1
|
Jesus A, Ratanji S, Cidade H, Sousa E, Cruz MT, Oliveira R, Almeida IF. Phenolics as Active Ingredients in Skincare Products: A Myth or Reality? Molecules 2025; 30:1423. [PMID: 40286007 PMCID: PMC11990743 DOI: 10.3390/molecules30071423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Phenolic compounds, with their diverse biological activities, are widely explored as cosmetic ingredients with photoprotective, antioxidant, anti-inflammatory, and anti-hyperpigmentation properties, offering a multitargeted approach to combat photo-induced skin aging. The study analyzed 1299 cosmetic products from 2021 to 2024 to understand the market impact of phenolic compounds and their mechanism of action against photo-induced skin damage. A total of 28 active phenolic compounds were identified and the prevalence of phenolics was 13.2% in anti-aging products, 5.2% in sunscreens and 4.8% in aftersun products. Bakuchiol and polyphenols, such as resveratrol, chrysin, and hesperidin methyl chalcone, were found in anti-aging products. Sunscreens and aftersun products were counted with ferulic and caffeic acids, and salicylic acid, respectively. Antioxidant activity was found to be the primary mechanism of action of phenolic compounds by scavenging reactive species, thus mitigating oxidative stress. Ferulic and caffeic acids, chrysin, and glucosylrutin can also absorb UV radiation, acting preventively against solar-induced skin damage. This study provides insights into the limited use of phenolic compounds in commercial cosmetics, despite their diverse biological activities, and suggests potential barriers to wider use in skin and sun care products.
Collapse
Affiliation(s)
- Ana Jesus
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (S.R.); (R.O.); (I.F.A.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Smeera Ratanji
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (S.R.); (R.O.); (I.F.A.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Matosinhos, Portugal
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (CESPU), 4585-116 Gandra, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Matosinhos, Portugal
| | - Maria T. Cruz
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal;
- CNC—Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| | - Rita Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (S.R.); (R.O.); (I.F.A.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP-BHS—Biomedical and Health Sciences Research Unit, FFP-I3ID Faculty of Health Sciences, University of Fernando Pessoa, 4200-150 Porto, Portugal
- RISE—Health, Faculty of Health Sciences, Fernando Pessoa University, Fernando Pessoa Teaching and Culture Foundation, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
| | - Isabel F. Almeida
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (S.R.); (R.O.); (I.F.A.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Banse SA, Coleman-Hulbert AL, Sedore CA, Johnson E, Lithgow GJ, Driscoll M, Phillips PC. Caenorhabditis Intervention Testing Program: all-trans retinoic acid-related compounds tamibarotene and bakuchiol do not extend lifespan in Caenorhabditis nematodes. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001517. [PMID: 40027526 PMCID: PMC11868923 DOI: 10.17912/micropub.biology.001517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025]
Abstract
The Caenorhabditis Intervention Testing Program recently characterized the longevity-promoting effects of the vitamin A derivative all-trans retinoic acid (atRA). Here, we test two atRA-related compounds, tamibarotene and bakuchiol, for longevity effects in three strains of Caenorhabditis species. Both tamibarotene, a potent RAR agonist, and bakuchiol, a meroterpene derived from Psoralea corylifolia , showed no significant increase in lifespan across a dosage range of six concentrations. Additionally, bakuchiol was broadly toxic at higher doses. These findings highlight the specificity of atRA's longevity effects and suggest that compounds related to atRA may not universally promote lifespan extension.
Collapse
Affiliation(s)
- Stephen A. Banse
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | | | - Christine A. Sedore
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - Erik Johnson
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - Gordon J. Lithgow
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
3
|
Yang A, Kong L, You Z, Li X, Guan J, Li F, Zhong L, Jiang H. A review of Psoralea corylifolia L.: a valuable plant with profound biological significance. Front Pharmacol 2025; 15:1521040. [PMID: 39902075 PMCID: PMC11788583 DOI: 10.3389/fphar.2024.1521040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/17/2024] [Indexed: 02/05/2025] Open
Abstract
Psoralea corylifolia L. (PCL) is an annual herb of the genus Psoralea in the family Fabaceae, and its mature fruit can be used medicinally as a precious medicinal herb to tonify muscles and bones. With the deepening of research, its applications to various industries, including food, agriculture, and cosmetics, with products being developed in countries such as Vietnam, India, and Japan. A total of 321 metabolites, including coumarins, flavonoids, meroterpenes, benzofurans, and dimers, were identified in PCL. PCL and related products have demonstrated therapeutic effects, such as antiosteoporosis effects, estrogen-like effects, anti-inflammatory properties, neuroprotection, antitumor activity, and vitiligo treatment. The expression mechanisms of these pharmacological effects are closely related to the regulation of the immune system, the inhibition of oxidative stress, and the induction of apoptosis. This paper summarizes the latest research on the ethnobotany, phytochemistry, processing technology, pharmacology, and hepatotoxicity of PCL. Furthermore, bibliometric analysis was used to systematically analyze the research hotspots and trends in PCL, which have never been addressed in previous reviews of PCL. In the future, it will be necessary to focus on the active metabolites of PCL, analyze its targets and signaling pathway network to address potential toxicity and side effects in clinical applications, and further expand the potential application of PCL in medicine.
Collapse
Affiliation(s)
- Anni Yang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Lingping Kong
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Zhibo You
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Xinyu Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Jian Guan
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Fengjin Li
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People’s Hospital, The Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Lingyun Zhong
- School of pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hai Jiang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| |
Collapse
|
4
|
Saini K, Chauhan S, Dar MO, Gupta S, Singh IP, Rawal RK, Gupta N. In Silico and In Vivo Evaluation of Anti-Arthritic Effects of Bakuchiol from Psoralea corylifolia Seeds in Experimental Rat Model. Chem Biodivers 2025; 22:e202401606. [PMID: 39262119 DOI: 10.1002/cbdv.202401606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Rheumatoid arthritis is an autoimmune disease mainly affecting the joints categorized by inflammation, swelling of the synovium and decrease in the joint movement. Bakuchiol, a meroterpene class of natural product present in Psoralea corylifolia known to possess anti-inflammatory effects by a variety of mechanisms. However, its effects in rheumatoid arthritis still remain unclear. In the present investigation, we studied the anti-arthritic effects of bakuchiol via in silico and in vivo experiments. It also showed antioxidant effects measured using DPPH assay where it showed free radical scavenging activity with IC50 value 468.26 μg/ml. Molecular Docking studies carried out on COX-1 (PDB ID: 3 N8Z), COX-2 (PDB ID: 4PH9) and TNF-α (PDB ID: 7JRA), proteins involved in inflammation in arthritis. Bakuchiol showed the maximum binding affinity for TNF-α with binding affinity score is -7.29 kcal/moland less affinity was observed for COX-1 and 2. In vivo antiarthritic effects were studied in arthritic female wistar rats model prepared by intradermal injection of freund's complete adjuvant. Bakuchiol was administered orally at dose of 10,20 and 40 mg/kg for 21 days. Our treatment showed that bakuchiol at 20 and 40 mg/kg exhibited significant anti-inflammatory effects (p<0.001) showed by significant decrease in paw volume, paw diameter, spleen and thymus weight and increase in pain threshold and body weight in arthritic rat model. A significant decrease in hematological parameters such as total leukocyte count (TLC), platelet count, CRP and rheumatoid arthritis factor (RF) and increase in red blood cells count, ESR and hemoglobin further demonstrated that bakuchiol treatment suppresses the progression of adjuvant induced arthritis (AIA) in arthritic rat model. Histological analysis further revealed that bakuchiol ameliorates the pathological manifestations of AIA and reverse the abnormality induced by AIA in rats shown by protection against bone necrosis involved with low influx of inflammatory cells. Therefore, in silico and in vivo results revealed that bakuchiol has the potential to be developed as potent antiarthritic agent.
