1
|
Sun YG, Yu ZK, Chen X, Zhang SY, Wu WJ, Liu K, Cheng L. circHIPK2 promotes malignant progression of laryngeal squamous cell carcinoma through the miR-889-3p/MCTS1/IL-6 axis. Transl Oncol 2025; 56:102390. [PMID: 40222337 PMCID: PMC12018564 DOI: 10.1016/j.tranon.2025.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 03/31/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor of the head and neck with a poor prognosis. The role of circRNAs in LSCC remains largely unknown. In this study, quantitative real-time PCR (qRT-PCR), Sanger sequencing and fluorescence in situ hybridization were undertaken to detect the expression, localization, and clinical significance of circHIPK2 in LSCC tissues and TU686 and TU212 cells. The functions of circHIPK2 in LSCC were explored through proliferation analysis, EdU staining, colony formation assay, wound healing assay, and Transwell assay. The regulatory mechanisms underpinning circHIPK2, miR-889-3p, and MCTS1 were investigated using luciferase assay, Western blotting, and qRT-PCR. We found that LSCC tissues and cells demonstrated high expression of circHIPK2 that was closely associated with the malignant progression and poor prognosis of LSCC. Knockdown of circHIPK2 inhibited the proliferation and migration of LSCC cells in vitro. Mechanistic studies showed that circHIPK2 competitively bound to miR-889-3p, elevated MCTS1 level, promoted IL-6 secretion, and ultimately accelerated the malignant progression of LSCC. In conclusion, an axis involving circHIPK2, miR-889-3p, MCTS1 and IL-6 regulates the malignant progression of LSCC. circHIPK2 expression may serve as a novel diagnostic and prognostic biomarker for LSCC.
Collapse
Affiliation(s)
- Yang-Guang Sun
- Department of Otorhinolaryngology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Zhen-Kun Yu
- Nanjing Medical Key Laboratory of Laryngopharynx-Head & Neck Oncology, Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Xi Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Si-Yao Zhang
- Nanjing Medical Key Laboratory of Laryngopharynx-Head & Neck Oncology, Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Wan-Juan Wu
- Nanjing Medical Key Laboratory of Laryngopharynx-Head & Neck Oncology, Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Kai Liu
- Nanjing Medical Key Laboratory of Laryngopharynx-Head & Neck Oncology, Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Lei Cheng
- Department of Otorhinolaryngology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Department of Allergology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
2
|
Manjili DA, Babaei FN, Younesirad T, Ghadir S, Askari H, Daraei A. Dysregulated circular RNA and long non-coding RNA-Mediated regulatory competing endogenous RNA networks (ceRNETs) in ovarian and cervical cancers: A non-coding RNA-Mediated mechanism of chemotherapeutic resistance with new emerging clinical capacities. Arch Biochem Biophys 2025; 768:110389. [PMID: 40090441 DOI: 10.1016/j.abb.2025.110389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Cervical cancer (CC) and ovarian cancer (OC) are among the most common gynecological cancers with significant mortality in women, and their incidence is increasing. In addition to the prominent role of the malignant aspect of these cancers in cancer-related women deaths, chemotherapy drug resistance is a major factor that contributes to their mortality and presents a clinical obstacle. Although the exact mechanisms behind the chemoresistance in these cancers has not been revealed, accumulating evidence points to the dysregulation of non-coding RNAs (ncRNAs), particularly long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as key contributors. These ncRNAs perform the roles of regulators of signaling pathways linked to tumor formation and chemoresistance. Strong data from various recent studies have uncovered that the main mechanism of these ncRNAs in the induction of chemoresistance of CC and OC is done through a dysregulated miRNA sponge activity as competing endogenous RNA (ceRNA) in the competing endogenous RNA networks (ceRNETs), where a miRNA regulating a messenger RNA (mRNA) is trapped, thereby removing its inhibitory effect on the desired mRNA. Understanding these mechanisms is essential to enhancing treatment outcomes and managing the problem of drug resistance. This review provides a comprehensive overview of lncRNA- and circRNA-mediated ceRNETs as the core process of chemoresistance against the commonly used chemotherapeutics, including cisplatin, paclitaxel, oxaliplatin, carboplatin, and docetaxel in CC and OC. Furthermore, we highlight the clinical potential of these ncRNAs serving as diagnostic indicators of chemotherapy responses and therapeutic targets.
