1
|
Norouzi H, Dastan D, Abdullah FO, Al-Qaaneh AM. Recent advances in methods of extraction, pre-concentration, purification, identification, and quantification of kaempferol. J Chromatogr A 2024; 1735:465297. [PMID: 39243588 DOI: 10.1016/j.chroma.2024.465297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
As a naturally widely-occurring dietary, cosmetic, and therapeutic flavonoid, kaempferol has gained much consideration for its nutritional and pharmaceutical properties in recent years. Although there have been performed a high number of studies associated with different aspects of kaempferol's analytical investigations, the lack of a comprehensive summary of the various methods and other plant sources that have been reported for this compound is being felt, especially for many biological applications. This study, aimed to provide a detailed compilation consisting of sources (plant species) and analytical information that was precisely related to the natural flavonoid (kaempferol). There is a trend in analytical research that supports the application of modern eco-friendly instruments and methods. In conclusion, ultrasound-assisted extraction (UAE) is the most general advanced method used widely today for the extraction of kaempferol. During recent years, there is an increasing tendency towards the identification of kaempferol by different methods.
Collapse
Affiliation(s)
- Hooman Norouzi
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Fuad O Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq; Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq.
| | - Ayman M Al-Qaaneh
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt 19117 Jordan
| |
Collapse
|
2
|
Marquezin LP, Fialho MFP, Favarin A, de Lara JD, Pillat MM, Rosemberg DB, Oliveira SM. Diosmetin attenuates fibromyalgia-like symptoms in a reserpine-induced model in mice. Inflammopharmacology 2024; 32:2601-2611. [PMID: 38662182 DOI: 10.1007/s10787-024-01473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
Fibromyalgia is a potentially disabling idiopathic disease characterized by widespread chronic pain associated with comorbidities such as fatigue, anxiety, and depression. Current therapeutic approaches present adverse effects that limit adherence to therapy. Diosmetin, an aglycone of the flavonoid glycoside diosmin found in citrus fruits and the leaves of Olea europaea L., has antinociceptive, anti-inflammatory, and antioxidant properties. Here, we investigated the effect of diosmetin on nociceptive behaviors and comorbidities in an experimental fibromyalgia model induced by reserpine in mice. To induce the experimental fibromyalgia model, a protocol of subcutaneous injections of reserpine (1 mg/kg) was used once a day for three consecutive days in adult male Swiss mice. Mice received oral diosmetin on the fourth day after the first reserpine injection. Nociceptive (mechanical allodynia, muscle strength, and thermal hyperalgesia) and comorbid (depressive-like and anxiety behavior) parameters were evaluated. Potential adverse effects associated with diosmetin plus reserpine (locomotor alteration, cataleptic behavior, and body weight and temperature changes) were also evaluated. Oral diosmetin (0.015-1.5 mg/kg) reduced the mechanical allodynia, thermal hyperalgesia, and loss of muscle strength induced by reserpine. Diosmetin (0.15 mg/kg) also attenuated depressive-like and anxiety behaviors without causing locomotor alteration, cataleptic behavior, and alteration in weight and body temperature of mice. Overall, diosmetin can be an effective and safe therapeutic alternative to treat fibromyalgia symptoms, such as pain, depression and anxiety.
Collapse
Affiliation(s)
- Lara Panazzolo Marquezin
- Neurotoxicity and Psychopharmacology Laboratory-Pain Research Group, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Fernanda Pessano Fialho
- Neurotoxicity and Psychopharmacology Laboratory-Pain Research Group, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Amanda Favarin
- Neurotoxicity and Psychopharmacology Laboratory-Pain Research Group, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Jéssica Dotto de Lara
- Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Micheli Mainardi Pillat
- Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Denis Broock Rosemberg
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Camobi, 97105-900, Brazil
| | - Sara Marchesan Oliveira
- Neurotoxicity and Psychopharmacology Laboratory-Pain Research Group, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Camobi, 97105-900, Brazil.