Collapse
Affiliation(s)
- Kamal Saini
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India, 133207
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India, 140401
| | - Mohammad Ovais Dar
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India, 133207
| | - Sumeet Gupta
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India, 133207
| | - Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India, 160062
| | - Ravindra K Rawal
- Natural Product Chemistry Group, Chemical Sciences and Technology Division, CSIR-North East Institute of Science and Techno logy, Jorhat, Assam, 785006, India
| | - Nidhi Gupta
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India, 133207
| |
Collapse
|
5
|
Lin Y, Cheng L, Chen Y, Li W, Guo Q, Miao Y. TFEB signaling promotes autophagic degradation of NLRP3 to attenuate neuroinflammation in diabetic encephalopathy. Am J Physiol Cell Physiol 2024; 327:C1481-C1496. [PMID: 39437446 DOI: 10.1152/ajpcell.00322.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
Diabetic encephalopathy (DE), a neurological complication of diabetes mellitus, has an unclear etiology. Shreds of evidence show that the nucleotide-binding oligomerization domain-like receptor family protein 3 (NLRP3) inflammasome-induced neuroinflammation and transcription factor EB (TFEB)-mediated autophagy impairment may take part in DE development. The cross talk between these two pathways and their contribution to DE remains to be explored. A mouse model of type 2 diabetes mellitus (T2DM) exhibiting cognitive dysfunction was created, along with high-glucose (HG) cultured BV2 cells. Following, 3-methyladenine (3-MA) and rapamycin were used to modulate autophagy. To evaluate the potential therapeutic benefits of TFEB in DE, we overexpressed and knocked down TFEB in both mice and cells. Autophagy impairment and NLRP3 inflammasome activation were noticed in T2DM mice and HG-cultured BV2 cells. The inflammatory response caused by NLRP3 inflammasome activation was decreased by rapamycin-induced autophagy enhancement, while 3-MA treatment further deteriorated it. Nuclear translocation and expression of TFEB were hampered in HG-cultured BV2 cells and T2DM mice. Exogenous TFEB overexpression boosted NLRP3 degradation via autophagy, which in turn alleviated microglial activation as well as ameliorated cognitive deficits and neuronal damage. In addition, TFEB knockdown exacerbated neuroinflammation by decreasing autophagy-mediated NLRP3 degradation. Our findings have unraveled the pathogenesis of a previously underappreciated disease, implying that the activation of NLRP3 inflammasome and impairment of autophagy in microglia are significant etiological factors in the DE. The TFEB-mediated autophagy pathway can reduce neuroinflammation by enhancing NLRP3 degradation. This could potentially serve as a viable and innovative treatment approach for DE.NEW & NOTEWORTHY This article delves into the intricate connections between inflammation, autophagy, diabetes, and neurodegeneration, with a particular focus on a disease that is not yet fully understood-diabetic encephalopathy (DE). TFEB emerges as a pivotal regulator in balancing autophagy and inflammation in DE. Our findings highlight the crucial function of the TFEB-mediated autophagy pathway in mitigating inflammatory damage in DE, suggesting a new treatment strategy.
Collapse
Affiliation(s)
- Yijia Lin
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lizhen Cheng
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Chen
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qihao Guo
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Miao
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Ranjan S, Trivedi S, Sharma S, Khan S, Pandey R. Bakuchiol modulates acetylcholine synthesis and alleviates Aβ proteotoxicity. Nat Prod Res 2024; 38:3876-3880. [PMID: 37857572 DOI: 10.1080/14786419.2023.2265040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
The transmission of acetylcholine (ACh) is critically important for memory, learning, and behaviour. The most promising approaches for the treatment of cholinergic dysfunction involve the enhancement of ACh via nootropic phytomolecules. In the same line, the present study identifies the active molecule Bakuchiol derived from Psoralea corylifolia. Bakuchiol demonstrated significant elevation of ACh transmission, reduction of reactive oxygen species (ROS) levels, and extension of lifespan. Further investigation indicated that modulation of mRNA expression of genes encoding choline transporter, choline acetyltransferase, and acetylcholine transporter as possible effectors of amassed neural transmission. Moreover, Bakuchiol showed efficacy in reducing amyloid β and lipid levels, possibly through the upregulation of heat shock transcription factor 1 (hsf-1) and autophagy (lgg-1) genes. Overall, our findings establish the efficacy of Bakuchiol in modulating cholinergic dysfunction.
Collapse
Affiliation(s)
- Sachin Ranjan
- Ageing Biology Lab, Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Department of Biosciences, Integral University, Lucknow, India
| | - Shalini Trivedi
- Ageing Biology Lab, Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Shruti Sharma
- Ageing Biology Lab, Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Salman Khan
- Department of Biosciences, Integral University, Lucknow, India
| | - Rakesh Pandey
- Ageing Biology Lab, Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
7
|
Peng G, Li Y, Zeng Y, Sun B, Zhang L, Liu Q. Effect of glabridin combined with bakuchiol on UVB-induced skin damage and its underlying mechanism: An experimental study. J Cosmet Dermatol 2024; 23:2256-2269. [PMID: 38497297 DOI: 10.1111/jocd.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Research has demonstrated the anti-photoaging properties of glabridin and bakuchiol. METHODS The impact of glabridin, glabridin + bakuchiol, and bakuchiol on the levels of tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in mice skin fibroblasts was observed. Furthermore, we investigated the potential roles of fibronectin (FN), interferon-γ (IFN-γ), interleukin-22 (IL-22), and transforming growth factor-β (TGF-β) in the tissues, and evaluated their impact on the enzymatic levels in the skin. In conjunction with transcriptomic analysis, metabolomic profiling, and network pharmacology, all samples underwent comprehensive metabolomic and principal component analysis. The Venny2.1 method was utilized to identify variances in shared metabolites between the treatment group and the UVB group, as well as between the UVB group and the control group. Subsequently, a cluster heat map was generated to forecast and analyze metabolic pathways and targets. RESULTS The outcomes from the hematoxylin and eosin and toluidine blue staining revealed that glabridin and bakuchiol markedly decreased dermal thickness and suppressed mast cell infiltration in photoaged mice. Immunohistochemistry and Elisa analysis revealed that glabridin and bakuchiol effectively attenuated the levels of pro-inflammatory factors, including IL-1β, tumor necrosis factor-α, IL-22, and IFN-γ. Furthermore, an increase in the levels of anti-inflammatory factors such as FN and TGF-β was also observed. The determination of the contents of superoxide dismutase, hydroxypropyltransferase and malondialdehyde in mice dorsal skin revealed that glabridin and bakuchiol not only elevated the levels of superoxide dismutase and hydroxyproline, but also reduced malondialdehyde content. Due to the limited number of shared differential metabolites exclusively within Kyoto Encyclopedia of Genes and Genomes, comprehensive pathway enrichment analysis was not feasible. CONCLUSION This study demonstrates that glabridin and bakuchiol effectively impede photoaging and alleviate skin inflammation in mice.
Collapse
Affiliation(s)
- Guanjie Peng
- Fankol Biotechnology (Guangzhou) Co., Ltd., guangzhou, China
| | - Yangsi Li
- Fankol Biotechnology (Guangzhou) Co., Ltd., guangzhou, China
| | - Yiyan Zeng
- The First Affiliated Hospital Guizhou University of Chinese Medicine, Guiyang, China
| | - Bowen Sun
- Fankol Biotechnology (Guangzhou) Co., Ltd., guangzhou, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China
| | - Qingqing Liu
- School of Public Health, Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Zhao L, Zhang Z, Li P, Gao Y, Shi Y. Bakuchiol regulates TLR4/MyD88/NF-κB and Keap1/Nrf2/HO-1 pathways to protect against LPS-induced acute lung injury in vitro and in vivo. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3301-3312. [PMID: 37930390 DOI: 10.1007/s00210-023-02813-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Bakuchiol (Bak) possesses a protective effect in acute lung injury (ALI). Nonetheless, the molecular processes that regulate the protective activity of Bak in ALI remain elusive. Lipopolysaccharide (LPS)-treated rats and RLE-6TN cells were used as the ALI models in vivo and in vitro to investigate the function and mechanism of Bak. Rats were divided into four groups: control, LPS, LPS + Bak (30 mg/kg), and LPS + Bak (60 mg/kg). RLE-6TN cells were assigned into four groups: control, LPS, LPS + Bak (10 µM), and LPS + Bak (20 µM). Myeloperoxidase (MPO) and 4-hydroxy-2-nonenal (4-HNE) levels were detected by immunohistochemistry (IHC). The levels of TNF-α, IL-6, and IL-1β were quantified by ELISA. Apoptosis was analyzed by TdT-mediated dUTP nick-end labeling (TUNEL) staining and flow cytometry. Malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and reactive oxygen species (ROS) were assayed to evaluate oxidative stress. In LPS-induced rats, Bak attenuated pathological injury, lung wet/dry weight ratio, MPO expression, and protein concentration and cell number in bronchial alveolar lavage fluid (BALF). Bak decreased the secretion of TNF-α, IL-6, and IL-1β in BALF. Bak reduced MDA content and 4-HNE expression, and increased SOD and GSH-Px activities in lung tissues. Bak also repressed pulmonary apoptosis by decreasing Bax expression and enhancing Bcl-2 expression. In LPS-treated RLE-6TN cells, Bak downregulated the mRNA levels of TNF-α, IL-6, and IL-1β and inhibited the protein expression of iNOS and COX2. Bak decreased MDA level and ROS production and increased SOD and GSH-Px activities. Bak also suppressed cell apoptosis, reduced Bax expression, and increased Bcl-2 expression. Moreover, Bak decreased the expression of TLR4, MyD88, p-IκBα, and p-p65. Additionally, Bak inhibited Keap1 expression and increased Nrf2 and HO-1 levels. Bak protects against LPS-induced inflammation, oxidative stress, and apoptosis in ALI by regulating TLR4/MyD88/NF-κB and Keap1/Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Li Zhao
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Road, Xi'an, 710004, People's Republic of China
| | - Zhengliang Zhang
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Road, Xi'an, 710004, People's Republic of China
| | - Ping Li
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Road, Xi'an, 710004, People's Republic of China
| | - Yanxia Gao
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Road, Xi'an, 710004, People's Republic of China
| | - Yu Shi
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Road, Xi'an, 710004, People's Republic of China.