Collapse
Affiliation(s)
- Danial Amiri Manjili
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Naghdi Babaei
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tayebeh Younesirad
- Department of Medical Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sara Ghadir
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Askari
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
3
|
Shafaghat Z, Radmehr S, Saharkhiz S, Khosrozadeh A, Feiz K, Alkhathami AG, Taheripak G, Ramezani Farani M, Rahmati R, Zarimeidani F, Bassereh H, Bakhtiyari S, Alipourfard I. Circular RNA, A Molecule with Potential Chemistry and Applications in RNA-based Cancer Therapeutics: An Insight into Recent Advances. Top Curr Chem (Cham) 2025; 383:21. [PMID: 40343623 PMCID: PMC12064628 DOI: 10.1007/s41061-025-00505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/07/2025] [Indexed: 05/11/2025]
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that do not code for proteins. Among these, circular RNAs (circRNAs) represent a recently identified class of endogenous ncRNAs with a pivotal role in gene regulation, alongside short ncRNAs (e.g., microRNAs or miRNAs) and long non-coding RNAs (lncRNAs). CircRNAs are characterized by their single-stranded, covalently closed circular structure, which lacks polyadenylated tails and 5'-3' ends. This unique circular conformation makes them resistant to exonuclease degradation, rendering them more stable than linear RNAs, such as mRNAs in human blood cells, which highlights their potential as biomarkers. Both linear and circular RNAs are derived from pre-mRNA precursors. However, while linear RNAs are produced through conventional splicing, circRNAs are primarily formed through a process known as reverse splicing. CircRNAs can be categorized into five basic types: exon circRNAs, circular intronic RNAs, exon-intron circRNAs, intergenic circRNAs, and fusion circRNAs. These molecules have been shown to significantly influence key hallmarks of cancer, including sustained growth signaling, proliferation, angiogenesis, resistance to apoptosis, unlimited replicative potential, and metastasis. This article will delve into the biogenesis and functions of circRNAs, explore their roles in cancer, and discuss their potential applications as therapeutic options and diagnostic biomarkers.
Collapse
Affiliation(s)
- Zahra Shafaghat
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Safa Radmehr
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saber Saharkhiz
- Division of Neuroscience, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Amirhossein Khosrozadeh
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Feiz
- Biology Department, Texas State University, San Marcos, TX, USA
| | - Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P. O. Box 61413, 9088, Abha, Saudi Arabia
| | - Gholamreza Taheripak
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-Ro, Michuhol-Gu, Incheon, Republic of Korea
| | - Rahem Rahmati
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Zarimeidani
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hassan Bassereh
- Computational Discovery Research Group, Institute for Diabetes and Obesity, Helmholtz, Munich, Germany
| | - Salar Bakhtiyari
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224, Warsaw, Poland.
- Department of Regenerative Medicine, Medical University of Warsaw, Banacha 1b, Warsaw, Poland.
| |
Collapse
|
4
|
Kumari R, Banerjee S. Regulation of Different Types of Cell Death by Noncoding RNAs: Molecular Insights and Therapeutic Implications. ACS Pharmacol Transl Sci 2025; 8:1205-1226. [PMID: 40370994 PMCID: PMC12070317 DOI: 10.1021/acsptsci.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/16/2025]
Abstract
Noncoding RNAs (ncRNAs) are crucial regulatory molecules in various biological processes, despite not coding for proteins. ncRNAs are further divided into long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) based on the size of their nucleotides. These ncRNAs play crucial roles in transcriptional, post-transcriptional, and epigenetic regulation. The regulatory roles of noncoding RNAs, including lncRNAs, miRNAs, and circRNAs, are essential in various modalities of cellular death, such as apoptosis, ferroptosis, cuproptosis, pyroptosis, disulfidptosis, and necroptosis. These noncoding RNAs are integral to modulating gene expression and protein functionality during cellular death mechanisms. In apoptosis, lncRNAs, miRNAs, and circRNAs influence the transcription of apoptotic genes. In ferroptosis, these noncoding RNAs target genes and proteins involved in iron homeostasis and oxidative stress responses. For cuproptosis, noncoding RNAs regulate pathways associated with the accumulation of copper ions, leading to cellular death. During pyroptosis, noncoding RNAs modulate inflammatory mediators and caspases, affecting the proinflammatory cell death pathway. In necroptosis, noncoding RNAs oversee the formation and functionality of necrosomes, thereby influencing the balance between cellular survival and death. Disulfidptosis is a unique type of regulated cell death caused by the excessive formation of disulfide bonds within cells, leading to cytoskeletal collapse and oxidative stress, especially under glucose-limited conditions. This investigation highlights the complex mechanisms through which noncoding RNAs coordinate cellular death, emphasizing their therapeutic promise as potential targets, particularly in the domain of cancer treatment.