| |
Collapse
|
3
|
Wang J, Li L, Wang Z, Feng A, Li H, Qaseem MF, Liu L, Deng X, Wu AM. Integrative analysis of the metabolome and transcriptome reveals the molecular regulatory mechanism of isoflavonoid biosynthesis in Ormosia henryi Prain. Int J Biol Macromol 2023; 246:125601. [PMID: 37392916 DOI: 10.1016/j.ijbiomac.2023.125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Flavonoids are important components of many phytopharmaceuticals, however, most studies on flavonoids and isoflavonoids have been conducted on herbaceous plants of the family Leguminosae, such as soybean, and less attention has been paid to woody plants. To fill this gap, we characterized the metabolome and transcriptome of five plant organs of Ormosia henryi Prain (OHP), a woody Leguminosae plant with great pharmaceutical value. Our results indicate that OHP possesses a relatively high content of isoflavonoids as well as significant diversity, with greater diversity of isoflavonoids in the roots. Combined with transcriptome data, the pattern of isoflavonoid accumulation was found to be highly correlated with differential expression genes. Furthermore, the use of trait-WGCNA network analysis identified OhpCHSs as a probable hub enzyme that directs the downstream isoflavonoid synthesis pathway. Transcription factors, such as MYB26, MYB108, WRKY53, RAV1 and ZFP3, were found to be involved in the regulation of isoflavonoid biosynthesis in OHP. Our findings will be beneficial for the biosynthesis and utilization of woody isoflavonoids.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Lu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Zhihua Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Anran Feng
- Department of Plant Biology, Michigan State University, MI 48824, USA
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Liting Liu
- Jiangxi Academy of Forestry Sciences, Nanchang 330032, China
| | - Xiaomei Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Zhou C, Xia S, Wen Q, Song Y, Jia Q, Wang T, Liu L, Ouyang T. Genetic structure of an endangered species Ormosia henryi in southern China, and implications for conservation. BMC PLANT BIOLOGY 2023; 23:220. [PMID: 37098472 PMCID: PMC10131447 DOI: 10.1186/s12870-023-04231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The evergreen broadleaved forest (EBLF) is an iconic vegetation type of East Asia, and it contributes fundamentally to biodiversity-based ecosystem functioning and services. However, the native habitat of EBLFs keeps on decreasing due to anthropogenic activities. Ormosia henryi is a valuable rare woody species in EBLFs that is particularly sensitive to habitat loss. In this study, ten natural populations of O. henryi in southern China were sampled, and then genotyping by sequencing (GBS) was applied to elucidate the standing genetic variation and population structure of this endangered species. RESULTS In ten O. henryi populations, 64,158 high-quality SNPs were generated by GBS. Based on these markers, a relatively low level of genetic diversity was found with the expected heterozygosity (He) ranging from 0.2371 to 0.2901. Pairwise FST between populations varied from 0.0213 to 0.1652, indicating a moderate level of genetic differentiation. However, contemporary gene flow between populations were rare. Assignment test and principal component analysis (PCA) both supported that O. henryi populations in southern China could be divided into four genetic groups, and prominent genetic admixture was found in those populations located in southern Jiangxi Province. Mantel tests and multiple matrix regression with randomization (MMRR) analyses suggested that isolation by distance (IBD) could be the possible reason for describing the current population genetic structure. In addition, the effective population size (Ne) of O. henryi was extremely small, and showed a continuous declining trend since the Last Glacial Period. CONCLUSIONS Our results indicate that the endangered status of O. henryi is seriously underestimated. Artificial conservation measures should be applied as soon as possible to prevent O. henryi from the fate of extinction. Further studies are needed to elucidate the mechanism that leading to the continuous loss of genetic diversity in O. henryi and help to develop a better conservation strategy.
Collapse
Affiliation(s)
- Chengchuan Zhou
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Shiqi Xia
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Qiang Wen
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Ying Song
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Quanquan Jia
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Tian Wang
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Liting Liu
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China.
| | - Tianlin Ouyang
- Jiangxi Provincial Forestry Science and Technology Experiment Center, Ganzhou, China.