| |
Collapse
|
9
|
Zhang B, Cheng Y, Jian Q, Xiang S, Xu Q, Wang C, Yang C, Lin J, Zheng C. Sishen Pill and its active phytochemicals in treating inflammatory bowel disease and colon cancer: an overview. Front Pharmacol 2024; 15:1375585. [PMID: 38650627 PMCID: PMC11033398 DOI: 10.3389/fphar.2024.1375585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
The incidence of inflammatory bowel disease (IBD) and the associated risk of colon cancer are increasing globally. Traditional Chinese medicine (TCM) treatment has unique advantages. The Sishen Pill, a common Chinese patented drug used to treat abdominal pain and diarrhea, consists mainly of Psoraleae Fructus, Myristicae Semen, Euodiae Fructus, and Schisandra Chinensis. Modern research has confirmed that Sishen Pill and its active secondary metabolites, such as psoralen, myristicin, evodiamine, and schisandrin, can improve intestinal inflammation and exert antitumor pharmacological effects. Common mechanisms in treating IBD and colon cancer mainly include regulating inflammation-related signaling pathways such as nuclear factor-kappa B, mitogen-activated protein kinase, phosphatidylinositol 3-kinase, NOD-like receptor heat protein domain-related protein 3, and wingless-type MMTV integration site family; NF-E2-related factor 2 and hypoxia-inducible factor 1α to inhibit oxidative stress; mitochondrial autophagy and endoplasmic reticulum stress; intestinal immune cell differentiation and function through the Janus kinase/signal transducer and activator of transcription pathway; and improving the gut microbiota and intestinal barrier. Overall, existing evidence suggests the potential of the Sishen pill to improve IBD and suppress inflammation-to-cancer transformation. However, large-scale randomized controlled clinical studies and research on the safety of these clinical applications are urgently required.
Collapse
Affiliation(s)
- Boxun Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingying Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin Jian
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sirui Xiang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Xu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuchu Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Yang
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Zhang XQ, Xiang YN, Qin T, Zou JP, Guo QW, Han ST, Zhang ZY, Liu WW, Ding G, Dong JQ, Shi DH. Design, synthesis and biological evaluation of bakuchiol derivatives as multi-target agents for the treatment of Alzheimer's disease. Fitoterapia 2024; 174:105867. [PMID: 38382891 DOI: 10.1016/j.fitote.2024.105867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
The concept of multi-target-directed ligands offers fresh perspectives for the creation of brand-new Alzheimer's disease medications. To explore their potential as multi-targeted anti-Alzheimer's drugs, eighteen new bakuchiol derivatives were designed, synthesized, and evaluated. The structures of the new compounds were elucidated by IR, NMR, and HRMS. Eighteen compounds were assayed for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in vitro using Ellman's method. It was shown that most of the compounds inhibited AChE and BuChE to varying degrees, but the inhibitory effect on AChE was relatively strong, with fourteen compounds showing inhibition of >50% at the concentration of 200 μM. Among them, compound 3g (IC50 = 32.07 ± 2.00 μM) and compound 3n (IC50 = 34.78 ± 0.34 μM) showed potent AChE inhibitory activities. Molecular docking studies and molecular dynamics simulation showed that compound 3g interacts with key amino acids at the catalytically active site (CAS) and peripheral anionic site (PAS) of acetylcholinesterase and binds stably to acetylcholinesterase. On the other hand, compounds 3n and 3q significantly reduced the pro-inflammatory cytokines TNF-α and IL-6 released from LPS-induced RAW 264.7 macrophages. Compound 3n possessed both anti-acetylcholinesterase activity and anti-inflammatory properties. Therefore, an in-depth study of compound 3n is expected to be a multi-targeted anti-AD drug.
Collapse
Affiliation(s)
- Xiao-Qing Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Yan-Nan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Tian Qin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Jing-Pei Zou
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian-Wen Guo
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu-Tong Han
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Zhao-Yuan Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Wei-Wei Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China.
| | - Jing-Quan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China.
| | - Da-Hua Shi
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China.
| |
Collapse
|
11
|
Wang J, Liu Y, Guo Y, Liu C, Yang Y, Fan X, Yang H, Liu Y, Ma T. Function and inhibition of P38 MAP kinase signaling: Targeting multiple inflammation diseases. Biochem Pharmacol 2024; 220:115973. [PMID: 38103797 DOI: 10.1016/j.bcp.2023.115973] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Inflammation is a natural host defense mechanism that protects the body from pathogenic microorganisms. A growing body of research suggests that inflammation is a key factor in triggering other diseases (lung injury, rheumatoid arthritis, etc.). However, there is no consensus on the complex mechanism of inflammatory response, which may include enzyme activation, mediator release, and tissue repair. In recent years, p38 MAPK, a member of the MAPKs family, has attracted much attention as a central target for the treatment of inflammatory diseases. However, many p38 MAPK inhibitors attempting to obtain marketing approval have failed at the clinical trial stage due to selectivity and/or toxicity issues. In this paper, we discuss the mechanism of p38 MAPK in regulating inflammatory response and its key role in major inflammatory diseases and summarize the synthetic or natural products targeting p38 MAPK to improve the inflammatory response in the last five years, which will provide ideas for the development of novel clinical anti-inflammatory drugs based on p38 MAPK inhibitors.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongjian Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yushi Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cen Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuping Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxiao Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongliu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Tao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
12
|
Shoji M, Esumi T, Masuda T, Tanaka N, Okamoto R, Sato H, Watanabe M, Takahashi E, Kido H, Ohtsuki S, Kuzuhara T. Bakuchiol targets mitochondrial proteins, prohibitins and voltage-dependent anion channels: New insights into developing antiviral agents. J Biol Chem 2024; 300:105632. [PMID: 38199573 PMCID: PMC10862021 DOI: 10.1016/j.jbc.2024.105632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
We previously reported that bakuchiol, a phenolic isoprenoid anticancer compound, and its analogs exert anti-influenza activity. However, the proteins targeted by bakuchiol remain unclear. Here, we investigated the chemical structures responsible for the anti-influenza activity of bakuchiol and found that all functional groups and C6 chirality of bakuchiol were required for its anti-influenza activity. Based on these results, we synthesized a molecular probe containing a biotin tag bound to the C1 position of bakuchiol. With this probe, we performed a pulldown assay for Madin-Darby canine kidney cell lysates and purified the specific bakuchiol-binding proteins with SDS-PAGE. Using nanoLC-MS/MS analysis, we identified prohibitin (PHB) 2, voltage-dependent anion channel (VDAC) 1, and VDAC2 as binding proteins of bakuchiol. We confirmed the binding of bakuchiol to PHB1, PHB2, and VDAC2 in vitro using Western blot analysis. Immunofluorescence analysis showed that bakuchiol was bound to PHBs and VDAC2 in cells and colocalized in the mitochondria. The knockdown of PHBs or VDAC2 by transfection with specific siRNAs, along with bakuchiol cotreatment, led to significantly reduced influenza nucleoprotein expression levels and viral titers in the conditioned medium of virus-infected Madin-Darby canine kidney cells, compared to the levels observed with transfection or treatment alone. These findings indicate that reducing PHBs or VDAC2 protein, combined with bakuchiol treatment, additively suppressed the growth of influenza virus. Our findings indicate that bakuchiol exerts anti-influenza activity via a novel mechanism involving these mitochondrial proteins, providing new insight for developing anti-influenza agents.