Collapse
Affiliation(s)
- Reshmi Kumari
- Department of Biotechnology, School
of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Satarupa Banerjee
- Department of Biotechnology, School
of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
5
|
Saadh MJ, Hussein WS, Al-Hussainy AF, Bishoyi AK, Rekha MM, Kundlas M, Kavitha V, Aminov Z, Taher SG, Alwan M, Jawad M, Mushtaq H. Circular RNAs: driving forces behind chemoresistance and immune evasion in bladder cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04032-y. [PMID: 40131386 DOI: 10.1007/s00210-025-04032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
Bladder cancer (BCa) is characterized by recurring relapses and the emergence of chemoresistance, especially against standard treatments like cisplatin and gemcitabine. Despite its significance, the molecular mechanisms underlying chemoresistance in BCa remain elusive. Recent studies have revealed that circular RNAs (circRNAs) are pivotal regulators of cancer progression and chemoresistance. Through their function as miRNA sponges and protein sequesters, circRNAs modulate the expression of key genes, ultimately driving either drug resistance or sensitivity in BCa. The complex interplay between circRNAs and chemoresistance suggests that they may represent promising therapeutic targets for overcoming treatment resistance in patients with BCa. This review aims to summarize the current understanding of circRNAs' regulatory roles in chemoresistance and provide insights into their potential as therapeutic targets, particularly in the context of cisplatin and gemcitabine resistance. Furthermore, we explore how chemoresistance can also impact tumor immune evasion, thereby affecting the tumor microenvironment. Our findings may pave the way for the advancement of innovative treatment approaches for bladder cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Wael Sheet Hussein
- Dental Prosthetics Techniques Department, Health and Medical Techniques College, Alnoor University, Mosul, Iraq.
| | | | - Ashok Kumar Bishoyi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - V Kavitha
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | - Sada Ghalib Taher
- College of Health and Medical Technology, National University of Science and Technology, Nasiriyah, Dhi Qar, 64001, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Mahmood Jawad
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
6
|
Chen P, Zhang J, Wu S, Zhang X, Zhou W, Guan Z, Tang H. CircRNAs: a novel potential strategy to treat breast cancer. Front Immunol 2025; 16:1563655. [PMID: 40176810 PMCID: PMC11961433 DOI: 10.3389/fimmu.2025.1563655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 04/04/2025] Open
Abstract
Breast cancer is among the most prevalent malignant tumors worldwide, with triple-negative breast cancer (TNBC) being the most aggressive subtype and lacking effective treatment options. Circular RNAs (circRNAs) are noncoding RNAs that play crucial roles in the development of tumors, including breast cancer. This article examines the progress of research on circRNAs in breast cancer, focusing on four main areas: 1) breast cancer epidemiology, classification, and treatment; 2) the structure, discovery process, characteristics, formation, and functions of circRNAs; 3) the expression, mechanisms, clinical relevance, and recent advances in the study of circRNAs in breast cancer cells and the immune microenvironment, particularly in TNBC; and 4) the challenges and future prospects of the use of circRNAs in BC research.
