1
|
Li Y, Chen J, Liu X, Liu X, Yang Q, Li G, Rang O, Wang M. UPLC-QqQMS based targeted metabolomics reveal combination impact on metabolism caused by bisphenol AF and fructose combined exposure in male mice. Sci Rep 2025; 15:13800. [PMID: 40259005 PMCID: PMC12012022 DOI: 10.1038/s41598-025-98814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 04/15/2025] [Indexed: 04/23/2025] Open
Abstract
Bisphenol AF (BPAF), a fluorinated alternative to the plasticizer bisphenol A (BPA), is found in both the environment and the human body. Fructose is one of the sweeteners that has been widely used in recent years. Prior research has verified that the combined exposure to fructose and BPA considerably worsened the impact on glycolipid metabolism. However, it is currently unclear whether BPAF have a combination effect on health with fructose. Serum glucose and insulin, liver biochemistry, histology of the liver and adipose tissue, serum profiles of amino acids, vitamins, bile acids, steroid hormones, catecholamines, and adipocytokines like leptin, omentin-1, adiponectin, asprosin, and adipocyte fatty acid binding protein (A-FABP) of male mice were all investigated in this study following a week of combined exposure to two doses of BPAF (lower dose: 0.25, and higher dose: 25 μg/kg daily). The results showed that simultaneous exposure to lower doses of BPAF and fructose considerably increased blood insulin and liver coefficient, total bilirubin, direct bilirubin, and glucose while significantly decreasing body weight, food intake, liver creatinine, and serum leptin, asprosin, and A-FABP. According to histology analysis, adipocyte enlargement may result from lower dose BPAF and fructose combined exposure, while bile duct dilatation may result from both lower and higher doses of BPAF combined with fructose. Concurrently, the combination of lower doses of BPAF and fructose increased the release of adrenocortical hormones and catecholamines, worsened metabolic disorders in amino acids such as histidine, arginine and proline, branched chain amino acid (isoleucine), and aromatic amino acids (tryptophan and phenylalanine), and aggravated the depletion of vitamin B12 and A. Interestingly, following the combined exposure to BPAF and fructose, bile acids including taurocholic acid, deoxycholic acid, cholic acid, and taurine ursodeoxycholic acid rose in a dose-dependent manner. According to these results, exposure to fructose and BPAF together may have a more detrimental effect on metabolism than either substance alone. Further research should be conducted to verify the impact of joint exposure to BPAF and fructose on human.
Collapse
Affiliation(s)
- Yuan Li
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute, Department of Basic Medicine of Nuclear Industrial Hygiene School, Hengyang Medical School, Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Junmin Chen
- Health School of Nuclear Industry, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiaocheng Liu
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute, Department of Basic Medicine of Nuclear Industrial Hygiene School, Hengyang Medical School, Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Xu Liu
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute, Department of Basic Medicine of Nuclear Industrial Hygiene School, Hengyang Medical School, Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- School of Public Health, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Qing Yang
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute, Department of Basic Medicine of Nuclear Industrial Hygiene School, Hengyang Medical School, Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Guojuan Li
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute, Department of Basic Medicine of Nuclear Industrial Hygiene School, Hengyang Medical School, Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Ouyan Rang
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute, Department of Basic Medicine of Nuclear Industrial Hygiene School, Hengyang Medical School, Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| | - Mu Wang
- Clinical Mass Spectrometry Laboratory of Clinical Research Institute, Department of Basic Medicine of Nuclear Industrial Hygiene School, Hengyang Medical School, Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
2
|
Bonet ML, Ribot J, Galmés S, Serra F, Palou A. Carotenoids and carotenoid conversion products in adipose tissue biology and obesity: Pre-clinical and human studies. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158676. [PMID: 32120014 DOI: 10.1016/j.bbalip.2020.158676] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
Antiobesity activities of carotenoids and carotenoid conversion products (CCPs) have been demonstrated in pre-clinical studies, and mechanisms behind have begun to be unveiled, thus suggesting these compounds may help obesity prevention and management. The antiobesity action of carotenoids and CCPs can be traced to effects in multiple tissues, notably the adipose tissues. Key aspects of the biology of adipose tissues appear to be affected by carotenoid and CCPs, including adipogenesis, metabolic capacities for energy storage, release and inefficient oxidation, secretory function, and modulation of oxidative stress and inflammatory pathways. Here, we review the connections of carotenoids and CCPs with adipose tissue biology and obesity as revealed by cell and animal intervention studies, studies addressing the role of endogenous retinoid metabolism, and human epidemiological and intervention studies. We also consider human genetic variability influencing carotenoid and vitamin A metabolism, particularly in adipose tissues, as a potentially relevant aspect towards personalization of dietary recommendations to prevent or manage obesity and optimize metabolic health. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- M Luisa Bonet
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain.
| | - Joan Ribot
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| | | | - Francisca Serra
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| | - Andreu Palou
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| |
Collapse
|
3
|
Systemic Metabolomic Profiling of Acute Myeloid Leukemia Patients before and During Disease-Stabilizing Treatment Based on All-Trans Retinoic Acid, Valproic Acid, and Low-Dose Chemotherapy. Cells 2019; 8:cells8101229. [PMID: 31658693 PMCID: PMC6829623 DOI: 10.3390/cells8101229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy, and many elderly/unfit patients cannot receive intensive and potentially curative therapy. These patients receive low-toxicity disease-stabilizing treatment. The combination of all-trans retinoic acid (ATRA) and the histone deacetylase inhibitor valproic acid can stabilize the disease for a subset of such patients. We performed untargeted serum metabolomic profiling for 44 AML patients receiving treatment based on ATRA and valproic acid combined with low-dose cytotoxic drugs (cytarabine, hydroxyurea, 6-mercaptopurin) which identified 886 metabolites. When comparing pretreatment samples from responders and non-responders, metabolites mainly belonging to amino acid and lipid (i.e., fatty acid) pathways were altered. Furthermore, patients with rapidly progressive disease showed an extensively altered lipid metabolism. Both ATRA and valproic acid monotherapy also altered the amino acid and lipid metabolite profiles; however, these changes were only highly significant for valproic acid treatment. Twenty-three metabolites were significantly altered by seven-day valproic acid treatment (p < 0.05, q < 0.05), where the majority of altered metabolites belonged to lipid (especially fatty acid metabolism) and amino acid pathways, including several carnitines. These metabolomic effects, and especially the effects on lipid metabolism, may be important for the antileukemic and epigenetic effects of this treatment.
Collapse
|