Collapse
Affiliation(s)
- Masaki Shoji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
| | - Tomoyuki Esumi
- Institute of Pharmacognosy Attached to Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Narue Tanaka
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Risa Okamoto
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Hinako Sato
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Mihiro Watanabe
- Institute of Pharmacognosy Attached to Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Kuzuhara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
| |
Collapse
|
13
|
Nizam NN, Mahmud S, Ark SMA, Kamruzzaman M, Hasan MK. Bakuchiol, a natural constituent and its pharmacological benefits. F1000Res 2023; 12:29. [PMID: 38021404 PMCID: PMC10683784 DOI: 10.12688/f1000research.129072.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Background and aims Natural compounds extracted from medicinal plants have recently gained attention in therapeutics as they are considered to have lower Toxicity and higher tolerability relative to chemically synthesized compounds. Bakuchiol from Psoralea corylifolia L. is one such compound; it is a type of meroterpene derived from the leaves and seeds of Psoralea corylifolia plants. Natural sources of bakuchiol have been used in traditional Chinese and Indian medicine for centuries due to its preventive benefits against tumors and inflammation. It plays a strong potential role as an antioxidant with impressive abilities to remove Reactive Oxygen Species (ROS). This review has focused on bakuchiol's extraction, therapeutic applications, and pharmacological benefits. Methods A search strategy has been followed to retrieve the relevant newly published literature on the pharmacological benefits of bakuchiol. After an extensive study of the retrieved articles and maintaining the inclusion and exclusion criteria, 110 articles were finally selected for this review. Results Strong support of primary research on the protective effects via antitumorigenic, anti-inflammatory, antioxidative, antimicrobial, and antiviral activities are delineated. Conclusions From ancient to modern life, medicinal plants have always been drawing the attention of human beings to alleviate ailments for a healthy and balanced lifestyle. This review is a comprehensive approach to highlighting bona fide essential pharmacological benefits and mechanisms underlying their therapeutic applications.
Collapse
Affiliation(s)
- Nuder Nower Nizam
- Department of Public Health, American International University Bangladesh, Dhaka, 1229, Bangladesh
| | - Sohel Mahmud
- Department of Biochemistry and Molecular Biology, Tajgaon College, Dhaka, National University, Bangladesh, Gazipur, 1704, Bangladesh
| | - S M Albar Ark
- Department of Biochemistry and Molecular Biology, Tajgaon College, Dhaka, National University, Bangladesh, Gazipur, 1704, Bangladesh
| | - Mohammad Kamruzzaman
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md. Kamrul Hasan
- Department of Biochemistry and Molecular Biology, Tajgaon College, Dhaka, National University, Bangladesh, Gazipur, 1704, Bangladesh
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
| |
Collapse
|
14
|
Gao D, Cho CW, Yang Z, Li X, Kang JS. Identification and Quantitation of the Bioactive Components in Wasted Aralia elata Leaves Extract with Endothelial Protective Activity. Molecules 2023; 28:5907. [PMID: 37570877 PMCID: PMC10421206 DOI: 10.3390/molecules28155907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Aralia elata, a renowned medicinal plant with a rich history in traditional medicine, has gained attention for its potential therapeutic applications. However, the leaves of this plant have been largely overlooked and discarded due to limited knowledge of their biological activity and chemical composition. To bridge this gap, a comprehensive study was conducted to explore the therapeutic potential of the 70% ethanol extract derived from Aralia elata leaves (LAE) for the treatment of cardiovascular disease (CVD). Initially, the cytotoxic effects of LAE on human umbilical vein endothelial cells (HUVECs) were assessed, revealing no toxicity within concentrations up to 5 μg/mL. This suggests that LAE could serve as a safe raw material for the development of health supplements and drugs aimed at promoting cardiovascular well-being. Furthermore, the study found that LAE extract demonstrated anti-inflammatory properties in HUVECs by modulating the PI3K/Akt and MAPK signaling pathways. These findings are particularly significant as inflammation plays a crucial role in the progression of CVD. Moreover, LAE extract exhibited the ability to suppress the expression of adhesion molecules VCAM-1 and ICAM-1, which are pivotal in leukocyte migration to inflamed blood vessels observed in various pathological conditions. In conjunction with the investigation on therapeutic potential, the study also established an optimal HPLC-PDA-ESI-MS/MS method to identify and confirm the chemical constituents present in 24 samples collected from distinct regions in South Korea. Tentative identification revealed the presence of 14 saponins and nine phenolic compounds, while further analysis using PCA and PLS-DA allowed for the differentiation of samples based on their geographical origins. Notably, specific compounds such as chlorogenic acid, isochlorogenic acid A, and quercitrin emerged as marker compounds responsible for distinguishing samples from different regions. Overall, by unraveling its endothelial protective activity and identifying key chemical constituents, this research not only offers valuable insights for the development of novel treatments but also underscores the importance of utilizing and preserving natural resources efficiently.
Collapse
Affiliation(s)
- Dan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (D.G.); (Z.Y.)
| | - Chong-Woon Cho
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Zemin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (D.G.); (Z.Y.)
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (D.G.); (Z.Y.)
| | - Jong-Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
15
|
Liu Y, Shao R, Suo T, Zhu J, Liu E, Wang Y, Miao L, Gao X. Traditional Chinese Medicine Danzhi qing'e decoction inhibits inflammation-associated prostatic hyperplasia via inactivation of ERK1/2 signal pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116354. [PMID: 36906158 DOI: 10.1016/j.jep.2023.116354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammation plays a critical role during benign prostatic hyperplasia (BPH) development. Danzhi qing'e (DZQE) decoction is a traditional Chinese medicine that has been widely used for estrogen and androgen-related diseases. However, its effect on inflammation-related BPH remains unclear. AIM OF THE STUDY To investigate the effect of DZQE on inhibition of inflammation-related BPH, and further identify the possible mechanism involved. METHODS AND MATERIALS Experimental autoimmune prostatitis (EAP)-induced BPH was established and then 2.7 g/kg of DZQE was administrated orally for 4 weeks. The prostate sizes, weights and prostate index (PI) values were recorded. Hematoxylin and eosin (H&E) was performed for pathological analyses. Macrophage infiltrate was evaluated by Immunohistochemical (IHC). The inflammatory cytokine levels were measured by Rt-PCR and ELISA methods. The phosphorylation of ERK1/2 was examined by Western blot. The expression differences of mRNA expressions between EAP-induced and oestrogen/testosterone (E2/T)-induced BPH was investigated by RNA sequencing analyses. In vitro, human prostatic epithelial BPH-1 cells were stimulated with the conditioned medium from monocyte THP-1-derived M2 macrophages (M2CM), followed by treatment of Tanshinone IIA (Tan IIA), Bakuchiol (Ba), ERK1/2 antagonist PD98059 or ERK1/2 agonist C6-Ceramide. The ERK1/2 phosphorylation and cell proliferation were then detected by Western blotting and CCK8 assay. RESULTS DZQE significantly inhibited the prostate enlargement and decreased PI value in EAP rats. Pathological analysis showed that DZQE alleviated prostate acinar epithelial cell proliferation by decreasing and reduction of CD68+ and CD206+ macrophage infiltration in the prostate. The levels of cytokines TNF-α, IL-1β, IL-17, MCP-1, TGF-β, and IgG in EAP rats' prostate or serum were significantly suppressed by DZQE as well. Moreover, mRNA sequencing data showed that the expressions of inflammation-related genes were elevated in EAP-induced BPH but not in E2/T-induced BPH. ERK1/2-related genes expression has been found in both E2/T and EAP-induced BPH. ERK1/2 is one of the core signal pathways involved in EAP-induced BPH, which was activated in EAP group but inactivated in DZQE group. In vitro, two active components of DZQE Tan IIA and Ba inhibited M2CM-induced BPH-1 cell proliferation, similarly to ERK1/2 inhibitor PD98059 did. Meanwhile, Tan IIA and Ba inhibited M2CM-induced ERK1/2 signal activation in BPH-1 cells. When re-activated the ERK1/2 by its activator C6-Ceramide, the inhibitory effects of Tan IIA and Ba on BPH-1 cell proliferation were blocked. CONCLUSION DZQE suppressed inflammation-associated BPH via regulation of ERK1/2 signal by Tan IIA and Ba.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Shao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tongchuan Suo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Junjie Zhu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Erwei Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yajing Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Miao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xiumei Gao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
16
|
Swindell WR, Bojanowski K, Singh P, Randhawa M, Chaudhuri RK. Bakuchiol and ethyl (linoleate/oleate) synergistically modulate endocannabinoid tone in keratinocytes and repress inflammatory pathway mRNAs. JID INNOVATIONS 2022; 3:100178. [PMID: 36992949 PMCID: PMC10041561 DOI: 10.1016/j.xjidi.2022.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 12/27/2022] Open
Abstract
The endocannabinoid (eCB) system plays an active role in epidermal homeostasis. Phytocannabinoids such as cannabidiol modulate this system but also act through eCB-independent mechanisms. This study evaluated the effects of cannabidiol, bakuchiol (BAK), and ethyl (linoleate/oleate) (ELN) in keratinocytes and reconstituted human epidermis. Molecular docking simulations showed that each compound binds the active site of the eCB carrier FABP5. However, BAK and ethyl linoleate bound this site with the highest affinity when combined 1:1 (w/w), and in vitro assays showed that BAK + ELN most effectively inhibited FABP5 and fatty acid amide hydrolase. In TNF-stimulated keratinocytes, BAK + ELN reversed TNF-induced expression shifts and uniquely downregulated type I IFN genes and PTGS2 (COX2). BAK + ELN also repressed expression of genes linked to keratinocyte differentiation but upregulated those associated with proliferation. Finally, BAK + ELN inhibited cortisol secretion in reconstituted human epidermis skin (not observed with cannabidiol). These results support a model in which BAK and ELN synergistically interact to inhibit eCB degradation, favoring eCB mobilization and inhibition of downstream inflammatory mediators (e.g., TNF, COX-2, type I IFN). A topical combination of these ingredients may thus enhance cutaneous eCB tone or potentiate other modulators, suggesting novel ways to modulate the eCB system for innovative skincare product development.