Collapse
Affiliation(s)
- Pangzhou Chen
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Jinhui Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Song Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoyu Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen Zhou
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Ziyun Guan
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
7
|
Xu K, Zhang C, WeiGao, Shi Y, Pu S, Huang N, Dou W. The involvement of circRNAs in molecular processes and their potential use in therapy and diagnostics for glioblastoma. Gene 2025; 940:149214. [PMID: 39756549 DOI: 10.1016/j.gene.2025.149214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Glioblastoma, a type of brain tumor, is well-known for its aggressive nature and can affect individuals of all ages. Glioblastoma continues to be a difficult cancer to manage because of various resistance mechanisms. The blood-brain barrier restricts the delivery of drugs, and the heterogeneity of tumors, along with overlapping signaling pathways, complicates its effective treatment. Patients diagnosed with glioblastoma typically survive for no more than 2 years. Innovative therapies and early diagnostic tools for glioblastoma are essential. Circular RNAs have emerged as significant contributors to glioblastoma, and influence cancer mechanisms such as cell growth, death, invasion, and resistance to treatment. The circRNAs presence makes them essential candidates for treatment and practical diagnostic tools for glioblastoma. This review highlights the therapeutic approaches and diagnostic potential of circRNAs and explores their role in the molecular mechanisms underlying glioblastoma.
Collapse
Affiliation(s)
- Kanghong Xu
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Chunlai Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China; The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - WeiGao
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Yushan Shi
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Shuangshuang Pu
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Ning Huang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China.
| | - Weitao Dou
- Department of Medical Intervention, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China.
| |
Collapse
|
8
|
Xu Y, Liu H, Zhang Y, Luo J, Li H, Lai C, Shi L, Heng B. piRNAs and circRNAs acting as diagnostic biomarkers in clear cell renal cell carcinoma. Sci Rep 2025; 15:7774. [PMID: 40044829 PMCID: PMC11882777 DOI: 10.1038/s41598-025-90874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
The discovery of diverse functions and mechanisms in cancer has underscored the significance of emerging non-coding RNAs (ncRNAs), such as PIWI-interacting RNAs (piRNAs) and circular RNAs (circRNAs), within the clinical context of cancer. Understanding their role in clear cell renal cell carcinoma (ccRCC) is imperative and necessitates comprehensive investigation. This study aims to further explore the diagnostic potential of piRNAs and circRNAs for ccRCC. The dysregulated piRNAs and circRNAs in ccRCC were identified using small RNA (sRNA) high-throughput sequencing technology, while their expression in clinical samples was assessed by RT-qPCR. A paired t-test was performed to compare the expression levels of piRNAs and circRNAs between ccRCC and adjacent tissues. Additionally, ROC curve analysis was conducted to evaluate the diagnostic specificity, sensitivity, and area under the curve (AUC) of piRNAs and circRNAs. High-throughput sequencing revealed a significant downregulation of 17 piRNAs and 694 circRNAs in ccRCC tissues, accompanied by a significant upregulation of 5 piRNAs and 490 circRNAs. RT-qPCR analysis demonstrated markedly lower expression levels of piR-has-150997, 133872, 132556, 154502, and uniq-84737 in the ccRCC group compared to the adjacent tissue group (p < 0.05). When considering the combined detection of piR-hsa-150997, piR-hsa-133872, piR-hsa-132556, piR-hsa-154502, uniq_84737, circABCC1, circNETO2_006, and circARID1B_037, the diagnostic AUC for ccRCC was found to be high at an approximate value of AUC = 0.878. The diagnostic performance of piR-has-150997, 133872, 132556, 154502, uniq-84737, circABCC1, circNETO2_006, and circARID1B_037 demonstrates promise for ccRCC. A model incorporating piR-hsa-150997, uniq_84737, circABCC1, circNETO2_006, and circARID1B_037 could serve as an ideal diagnostic marker system with significant clinical utility.
Collapse
Affiliation(s)
- Yin Xu
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China.
- Department of Urology, The People's Hospital of Longhua Shenzhen, No. 38, Jianshe East Road, Shenzhen, 518109, China.
| | - Huiling Liu
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China
| | - Yingzhi Zhang
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China
| | - Jing Luo
- Department of Physical Examination, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Haomin Li
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China
| | - Caiyong Lai
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China.
- Department of Urology, The Sixth Affiliated Hospital of Jinan University, No. 88, Changdong Road, Dongguan, 523560, China.
| | - Liping Shi
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China.
| | - Baoli Heng
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China.
