include Shwachman–Diamond syndrome (SDS), Diamond–Blackfan anemia (DBA), Fanconi anemia (FA), dyskeratosis congenita (DC), and severe congenital neutropenia (SCN). IBMFS are associated with high risk of myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and solid tumors. Unfortunately, no specific pharmacological therapies have been highly effective for IBMFS. Hematopoietic stem cell transplantation provides a cure for aplastic or myeloid neoplastic complications. However, it does not affect the risk of solid tumors. Since approximately 28% of FA, 24% of SCN, 21% of DBA, 20% of SDS, and 17% of DC patients harbor nonsense mutations in the respective IBMFS-related genes, we discuss the use of the nonsense suppression therapy in these diseases. We recently described the beneficial effect of ataluren, a nonsense suppressor drug, in SDS bone marrow hematopoietic cells ex vivo. A similar approach could be therefore designed for treating other IBMFS. In this review we explain in detail the new generation of nonsense suppressor molecules and their mechanistic roles. Furthermore, we will discuss strengths and limitations of these molecules which are emerging from preclinical and clinical studies. Finally we discuss the state-of-the-art of preclinical and clinical therapeutic studies carried out for IBMFS.
Collapse
|
30
|
Morais P, Adachi H, Yu YT. Suppression of Nonsense Mutations by New Emerging Technologies. Int J Mol Sci 2020; 21:ijms21124394. [PMID: 32575694 PMCID: PMC7352488 DOI: 10.3390/ijms21124394] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
Nonsense mutations often result from single nucleotide substitutions that change a sense codon (coding for an amino acid) to a nonsense or premature termination codon (PTC) within the coding region of a gene. The impact of nonsense mutations is two-fold: (1) the PTC-containing mRNA is degraded by a surveillance pathway called nonsense-mediated mRNA decay (NMD) and (2) protein translation stops prematurely at the PTC codon, and thus no functional full-length protein is produced. As such, nonsense mutations result in a large number of human diseases. Nonsense suppression is a strategy that aims to correct the defects of hundreds of genetic disorders and reverse disease phenotypes and conditions. While most clinical trials have been performed with small molecules, there is an increasing need for sequence-specific repair approaches that are safer and adaptable to personalized medicine. Here, we discuss recent advances in both conventional strategies as well as new technologies. Several of these will soon be tested in clinical trials as nonsense therapies, even if they still have some limitations and challenges to overcome.
Collapse
Affiliation(s)
- Pedro Morais
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, The Netherlands;
| | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
- Correspondence: ; Tel.: +1-(585)-275-1271; Fax: +1-(585)-275-6007
| |
Collapse
|
31
|
Lashkevich KA, Shlyk VI, Kushchenko AS, Gladyshev VN, Alkalaeva EZ, Dmitriev SE. CTELS: A Cell-Free System for the Analysis of Translation Termination Rate. Biomolecules 2020; 10:E911. [PMID: 32560154 PMCID: PMC7356799 DOI: 10.3390/biom10060911] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/29/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
Translation termination is the final step in protein biosynthesis when the synthesized polypeptide is released from the ribosome. Understanding this complex process is important for treatment of many human disorders caused by nonsense mutations in important genes. Here, we present a new method for the analysis of translation termination rate in cell-free systems, CTELS (for C-terminally extended luciferase-based system). This approach was based on a continuously measured luciferase activity during in vitro translation reaction of two reporter mRNA, one of which encodes a C-terminally extended luciferase. This extension occupies a ribosomal polypeptide tunnel and lets the completely synthesized enzyme be active before translation termination occurs, i.e., when it is still on the ribosome. In contrast, luciferase molecule without the extension emits light only after its release. Comparing the translation dynamics of these two reporters allows visualization of a delay corresponding to the translation termination event. We demonstrated applicability of this approach for investigating the effects of cis- and trans-acting components, including small molecule inhibitors and read-through inducing sequences, on the translation termination rate. With CTELS, we systematically assessed negative effects of decreased 3' UTR length, specifically on termination. We also showed that blasticidin S implements its inhibitory effect on eukaryotic translation system, mostly by affecting elongation, and that an excess of eRF1 termination factor (both the wild-type and a non-catalytic AGQ mutant) can interfere with elongation. Analysis of read-through mechanics with CTELS revealed a transient stalling event at a "leaky" stop codon context, which likely defines the basis of nonsense suppression.