Collapse
Affiliation(s)
- William R. Swindell
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- Correspondence: William R. Swindell, Department of Internal Medicine, UT Southwestern Medical Center, 5959 Harry Hines Boulevard, Ste 7.700, Dallas, Texas 75390-9175, USA.
| | | | - Parvesh Singh
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville, South Africa
| | | | | |
Collapse
|
17
|
Lu J, Hu D, Ma C, Shuai B. Advances in Our Understanding of the Mechanism of Action of Drugs (including Traditional Chinese Medicines) for the Intervention and Treatment of Osteoporosis. Front Pharmacol 2022; 13:938447. [PMID: 35774616 PMCID: PMC9237325 DOI: 10.3389/fphar.2022.938447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis (OP) is known as a silent disease in which the loss of bone mass and bone density does not cause obvious symptoms, resulting in insufficient treatment and preventive measures. The losses of bone mass and bone density become more severe over time and an only small percentage of patients are diagnosed when OP-related fractures occur. The high disability and mortality rates of OP-related fractures cause great psychological and physical damage and impose a heavy economic burden on individuals and society. Therefore, early intervention and treatment must be emphasized to achieve the overall goal of reducing the fracture risk. Anti-OP drugs are currently divided into three classes: antiresorptive agents, anabolic agents, and drugs with other mechanisms. In this review, research progress related to common anti-OP drugs in these three classes as well as targeted therapies is summarized to help researchers and clinicians understand their mechanisms of action and to promote pharmacological research and novel drug development.
Collapse
|
18
|
Lim HS, Sohn E, Kim YJ, Kim BY, Kim JH, Jeong SJ. Ethanol Extract of Elaeagnus glabra f. oxyphylla Branches Alleviates the Inflammatory Response Through Suppression of Cyclin D3/Cyclin-Dependent Kinase 11p58 Coupled to Lipopolysaccharide-Activated BV-2 Microglia. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221075079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neuroinflammation plays a pivotal role in the pathogenesis of neurodegenerative diseases and is characterized by microglial dysregulation. Here, we explored the beneficial effects of a leaf extract of Elaeagnus glabra f. oxyphylla (EGFO), a native medicinal plant to Korea, South China, Japan, and Taiwan, on neuroinflammation using lipopolysaccharide (LPS)-stimulated BV-2 microglia. Levels of the inflammatory mediators were determined by enzyme-linked immunosorbent assays and reverse transcription–polymerase chain reaction. The phospho levels of mitogen-activated protein kinases, which are key kinase molecules in the inflammatory signaling pathway in microglia, were analyzed by Western blotting. Treatment with EGFO significantly suppressed the LPS-mediated induction of nitric oxide and prostaglandin E2. Consistently, EGFO treatment in LPS-stimulated BV-2 cells markedly reduced the inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) levels. The best concentration of EGFO that could reduce TNF-α and IL-6 was 100 μg/mL. EGFO relatively reduced the messenger RNA expression of TNF-α and IL-6 by 0.36 and 0.32-fold ratio, respectively, compared to LPS treatment. Moreover, EGFO markedly reduced the phospho levels of p38 and the c-jun N-terminal kinase. Furthermore, antibody microarray and immunoblotting data revealed that the pharmacological mechanisms driving the antineuroinflammatory action of EGFO involve prevention of the cyclin D3/cyclin-dependent kinase 11p58 (CDK11p58) interaction. In conclusion, our results demonstrate that EGFO alleviates the inflammatory response through the suppression of cyclin D3/CDK11p58 coupling in LPS-activated BV-2 microglia. We propose the potential of EGFO as a novel drug candidate for neurodegenerative diseases by targeting neuroinflammation.
Collapse
Affiliation(s)
- Hye-Sun Lim
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Eunjin Sohn
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Yu Jin Kim
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Bu-Yeo Kim
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | | | - Soo-Jin Jeong
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| |
Collapse
|
19
|
Ma Q, Bian M, Gong G, Bai C, Liu C, Wei C, Quan ZS, Du HH. Synthesis and Evaluation of Bakuchiol Derivatives as Potent Anti-inflammatory Agents in Vitro and in Vivo. JOURNAL OF NATURAL PRODUCTS 2022; 85:15-24. [PMID: 35000392 DOI: 10.1021/acs.jnatprod.1c00377] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bakuchiol, a prenylated phenolic monoterpene derived from the fruit of Psoralen corylifolia L. (Buguzhi), is widely used to treat tumors, viruses, inflammation, and bacterial infections. In this study, we designed and synthesized 30 bakuchiol derivatives to identify new anti-inflammatory drugs. The anti-inflammatory activities of the derivatives were screened using lipopolysaccharide-induced RAW264.7 cells. To evaluate the anti-inflammatory activity of the compounds, we measured nitric oxide (NO), interleukin-6, and tumor necrosis factor-α production. Based on the screening results, compound 7a displayed more pronounced activity than bakuchiol and celecoxib. Furthermore, the mechanistic studies indicated that 7a inhibited pro-inflammatory cytokine release, which was correlated with activation of the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling pathway and blockade of the nuclear factor-κB/mitogen-activated protein kinase signaling pathway. The in vivo anti-inflammatory activity in zebrafish indicated that 7a inhibited NO and reactive oxygen species production in a dose-dependent manner. These results indicate that 7a is a potential candidate for development as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Qianqian Ma
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, Inner Mongolia, People's Republic of China
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao 028000, People's Republic of China
| | - Ming Bian
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, Inner Mongolia, People's Republic of China
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao 028000, People's Republic of China
| | - Guohua Gong
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, Inner Mongolia, People's Republic of China
- First Clinical Medical of Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, People's Republic of China
| | - Chunmei Bai
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, Inner Mongolia, People's Republic of China
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao 028000, People's Republic of China
| | - Chunyan Liu
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, Inner Mongolia, People's Republic of China
- School of Pharmacy, Yanbian University, Yanji City 133002, Jilin, People's Republic of China
| | - Chengxi Wei
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, Inner Mongolia, People's Republic of China
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao 028000, People's Republic of China
| | - Zhe-Shan Quan
- School of Pharmacy, Yanbian University, Yanji City 133002, Jilin, People's Republic of China
| | - Huan-Huan Du
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, Inner Mongolia, People's Republic of China
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao 028000, People's Republic of China
| |
Collapse
|
20
|
Vyas P, Tulsawani R, Vohora D. Dual Targeting by Inhibition of Phosphoinositide-3-Kinase and Mammalian Target of Rapamycin Attenuates the Neuroinflammatory Responses in Murine Hippocampal Cells and Seizures in C57BL/6 Mice. Front Immunol 2021; 12:739452. [PMID: 34887852 PMCID: PMC8650161 DOI: 10.3389/fimmu.2021.739452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Emerging evidence suggests the association of seizures and inflammation; however, underlying cell signaling mechanisms are still not fully understood. Overactivation of phosphoinositide-3-kinases is associated with both neuroinflammation and seizures. Herein, we speculate the PI3K/Akt/mTOR pathway as a promising therapeutic target for neuroinflammation-mediated seizures and associated neurodegeneration. Firstly, we cultured HT22 cells for detection of the downstream cell signaling events activated in a lipopolysaccharide (LPS)-primed pilocarpine (PILO) model. We then evaluated the effects of 7-day treatment of buparlisib (PI3K inhibitor, 25 mg/kg p.o.), dactolisib (PI3K/mTOR inhibitor, 25 mg/kg p.o.), and rapamycin (mTORC1 inhibitor, 10 mg/kg p.o.) in an LPS-primed PILO model of seizures in C57BL/6 mice. LPS priming resulted in enhanced seizure severity and reduced latency. Buparlisib and dactolisib, but not rapamycin, prolonged latency to seizures and reduced neuronal loss, while all drugs attenuated seizure severity. Buparlisib and dactolisib further reduced cellular redox, mitochondrial membrane potential, cleaved caspase-3 and p53, nuclear integrity, and attenuated NF-κB, IL-1β, IL-6, TNF-α, and TGF-β1 and TGF-β2 signaling both in vitro and in vivo post-PILO and LPS+PILO inductions; however, rapamycin mitigated the same only in the PILO model. Both drugs protected against neuronal cell death demonstrating the contribution of this pathway in the seizure-induced neuronal pyknosis; however, rapamycin showed resistance in a combination model. Furthermore, LPS and PILO exposure enhanced pAkt/Akt and phospho-p70S6/total-p70S6 kinase activity, while buparlisib and dactolisib, but not rapamycin, could reduce it in a combination model. Partial rapamycin resistance was observed possibly due to the reactivation of the pathway by a functionally different complex of mTOR, i.e., mTORC2. Our study substantiated the plausible involvement of PI3K-mediated apoptotic and inflammatory pathways in LPS-primed PILO-induced seizures and provides evidence that its modulation constitutes an anti-inflammatory mechanism by which seizure inhibitory effects are observed. We showed dual inhibition by dactolisib as a promising approach. Targeting this pathway at two nodes at a time may provide new avenues for antiseizure therapies.