- Yingde Center, Institute of Kidney Surgery, Jinan University, Yingde, Guangdong, China.
| |
Collapse
|
9
|
Hussen BM, Abdullah SR, Jaafar RM, Rasul MF, Aroutiounian R, Harutyunyan T, Liehr T, Samsami M, Taheri M. Circular RNAs as key regulators in cancer hallmarks: New progress and therapeutic opportunities. Crit Rev Oncol Hematol 2025; 207:104612. [PMID: 39755160 DOI: 10.1016/j.critrevonc.2024.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025] Open
Abstract
Circular RNAs (circRNAs) have emerged as critical regulators in cancer biology, contributing to various cancer hallmarks, including cell proliferation, apoptosis, metastasis, and drug resistance. Defined by their covalently closed loop structure, circRNAs possess unique characteristics like high stability, abundance, and tissue-specific expression. These non-coding RNAs function through mechanisms such as miRNA sponging, interactions with RNA-binding proteins (RBPs), and modulating transcription and splicing. Advances in RNA sequencing and bioinformatics tools have enabled the identification and functional annotation of circRNAs across different cancer types. Clinically, circRNAs demonstrate high specificity and sensitivity in samples, offering potential as diagnostic and prognostic biomarkers. Additionally, therapeutic strategies involving circRNA mimics, inhibitors, and delivery systems are under investigation. However, their precise mechanisms remain unclear, and more clinical evidence is needed regarding their roles in cancer hallmarks. Understanding circRNAs will pave the way for novel diagnostic and therapeutic approaches, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Rayan Mazin Jaafar
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Rouben Aroutiounian
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Tigran Harutyunyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Nadukkandy AS, Blaize B, Kumar CD, Mori G, Cordani M, Kumar LD. Non-coding RNAs as mediators of epithelial to mesenchymal transition in metastatic colorectal cancers. Cell Signal 2025; 127:111605. [PMID: 39842529 DOI: 10.1016/j.cellsig.2025.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, necessitating the development of innovative treatment strategies. Recent research has underscored the significant role of non-coding RNAs (ncRNAs) in CRC pathogenesis, offering new avenues for diagnosis and therapy. In this review, we delve into the intricate roles of various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in CRC progression, epithelial-mesenchymal transition (EMT), metastasis, and drug resistance. We highlight the interaction of these ncRNAs with and regulation of key signaling pathways, such as Wnt/β-catenin, Notch, JAK-STAT, EGFR, and TGF-β, and the functional relevance of these interactions in CRC progression. Additionally, the review highlights the emerging applications of nanotechnology in enhancing the delivery and efficacy of ncRNA-based therapeutics, which could address existing challenges related to specificity and side effects. Future research directions, including advanced diagnostic tools, targeted therapeutics, strategies to overcome drug resistance, and the integration of personalized medicine approaches are discussed. Integrating nanotechnology with a deeper understanding of CRC biology offers the potential for more effective, targeted, and personalized strategies, though further research is essential to validate these approaches.
Collapse
Affiliation(s)
- Aisha Shigna Nadukkandy
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Britny Blaize
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Chethana D Kumar
- Department of Surgical ICU, Christian Medical College, IDA Scudder Road, Vellore 632004, Tamil Nadu, India
| | - Giulia Mori
- Department Of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India.