| |
Collapse
|
5
|
Kaur B, Kumar B, Sirhindi G, Guleria N, Kaur J. Phenolic Biotransformations in Wheatgrass Juice after Primary and Secondary Fermentation. Foods 2023; 12:foods12081624. [PMID: 37107419 PMCID: PMC10138189 DOI: 10.3390/foods12081624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Fermented wheatgrass juice was prepared using a two-stage fermentation process by employing Saccharomyces cerevisiae and recombinant Pediococcus acidilactici BD16 (alaD+). During fermentation, a reddish-brown hue appeared in wheatgrass juice due to production of different types of red pigments. The fermented wheatgrass juice has considerably higher content of anthocyanins, total phenols and beta-carotenes as compared to unfermented wheatgrass juice. It has low ethanol content, which might be ascribed to the presence of certain phytolignans in wheatgrass juice. Several yeast-mediated phenolic transformations (such as bioconversion of coumaric acid, hydroxybenzoic acid, hydroxycinnamic acid and quinic acid into respective derivatives; glycosylation and prenylation of flavonoids; glycosylation of lignans; sulphonation of phenols; synthesis of carotenoids, diarylnonanoids, flavanones, stilbenes, steroids, quinolones, di- and tri-terpenoids and tannin) were identified in fermented wheatgrass juice using an untargeted liquid chromatography (LC)-mass spectrometry (MS)-matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF)/time-of-flight (TOF) technique. The recombinant P. acidilactici BD16 (alaD+) also supported flavonoid and lignin glycosylation; benzoic acid, hydroxycoumaric acid and quinic acid derivatization; and synthesis of anthraquinones, sterols and triterpenes with therapeutic benefits. The information presented in this manuscript may be utilized to elucidate the importance of Saccharomyces cerevisiae and P. acidilactici BD16 (alaD+) mediated phenolic biotransformations in developing functional food supplements such as fermented wheatgrass juice.
Collapse
Affiliation(s)
- Baljinder Kaur
- Systems Biology Laboratory, Department of Biotechnology and Food Technology, Punjabi University, Patiala 147002, Punjab, India
| | - Balvir Kumar
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala 147002, Punjab, India
| | - Nidhi Guleria
- Department of Biotechnology and Food Technology, Punjabi University, Patiala 147002, Punjab, India
| | - Jashandeep Kaur
- Department of Biotechnology and Food Technology, Punjabi University, Patiala 147002, Punjab, India
| |
Collapse
|
6
|
Liu J, Ye T, Yang S, Zhong X, He W, Xu M, Fang J, Deng M, Xu N, Zeng J, Qing Z. Antidepressant-like activity, active components and related mechanism of Hemerocallis citrina Baroni extracts. Front Pharmacol 2022; 13:967670. [PMID: 36110538 PMCID: PMC9469015 DOI: 10.3389/fphar.2022.967670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Hemerocallis citrina Baroni [Asphodelaceae], which is traditional herbal medicine, has been widely used for treating depressive disorders in Eastern-Asia countries. However, the active compounds and corresponding mechanism of anti-depression are not yet completely clarified. In this study, the anti-depressive activities of six H. citrina extracts were primarily evaluated. The results showed that the water extract of H. citrina flowers (HCW) displays significant anti-depressive activity. A total of 32 metabolites were identified from HCW by high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS) and nuclear magnetic resonance (NMR). And then, the anti-depressive activity of the high-level compound (rutin) in HCW was also estimated. The results indicated that rutin displayed significant anti-depressive activity and was one of the main active ingredients. Finally, the anti-depressive mechanisms of HCW and rutin were investigated based on the intestinal microorganisms. The results showed that HCW and rutin increase the diversity and richness of the intestinal flora and regulate the specific intestinal microorganisms such as Bacteroides and Desulfovibrio genera in depressed mice. This work marks the first comprehensive study of the active components, anti-depressive activities and corresponding mechanisms of different H. citrina extracts, which provide a potential possibility for developing new antidepressants.
Collapse
Affiliation(s)
- Jinghong Liu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Green Melody Bioengineering Group Company Limited, Changsha, China
| | - Tian Ye
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shuaiyong Yang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaohong Zhong
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Wei He
- Green Melody Bioengineering Group Company Limited, Changsha, China
| | - Mengtao Xu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jinpeng Fang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Miao Deng
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ning Xu
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Jianguo Zeng
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Datong Daylily Industrial Development Research Institute, Datong, China
- *Correspondence: Jianguo Zeng, ; Zhixing Qing,
| | - Zhixing Qing
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Datong Daylily Industrial Development Research Institute, Datong, China
- *Correspondence: Jianguo Zeng, ; Zhixing Qing,
| |
Collapse
|