Collapse
Affiliation(s)
- Preeti Vyas
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rajkumar Tulsawani
- Defense Institute of Physiology & Allied Science, Defense Research and Development Organization, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
21
|
Chen Y, Li L, Zhang J, Cui H, Wang J, Wang C, Shi M, Fan H. Dexmedetomidine Alleviates Lipopolysaccharide-Induced Hippocampal Neuronal Apoptosis via Inhibiting the p38 MAPK/c-Myc/CLIC4 Signaling Pathway in Rats. Mol Neurobiol 2021; 58:5533-5547. [PMID: 34363182 DOI: 10.1007/s12035-021-02512-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022]
Abstract
Dexmedetomidine (DEX) has multiple biological effects. Here, we investigated the neuroprotective role and molecular mechanism of DEX against lipopolysaccharide (LPS)-induced hippocampal neuronal apoptosis. Sprague Dawley rats were intraperitoneally injected with LPS (10 mg/kg) and/or DEX (30 µg/kg). We found that DEX improved LPS-induced alterations of hippocampal microstructure (necrosis and neuronal loss in the CA1 and CA3 regions) and ultrastructure (mitochondrial damage). DEX also attenuated LPS-induced inflammation and hippocampal apoptosis by inhibiting the increase of interleukin-1β, interleukin-6, interleukin-18, and tumor necrosis factor-α levels and downregulating the expression of mitochondrial apoptosis pathway-related proteins. Moreover, DEX prevented the LPS-induced activation of the c-Myc/chloride intracellular channel 4 (CLIC4) pathway. DEX inhibited the p38 MAPK pathway, but not JNK and ERK. To further clarify whether DEX alleviated LPS-induced neuronal apoptosis through the p38 MAPK/c-Myc/CLIC4 pathway, we treated PC12 cells with p38 MAPK inhibitor SB203582 (10 µM). DEX had the same effect as SB203582 in reducing the protein and mRNA expression of c-Myc and CLIC4. Furthermore, DEX and SB203582 diminished LPS-induced apoptosis, indicated by decreased Bax and Tom20 fluorescent double-stained cells, reduced annexin V-FITC/PI apoptosis rate, and reduced protein expression levels of Bax, cytochrome C, cleaved caspase-9, and cleaved caspase-3. Taken together, the findings indicate that DEX attenuates LPS-induced hippocampal neuronal apoptosis by regulating the p38 MAPK/c-Myc/CLIC4 signaling pathway. These findings provide new insights into the mechanism of Alzheimer's disease and depression and may help aid in drug development for these diseases.
Collapse
Affiliation(s)
- Yongping Chen
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Province, Harbin, 150030, People's Republic of China
| | - Lin Li
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Province, Harbin, 150030, People's Republic of China
| | - Jiuyan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Province, Harbin, 150030, People's Republic of China
| | - Hailin Cui
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Province, Harbin, 150030, People's Republic of China
| | - Jiucheng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Province, Harbin, 150030, People's Republic of China
| | - Chuqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Province, Harbin, 150030, People's Republic of China
| | - Mingxian Shi
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Province, Harbin, 150030, People's Republic of China
| | - Honggang Fan
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Province, Harbin, 150030, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
22
|
The benzofuran glycosides from the fruits of Psoralea corylifolia L. Fitoterapia 2021; 155:105057. [PMID: 34655701 DOI: 10.1016/j.fitote.2021.105057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022]
Abstract
Six new glucosides of benzofuran (1-6), together with three known glucosides of benzofuran (8, 9, 14), nine flavonoids (12, 13, 15, 18, 19, 20, 21, 22 and 24), three coumarins (16, 17, 23) and four other-typic compounds (7, 10, 11 and 25) were isolated from the fruits of Psoralia corylifolia L. Their structures were elucidated by extensive spectroscopic methods. The biosynthesis pathway of benzofuran system was discussed. Besides, all isolated compounds and additional ring-opening derivatives of psoralen/isopsoralen (P-1, P-2, IP-1 and IP-2) were assayed for inhibition of nitric oxide (NO) production on lipopolysaccharides-induced RAW 264.7 macrophage cells. The results of the assay showed that the glycosides showed weaker or no effects, while most isolated non-glycoside compounds showed moderate or high activities. And the structure-activity relationships of non-glycoside compounds were discussed.
Collapse
|
23
|
Design and Engineering of "Green" Nanoemulsions for Enhanced Topical Delivery of Bakuchiol Achieved in a Sustainable Manner: A Novel Eco-Friendly Approach to Bioretinol. Int J Mol Sci 2021; 22:ijms221810091. [PMID: 34576253 PMCID: PMC8472396 DOI: 10.3390/ijms221810091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 01/04/2023] Open
Abstract
In the present work, we establish novel "environmentally-friendly" oil-in-water nanoemulsions to enhance the transdermal delivery of bakuchiol, the so-called "bioretinol" obtained from powdered Psoralea corylifolia seeds via a sustainable process, i.e., using a supercritical fluid extraction approach with pure carbon dioxide (SC-CO2). According to Green Chemistry principles, five novel formulations were stabilized by "green" hybrid ionic surfactants such as coco-betaine-surfactin molecules obtained from coconut and fermented rapeseed meal. Preliminary optimization studies involving three dispersion stability tests, i.e., centrifugation, heating, and cooling cycles, indicated the most promising candidates for further physicochemical analysis. Finally, nanoemulsion colloidal characterization provided by scattering (dynamic and electrophoretic light scattering as well as backscattering), microscopic (transmission electron and confocal laser scanning microscopy), and spectroscopic (UV-Vis spectroscopy) methods revealed the most stable nanocarrier for transdermal biological investigation. In vitro, topical experiments provided on human skin cell line HaCaT keratinocytes and normal dermal NHDF fibroblasts indicated high cell viability upon treatment of the tested formulation with a final 0.02-0.2 mg/mL bakuchiol concentration. This excellent biocompatibility was confirmed by ex vivo and in vivo tests on animal and human skin tissue. The improved permeability and antiaging potential of the bakuchiol-encapsulated rich extract were observed, indicating that the obtained ecological nanoemulsions are competitive with commercial retinol formulations.
Collapse
|
24
|
Phochantachinda S, Chatchaisak D, Temviriyanukul P, Chansawang A, Pitchakarn P, Chantong B. Ethanolic Fruit Extract of Emblica officinalis Suppresses Neuroinflammation in Microglia and Promotes Neurite Outgrowth in Neuro2a Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6405987. [PMID: 34539802 PMCID: PMC8443350 DOI: 10.1155/2021/6405987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022]
Abstract
Inhibiting neuroinflammation and modulating neurite outgrowth could be a promising strategy to prevent neurological disorders. Emblica officinalis (EO) may be a potent agent against them. Although EO extract reportedly has anti-inflammatory properties in macrophages, there is limited knowledge about its neuroprotective activity by suppressing microglia-mediated proinflammatory cytokine production and inducing neurite outgrowth. The present study aimed to elucidate the effect of EO fruit extract on the lipopolysaccharide- (LPS-) induced neuroinflammation using microglial (BV2) and neuroblastoma (Neuro2a) cells. The results demonstrated that, in LPS-treated BV2 cells, EO fruit extract reduced nitric oxide, interleukin-6, and tumor necrotic factor-α production. It also enhanced the neurite length of Neuro2a cells, which was linked to the upregulation of TuJ1 and MAP2 expressions. In conclusion, these findings indicate that the ethanolic extract of EO fruits has promising neuroprotective potential to exhibit antineuroinflammation activity and accelerative effect on neurite outgrowth in vitro. Therefore, EO fruit extract can be considered a novel herbal medicine candidate for managing neuroinflammatory diseases.