| |
Collapse
|
11
|
Saadh MJ, Ehymayed HM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Anbari HHA, Shallal MM, Alsaikhan F, Farhood B. Role of circRNAs in regulating cell death in cancer: a comprehensive review. Cell Biochem Biophys 2025; 83:109-133. [PMID: 39243349 DOI: 10.1007/s12013-024-01492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Despite multiple diagnostic and therapeutic advances, including surgery, radiation therapy, and chemotherapy, cancer preserved its spot as a global health concern. Prompt cancer diagnosis, treatment, and prognosis depend on the discovery of new biomarkers and therapeutic strategies. Circular RNAs (circRNAs) are considered as a stable, conserved, abundant, and varied group of RNA molecules that perform multiple roles such as gene regulation. There is evidence that circRNAs interact with RNA-binding proteins, especially capturing miRNAs. An extensive amount of research has presented the substantial contribution of circRNAs in various types of cancer. To fully understand the linkage between circRNAs and cancer growth as a consequence of various cell death processes, including autophagy, ferroptosis, and apoptosis, more research is necessary. The expression of circRNAs could be controlled to limit the occurrence and growth of cancer, providing a more encouraging method of cancer treatment. Consequently, it is critical to understand how circRNAs affect various forms of cancer cell death and evaluate whether circRNAs could be used as targets to induce tumor death and increase the efficacy of chemotherapy. The current study aims to review and comprehend the effects that circular RNAs exert on cell apoptosis, autophagy, and ferroptosis in cancer to investigate potential cancer treatment targets.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of dentist, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical technical college, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Surgical Dentistry and Dental Implantology, Tashkent State Dental Institute, Tashkent, Uzbekistan
- Department of Scientific affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
12
|
Zhao S, Wang Y, Zhou L, Li Z, Weng Q. Exploring the Potential of tsRNA as Biomarkers for Diagnosis and Treatment of Neurogenetic Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04760-5. [PMID: 40009263 DOI: 10.1007/s12035-025-04760-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
tRNA-derived small RNA (tsRNA) is a recently discovered small non-coding RNA (ncRNA) molecule that widely exists in prokaryotic and eukaryotic transcriptomes and is produced by specific cleavage of mature tRNA or precursor tRNA. In recent years, with the development of high-throughput sequencing technology, tsRNA has been found to have a variety of biological functions, including gene expression regulation, stress signal activation, etc. In addition, it has been found that these molecules are abnormally expressed in various diseases and participate in various pathological processes, which play an important role. At present, more and more studies have shown that the expression level of tsRNA changes significantly during the development of neurogenetic diseases. This review provides an overview of the classification and biological functions of tsRNAs, with a particular emphasis on their roles in neurogenetic disorders and their potential as diagnostic biomarkers and therapeutic targets. Despite the nascent stage of tsRNA research, their relevance to the diagnosis and treatment of neurogenetic diseases warrants further investigation.
Collapse
Affiliation(s)
- Shiqi Zhao
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yujia Wang
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Liqun Zhou
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Zhe Li
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
| | - Qiuyan Weng
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
13
|
Wang Y, Yu Y, Yu J, Wang C, Wang Y, Fu R, Zhang C. The Role of the Dysregulation of circRNAs Expression in Glioblastoma Multiforme. J Mol Neurosci 2025; 75:9. [PMID: 39841303 DOI: 10.1007/s12031-024-02285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 01/23/2025]
Abstract
Primary brain tumors that were the most severe and aggressive were called glioblastoma multiforme (GBM). Cancers are caused in part by aberrant expression of circular RNA. Often referred to as competitive endogenous RNA (ceRNA), circRNA molecules act as "miRNA sponges" in cells by decreasing the inhibitory impact of miRNA on their target genes and hence raising the expression levels of those genes. circRNA molecules are rich in miRNA binding sites. The discovery of more structurally diverse and GBM-related circRNAs has great promise for the use of GMB prognostic biomarkers and therapeutic targets, as well as for comprehending the molecular regulatory mechanisms of GBM. In this work, we present an overview of the circRNA expression patterns associated with GBM and offer a potential integrated electrochemical strategy for detecting circRNA with extreme sensitivity in the diagnosis of glioblastoma.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ying Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiahua Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Cheng Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunkun Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Runxi Fu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
14
|
He L, Li L, Zhao L, Guan X, Guo Y, Han Q, Guo H, Liu H, Zhang C. CircCCT2/miR-146a-5p/IRAK1 axis promotes the development of head and neck squamous cell carcinoma. BMC Cancer 2025; 25:84. [PMID: 39810134 PMCID: PMC11734332 DOI: 10.1186/s12885-025-13464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC), a highly invasive malignancy with a poor prognosis, is one of the most common cancers globally. Circular RNAs (circRNAs) have become key regulators of human malignancies, but further studies are necessary to fully understand their functions and possible causes in HNSCC. METHODS CircCCT2 expression levels in HNSCC tissues and cells were measured via qPCR. CircCCT2 was characterized by Sanger sequencing, qRT-PCR, RNase R & Actinomycin D treatment, nucleoplasmic separation and FISH experiments. CCK-8 and colony formation assays were performed to determine cell proliferation, and Transwell assays were used to determine migration and invasion. A xenograft tumor model was used to study the influence of circCCT2 on HNSCC in vivo. Dual-luciferase gene reporter, RIP, western blotting, and rescue experiments, were used to explore target-binding relationships and regulatory mechanisms. RESULTS CircCCT2 was significantly upregulated in HNSCC tissues and cells. High circCCT2 levels were associated with advanced T stage, N stage, clinical stage and poor prognosis. Functionally, we verified that circCCT2 promotes HNSCC development in vitro and in vivo. Mechanistically, functioning as a competitive endogenous RNA (ceRNA) or miRNA sponge, circCCT2 binds directly to miR-146a-5p and increases interleukin-1 receptor-associated kinase 1 (IRAK1) levels, which enhances the malignant development of HNSCC by driving epithelial-mesenchymal transition (EMT). CONCLUSION CircCCT2 promotes HNSCC development through the miR-146a-5p/IRAK1 axis, revealing that circCCT2 is a potential biomarker and target for HNSCC.