Collapse
Affiliation(s)
- Kseniya A. Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (K.A.L.); (V.I.S.); (A.S.K.)
| | - Valeriya I. Shlyk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (K.A.L.); (V.I.S.); (A.S.K.)
- Department of Molecular Biology, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Artem S. Kushchenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (K.A.L.); (V.I.S.); (A.S.K.)
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Elena Z. Alkalaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (K.A.L.); (V.I.S.); (A.S.K.)
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| |
Collapse
|
32
|
Tutone M, Pibiri I, Perriera R, Campofelice A, Culletta G, Melfi R, Pace A, Almerico AM, Lentini L. Pharmacophore-Based Design of New Chemical Scaffolds as Translational Readthrough-Inducing Drugs (TRIDs). ACS Med Chem Lett 2020; 11:747-753. [PMID: 32435380 DOI: 10.1021/acsmedchemlett.9b00609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 12/31/2022] Open
Abstract
Translational readthrough-inducing drugs (TRIDs) rescue the functional full-length protein expression in genetic diseases, such as cystic fibrosis, caused by premature termination codons (PTCs). Small molecules have been developed as TRIDs to trick the ribosomal machinery during recognition of the PTC. Herein we report a computational study to identify new TRID scaffolds. A pharmacophore approach was carried out on compounds that showed readthrough activity. The pharmacophore model applied to screen different libraries containing more than 87000 compounds identified four hit-compounds presenting scaffolds with diversity from the oxadiazole lead. These compounds have been synthesized and tested using the Fluc reporter harboring the UGA PTC. Moreover, the cytotoxic effect and the expression of the CFTR protein were evaluated. These compounds, a benzimidazole derivative (NV2899), a benzoxazole derivative (NV2913), a thiazole derivative (NV2909), and a benzene-1,3-disulfonate derivative (NV2907), were shown to be potential new lead compounds as TRIDs, boosting further efforts to address the optimization of the chemical scaffolds.
Collapse
Affiliation(s)
- Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi, 90123-Palermo, Italy
| | - Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi, 90123-Palermo, Italy
| | - Riccardo Perriera
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi, 90123-Palermo, Italy
| | - Ambra Campofelice
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi, 90123-Palermo, Italy
| | - Giulia Culletta
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi, 90123-Palermo, Italy
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, viale Annunziata, 98168-Messina, Italy
| | - Raffaella Melfi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi, 90123-Palermo, Italy
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi, 90123-Palermo, Italy
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi, 90123-Palermo, Italy
| | - Laura Lentini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi, 90123-Palermo, Italy
| |
Collapse
|
33
|
Screening Readthrough Compounds to Suppress Nonsense Mutations: Possible Application to β-Thalassemia. J Clin Med 2020; 9:jcm9020289. [PMID: 31972957 PMCID: PMC7073686 DOI: 10.3390/jcm9020289] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Several types of thalassemia (including β039-thalassemia) are caused by nonsense mutations in genes controlling globin production, leading to premature translation termination and mRNA destabilization mediated by the nonsense mediated mRNA decay. Drugs (for instance, aminoglycosides) can be designed to suppress premature translation termination by inducing readthrough (or nonsense suppression) at the premature termination codon. These findings have introduced new hopes for the development of a pharmacologic approach to cure this genetic disease. In the present review, we first summarize the principle and current status of the chemical relief for the expression of functional proteins from genes otherwise unfruitful for the presence of nonsense mutations. Second, we compare data available on readthrough molecules for β0-thalassemia. The examples reported in the review strongly suggest that ribosomal readthrough should be considered as a therapeutic approach for the treatment of β0-thalassemia caused by nonsense mutations. Concluding, the discovery of molecules, exhibiting the property of inducing β-globin, such as readthrough compounds, is of great interest and represents a hope for several patients, whose survival will depend on the possible use of drugs rendering blood transfusion and chelation therapy unnecessary.
Collapse
|