Collapse
Affiliation(s)
- Sataporn Phochantachinda
- Prasu-Arthorn Animal Hospital, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Duangthip Chatchaisak
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Anchana Chansawang
- The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Boonrat Chantong
- Department of Pre-Clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
25
|
Bakuchiol ameliorates cerebral ischemia-reperfusion injury by modulating NLRP3 inflammasome and Nrf2 signaling. Respir Physiol Neurobiol 2021; 292:103707. [PMID: 34087492 DOI: 10.1016/j.resp.2021.103707] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/11/2021] [Accepted: 05/30/2021] [Indexed: 11/21/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) injury is a common cerebrovascular disease with high mortality. Bakuchiol (BAK), extracted from the seeds of psoralea corylifolia, exhibits anti-inflammatory effects on lung, kidney and heart injuries. However, the effect of BAK on brain I/R injury remains elusive. In our study, a cerebral I/R model in mice was established by 1-h middle cerebral artery occlusion and 24-h reperfusion (1-h MCAO/24-h R). Prior to it, mice were gavaged with BAK (2.5 or 5 mg/kg) per day for 5 days. BAK pre-treatment improved neurological deficit, and reduced infarct volume, cerebral edema and neuronal injury in MCAO/R-injured mice. BAK decreased the number of Iba1-immunoreactive cells in the brain, indicating a reduction of microglial activation. BAK also reduced the expressions of NLRP3, ASC, cleaved-caspase-1, IL-1β and IL-18. BAK triggered Nrf2 nuclear accumulation and elevated HO-1 level. Further, the role of BAK was explored in BV-2 microglia with 3-h oxygen-glucose deprivation/24-h reperfusion (3-h OGD/24-h R). It was found that the functions of BAK in vitro were consistent with those in vivo, as manifested by reduced NLRP3 inflammasome and activated Nrf2 signaling. In addition, BV-2 cells were treated with Brusatol, an Nrf2 inhibitor. Results showed that Brusatol partially reversed the protective effect of BAK on OGD/R-injured BV-2 cells, further confirming that BAK might exhibit its anti-inflammatory property via activating Nrf2 signaling. In short, BAK is more meaningful in improving cerebral ischemic injury through suppressing NLRP3-mediated inflammatory response and activating the Nrf2 signaling pathway.
Collapse
|
26
|
Kim KJ, Paik HD, Kim JY. Immune-Enhancing Effects of Lactobacillus plantarum 200655 Isolated from Korean Kimchi in a Cyclophosphamide-Induced Immunocompromised Mouse Model. J Microbiol Biotechnol 2021; 31:726-732. [PMID: 33820888 PMCID: PMC9705930 DOI: 10.4014/jmb.2103.03028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022]
Abstract
In this study, we evaluated the immune-enhancing activity of kimchi-derived Lactobacillus plantarum 200655 on immune suppression by cyclophosphamide (CP) in ICR mice. Animals were fed distilled water or 1×109 colony-forming unit/kg B.W. 200655 or Lactobacillus rhamnosus GG as a positive control for 14 days. An in vivo model of immunosuppression was induced using CP 150 and 100 mg/kg B.W. at 7 and 10 days, respectively. Body weight, spleen index, spleen weight, and gene expression were measured to estimate the immune-enhancing effects. The dead 200655 (D-200655) group showed an increased spleen weight compared to the sham control (SC) group. Similarly, the spleen index was significantly higher than that in the CP-treated group. The live 200655 (L-200655) group showed an increased mRNA expression of tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6 in splenocytes. Also, the iNOS and COX-2 mRNA expression was upregulated in the L-200655 group compared to the CP-only (SC) group. The phosphorylation of ERK and MAPK was also upmodulated in the L-200655 group. These results indicate that L. plantarum 200655 ameliorated CP-induced immune suppression, suggesting that L. plantarum 200655 may have the potential to enhance the immune system.
Collapse
Affiliation(s)
- Kyeong Jin Kim
- Department of Nano Bio engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji Yeon Kim
- Department of Nano Bio engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea,Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea,Corresponding author Phone: +82-2-970-6740 E-mail:
| |
Collapse
|
27
|
The p53 status in rheumatoid arthritis with focus on fibroblast-like synoviocytes. Immunol Res 2021; 69:225-238. [PMID: 33983569 DOI: 10.1007/s12026-021-09202-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
P53 is a transcription factor that regulates many signaling pathways like apoptosis, cell cycle, DNA repair, and cellular stress responses. P53 is involved in inflammatory responses through the regulation of inflammatory signaling pathways, induction of cytokines, and matrix metalloproteinase expression. Also, p53 regulates immune responses through modulating Toll-like receptors expression and innate and adaptive immune cell differentiation and maturation. P53 is a modulator of the apoptosis and proliferation processes through regulating multiple anti and pro-apoptotic genes. Rheumatoid arthritis (RA) is categorized as an invasive inflammatory autoimmune disease with irreversible deformity of joints and bone resorption. Different immune and non-immune cells contribute to RA pathogenesis. Fibroblast-like synoviocytes (FLSs) have been recently introduced as a key player in the pathogenesis of RA. These cells in RA synovium produce inflammatory cytokines and matrix metalloproteinases which results in synovitis and joint destruction. Besides, hyper proliferation and apoptosis resistance of FLSs lead to synovial hyperplasia and bone and cartilage destruction. Given the critical role of p53 in inflammation, apoptosis, and cell proliferation, lack of p53 function (due to mutation or low expression) exerts a prominent role for this gene in the pathogenesis of RA. This review focuses on the role of p53 in different mechanisms and cells (specially FLSs) that involved in RA pathogenesis.
Collapse
|
28
|
Ma W, Guo W, Shang F, Li Y, Li W, Liu J, Ma C, Teng J. Bakuchiol Alleviates Hyperglycemia-Induced Diabetic Cardiomyopathy by Reducing Myocardial Oxidative Stress via Activating the SIRT1/Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3732718. [PMID: 33062139 PMCID: PMC7545423 DOI: 10.1155/2020/3732718] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/03/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023]
Abstract
Bakuchiol (BAK), a monoterpene phenol reported to have exerted a variety of pharmacological effects, has been related to multiple diseases, including myocardial ischemia reperfusion injury, pressure overload-induced cardiac hypertrophy, diabetes, liver fibrosis, and cancer. However, the effects of BAK on hyperglycemia-caused diabetic cardiomyopathy and its underlying mechanisms remain unclear. In this study, streptozotocin-induced mouse model and high-glucose-treated cell model were conducted to investigate the protective roles of BAK on diabetic cardiomyopathy, in either the presence or absence of SIRT1-specific inhibitor EX527, SIRT1 siRNA, or Nrf2 siRNA. Our data demonstrated for the first time that BAK could significantly abate diabetic cardiomyopathy by alleviating the cardiac dysfunction, ameliorating the myocardial fibrosis, mitigating the cardiac hypertrophy, and reducing the cardiomyocyte apoptosis. Furthermore, BAK achieved its antifibrotic and antihypertrophic actions by inhibiting the TGF-β1/Smad3 pathway, as well as decreasing the expressions of fibrosis- and hypertrophy-related markers. Intriguingly, these above effects of BAK were largely attributed to the remarkable activation of SIRT1/Nrf2 signaling, which eventually strengthened cardiac antioxidative capacity by elevating the antioxidant production and reducing the reactive oxygen species generation. However, all the beneficial results were markedly abolished with the administration of EX527, SIRT1 siRNA, or Nrf2 siRNA. In summary, these novel findings indicate that BAK exhibits its therapeutic properties against hyperglycemia-caused diabetic cardiomyopathy by attenuating myocardial oxidative damage via activating the SIRT1/Nrf2 signaling.