Collapse
Affiliation(s)
- Long He
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Lanruo Li
- The First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, China
| | - Liting Zhao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Qi Han
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Departments of Cell Biology and Genetics, the Basic Medical School of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
15
|
Karimi R, Javandoost E, Asadmasjedi N, Atashi A, Soleimani A, Behzadifard M. Circular RNAs: history, metabolism, mechanisms of function, and regulatory roles at a glance. Ann Med Surg (Lond) 2025; 87:141-150. [PMID: 40109602 PMCID: PMC11918698 DOI: 10.1097/ms9.0000000000002761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/05/2024] [Indexed: 03/22/2025] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNA (ncRNA) molecules that, due to their covalent ring structure and lack of free ends, have a very high intracellular stability compared to their linear counterparts. In general, circRNAs are expressed in mammalian cells and exhibit tissue/cell-specific expression patterns. Mounting evidence is indicative that circRNAs regulate a variety of cellular processes by acting as miRNA sponges, transcriptional regulators, protein sponges, molecular scaffolds, and protein/peptide translators. The emergence of the biological functions of circRNAs has brought a novel outlook to our better understanding of cellular physiology and disease pathogenesis. CircRNAs have also been shown to play a critical role in the occurrence, development and progression of cancers. Their participation in the pathophysiology of various diseases including cardiovascular diseases, diabetes and neurological disorders is very important. Such characteristics have led to more studies investigating circRNAs as promising tools in molecular medicine and targeted therapy.
Collapse
Affiliation(s)
- Roqaye Karimi
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Javandoost
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nooshin Asadmasjedi
- Department of Laboratory Sciences, School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Amir Atashi
- Stem cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Alireza Soleimani
- Student Research Committee Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahin Behzadifard
- Department of Laboratory Sciences, School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
16
|
Masoomabadi N, Gorji A, Ghadiri T, Ebrahimi S. Regulatory role of circular RNAs in the development of therapeutic resistance in the glioma: A double-edged sword. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:3-15. [PMID: 39877636 PMCID: PMC11771335 DOI: 10.22038/ijbms.2024.81644.17669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/07/2024] [Indexed: 01/31/2025]
Abstract
Gliomas are the most common lethal tumors of the brain associated with a poor prognosis and increased resistance to chemo-radiotherapy. Circular RNAs (circRNAs), newly identified noncoding RNAs, have appeared as critical regulators of therapeutic resistance among multiple cancers and gliomas. Since circRNAs are aberrantly expressed in glioma and may act as promoters or inhibitors of therapeutic resistance, we categorized alterations of these specific RNAs expression in therapy resistant-glioma in three different classes, including chemoresistance, radioresistance, and glioma stem cell (GSC)-regulation. circRNAs act as competing endogenous RNA, sponging target microRNA and consequently affecting the expression of genes related to glioma tumorigenesis and resistance. By doing so, circRNAs can modulate the critical cellular pathways and processes regulating glioma resistance, including DNA repair pathways, GSC, epithelial-mesenchymal transition, apoptosis, and autophagy. Considering the poor survival and increased resistance to currently approved treatments for glioma, it is crucial to increase the knowledge of the resistance regulatory effects of circRNAs and their underlying molecular mechanisms. Herein, we conducted a comprehensive search and discussed the existing knowledge regarding the important role eof circRNAs in the emergence of resistance to therapeutic interventions in glioma. This knowledge may serve as a basis for enhancing the effectiveness of glioma therapeutic strategies.