Collapse
Affiliation(s)
- Wenshuai Ma
- Department of Cardiology, Second Affiliated Hospital, The Air Force Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Wangang Guo
- Department of Cardiology, Second Affiliated Hospital, The Air Force Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Fujun Shang
- Department of Cardiology, Second Affiliated Hospital, The Air Force Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yan Li
- Department of Cardiology, Second Affiliated Hospital, The Air Force Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Wei Li
- Department of Cardiology, Second Affiliated Hospital, The Air Force Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Jing Liu
- Department of Cardiology, Second Affiliated Hospital, The Air Force Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Chao Ma
- Department of Cardiology, Second Affiliated Hospital, The Air Force Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Jiwei Teng
- Department of Cardiology, Second Affiliated Hospital, The Air Force Medical University, 1 Xinsi Road, Xi'an 710038, China
| |
Collapse
|
29
|
Nasi M, De Gaetano A, Bianchini E, De Biasi S, Gibellini L, Neroni A, Mattioli M, Pinti M, Lo Tartaro D, Borella R, Mattioli AV, Chester J, Melegari A, Simone AM, Ferraro D, Vitetta F, Sola P, Cossarizza A. Mitochondrial damage-associated molecular patterns stimulate reactive oxygen species production in human microglia. Mol Cell Neurosci 2020; 108:103538. [PMID: 32828963 DOI: 10.1016/j.mcn.2020.103538] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/31/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
Microglia are the resident innate immune cells of the central nervous system and exert functions of host defense and maintenance of normal tissue homeostasis, along with support of neuronal processes in the healthy brain. Chronic and dysregulated microglial cell activation has increasingly been linked to the status of neuroinflammation underlying many neurodegenerative diseases, including multiple sclerosis (MS). However, the stimulus (or stimuli) and mechanisms by which microglial activation is initiated and maintained MS are still debated. The purpose of our research was to investigate whether the endogenous mitochondrial (mt)-derived damage-associated molecular patterns (MTDs) mtDNA, N-formyl peptides and cardiolipin (CL) contribute to these phenomena. We characterized the effects of the abovementioned MTDs on microglia activation in vitro (i.e. using HMC3 cells) by evaluating the expression of gene coding for proteins involved in their binding and coupled to downstream signaling pathways, the up-regulation of markers of activation on the cell surface and the production of pro-inflammatory cytokines and reactive oxygen species. At the transcriptional level, significant variations in the mRNA relative expression of five of eleven selected genes were observed in response to stimulation. No changes in activation of antigenic profile or functional properties of HMC3 cells were observed; there was no up-regulation of HLA-DR expression or increased secretion of tumor necrosis factor-α and interleukin-6. However, after stimulation with mtDNA and CL, an increase in cellular oxidative stress, but not in the mt ROS O2-, compared to control cells, were observed. There were no effects on cell viability. Overall, our data suggest that MTDs could cause a failure in microglial activation toward a pro-inflammatory phenotype, possibly triggering an endogenous regulatory mechanism for the resolution of neuroinflammation. This could open a door for the development of drugs selectively targeting microglia and modulating its functionality to treat MS and/or other neurodegenerative conditions in which MTDs have a pathogenic relevance.
Collapse
Affiliation(s)
- Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125 Modena, Italy.
| | - Anna De Gaetano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125 Modena, Italy
| | - Elena Bianchini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125 Modena, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, 41125 Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, 41125 Modena, Italy
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, 41125 Modena, Italy
| | - Marco Mattioli
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, 41125 Modena, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125 Modena, Italy
| | - Domenico Lo Tartaro
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, via Campi, 287, 41125 Modena, Italy
| | - Rebecca Borella
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, via Campi, 287, 41125 Modena, Italy
| | - Anna Vittoria Mattioli
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125 Modena, Italy; National Institute of Cardiovascular Research, via Irnerio, 48, 40126 Bologna, Italy
| | - Johanna Chester
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125 Modena, Italy
| | - Alessandra Melegari
- Department of Laboratory Medicine and Pathology, Azienda Ospedaliero-Universitaria di Modena Ospedale Civile di Baggiovara, via Giardini, 1355, 41126 Baggiovara, MO, Italy
| | - Anna Maria Simone
- Neurology Unit, Carpi Hospital, AUSL Modena, via Molinari, 2, 41012 Carpi, MO, Italy
| | - Diana Ferraro
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena Ospedale Civile di Baggiovara, via Giardini, 1355, 41126 Baggiovara, MO, Italy; Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, via Campi, 287, 41125 Modena, Italy
| | - Francesca Vitetta
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena Ospedale Civile di Baggiovara, via Giardini, 1355, 41126 Baggiovara, MO, Italy
| | - Patrizia Sola
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena Ospedale Civile di Baggiovara, via Giardini, 1355, 41126 Baggiovara, MO, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, 41125 Modena, Italy; National Institute of Cardiovascular Research, via Irnerio, 48, 40126 Bologna, Italy
| |
Collapse
|
30
|
Ko W, Kim KW, Quang TH, Yoon CS, Kim N, Lee H, Kim SC, Woo ER, Kim YC, Oh H, Lee DS. Cudraflavanone B Isolated from the Root Bark of Cudrania tricuspidata Alleviates Lipopolysaccharide-Induced Inflammatory Responses by Downregulating NF-κB and ERK MAPK Signaling Pathways in RAW264.7 Macrophages and BV2 Microglia. Inflammation 2020; 44:104-115. [PMID: 32766955 DOI: 10.1007/s10753-020-01312-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A prenylated flavonoid, cudraflavanone B, is isolated from Cudrania tricuspidata. In this study, we investigated its anti-inflammatory and anti-neuroinflammatory effects in lipopolysaccharide (LPS)-induced RAW264.7 and BV2 cells. In our initial study of the anti-inflammatory effects of cudraflavanone B the production of nitric oxide and prostaglandin E2 was attenuated in LPS-stimulated RAW264.7 and BV2 cells. These inhibitory effects were related to the downregulation of inducible nitric oxide synthase and cyclooxygenase-2. In addition, cudraflavanone B suppressed the production of pro-inflammatory cytokines such as interleukin-6 and tumor necrosis factor-α in LPS-induced RAW264.7 and BV2 cells. Moreover, the evaluation of the molecular mechanisms underlying the anti-inflammatory effects of cudraflavanone B revealed that the compound attenuated the nuclear factor-kappa B signaling pathway in LPS-induced RAW264.7 and BV2 cells. In addition, cudraflavanone B inhibited the phosphorylation of extracellular signal-regulated kinase mitogen-activated protein kinase signaling pathways in these LPS-stimulated cells. Thus, cudraflavanone B suppressed nuclear factor-κB, and extracellular signal-regulated kinase mitogen-activated protein kinase mediated inflammatory pathways, demonstrating its potential in the treatment of neuroinflammatory conditions.
Collapse
Affiliation(s)
- Wonmin Ko
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Kwan-Woo Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Tran Hong Quang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Chi-Su Yoon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, 28116, Republic of Korea
| | - Nayeon Kim
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Hwan Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Sam-Cheol Kim
- Department of Family Practice and Community Medicine, Chosun University College of Medicine, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Eun-Rhan Woo
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
31
|
Liu H, Guo W, Guo H, Zhao L, Yue L, Li X, Feng D, Luo J, Wu X, Cui W, Qu Y. Bakuchiol Attenuates Oxidative Stress and Neuron Damage by Regulating Trx1/TXNIP and the Phosphorylation of AMPK After Subarachnoid Hemorrhage in Mice. Front Pharmacol 2020; 11:712. [PMID: 32499702 PMCID: PMC7243250 DOI: 10.3389/fphar.2020.00712] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a fatal cerebrovascular condition with complex pathophysiology that reduces brain perfusion and causes cerebral functional impairments. An increasing number of studies indicate that early brain injury (EBI), which occurs within the first 72 h of SAH, plays a crucial role in the poor prognosis of SAH. Bakuchiol (Bak) has been demonstrated to have multiorgan protective effects owing to its antioxidative and anti-inflammatory properties. The present study was designed to investigate the effects of Bak on EBI after SAH and its underlying mechanisms. In this study, 428 adult male C57BL/6J mice weighing 20 to 25 g were observed to investigate the effects of Bak administration in an SAH animal model. The neurological function and brain edema were assessed. Content of MDA/3-NT/8-OHdG/superoxide anion and the activity of SOD and GSH-Px were tested. The function of the blood-brain barrier (BBB) and the protein levels of claudin-5, occludin, zonula occludens-1, and matrix metalloproteinase-9 were observed. TUNEL staining and Fluoro-Jade C staining were conducted to evaluate the death of neurons. Ultrastructural changes of the neurons were observed under the transmission electron microscope. Finally, the roles of Trx, TXNIP, and AMPK in the protective effect of Bak were investigated. The data showed that Bak administration 1) increased the survival rate and alleviated neurological functional deficits; 2) alleviated BBB disruption and brain edema; 3) attenuated oxidative stress by reducing reactive oxygen species, MDA, 3-NT, 8-OHdG, gp91phox, and 4-HNE; increased the activities of SOD and GSH-Px; and alleviated the damage to the ultrastructure of mitochondria; 4) inhibited cellular apoptosis by regulating the protein levels of Bcl-2, Bax, and cleaved caspase-3; and 5) upregulated the protein levels of Trx1 as well as the phosphorylation of AMPK and downregulated the protein levels of TXNIP. Moreover, the protective effects of Bak were partially reversed by PX-12 and compound C. To summarize, Bak attenuates EBI after SAH by alleviating BBB disruption, oxidative stress, and apoptosis via regulating Trx1/TXNIP expression and the phosphorylation of AMPK. Its powerful protective effects might make Bak a promising novel drug for the treatment of EBI after SAH.
Collapse
Affiliation(s)
- Haixiao Liu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Wei Guo
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hao Guo
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lei Zhao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Liang Yue
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xia Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianing Luo
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xun Wu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenxing Cui
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|