Collapse
Affiliation(s)
- Negin Masoomabadi
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Epilepsy Research Center, Münster University, Münster, Germany
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safieh Ebrahimi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Wang MH, Liu ZH, Zhang HX, Liu HC, Ma LH. Hsa_circRNA_000166 accelerates breast cancer progression via the regulation of the miR-326/ELK1 and miR-330-5p/ELK1 axes. Ann Med 2024; 56:2424515. [PMID: 39529543 PMCID: PMC11559033 DOI: 10.1080/07853890.2024.2424515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSES To probe the expression, clinical significance, roles, and molecular mechanisms of circRNA_000166 in breast cancer (BC). METHODS Clinical tissue samples were gathered from 84 BC patients who underwent surgery at the Affiliated Hospital of Chengde Medical College. Clinical data were obtained from medical records and postoperative follow-up. Expression levels of circRNA_000166, miR-326, miR-330-5p, and ELK1 mRNA in BC tissues and cells were measured by qRT-PCR, and ELK1 protein levels were assessed by WB. Pearson's correlation analysis evaluated the interrelationships between these RNAs in clinical samples. Luciferase reporter assays verified the interactions between miR-326/miR-330-5p and circRNA_000166, as well as between miR-326/miR-330-5p and ELK1. Cell proliferation, migration, and apoptosis were examined using CCK-8, colony formation, transwell, and flow cytometry assays, respectively. RESULTS CircRNA_000166 was highly expressed in BC tissues and inversely correlated with miR-326/miR-330-5p levels but positively with ELK1 mRNA levels. ELK1 mRNA also inversely associated with miR-326/miR-330-5p levels in BC tissues. Importantly, our findings demonstrated that circRNA_000166 targets miR-326 and miR-330-5p, while ELK1 is the target of miR-326 and miR-330-5p in BC cells. CircRNA_000166 levels positively correlated with tumour size, TNM stage, histological grade, and lymph node metastasis, and negatively associated with postoperative progression-free survival (PFS) and overall survival (OS) in BC patients. CircRNA_000166 was also highly expressed in BC cells, and knockdown of circRNA_000166 reduced proliferation and migration, and increased apoptosis via miR-326/ELK1 and miR-330-5p/ELK1 pathways in vitro. CONCLUSION CircRNA_000166 enhances BC progression through miR-326/ELK1 and miR-330-5p/ELK1 pathways and shows potential as a biomarker for BC diagnosis and treatment.
Collapse
Affiliation(s)
- Ming-Hui Wang
- Department of Breast Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Zi-Hui Liu
- Department of Pathology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Hong-Xu Zhang
- Department of Breast Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Han-Cheng Liu
- Department of Breast Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Li-Hui Ma
- Department of Breast Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
18
|
Sandhanam K, Tamilanban T. Unraveling the noncoding RNA landscape in glioblastoma: from pathogenesis to precision therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9475-9502. [PMID: 39007929 DOI: 10.1007/s00210-024-03265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Glioblastoma (GBM) is an aggressive type IV brain tumor that originates from astrocytes and has a poor prognosis. Despite intensive research, survival rates have not significantly improved. Noncoding RNAs (ncRNAs) are emerging as critical regulators of carcinogenesis, progression, and increased treatment resistance in GBM cells. They influence angiogenesis, migration, epithelial-to-mesenchymal transition, and invasion in GBM cells. ncRNAs, such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are commonly dysregulated in GBM. miRNAs, such as miR-21, miR-133a, and miR-27a-3p, are oncogenes that increase cell proliferation, metastasis, and migration by targeting TGFBR1 and BTG2. In contrast, lncRNAs, such as HOXD-AS2 and LINC00511, are oncogenes that increase the migration, invasion, and proliferation of cells. CircRNAs, such as circ0001730, circENTPD7, and circFOXO3, are oncogenes responsible for cell growth, angiogenesis, and viability. Developing novel therapeutic strategies targeting ncRNAs, cell migration, and angiogenesis is a promising approach for GBM. By targeting these dysregulated ncRNAs, we can potentially restore a healthy balance in gene expression and influence disease progression. ncRNAs abound within GBM, demonstrating significant roles in governing the growth and behavior of these tumors. They may also be useful as biomarkers or targets for therapy. The use of morpholino oligonucleotides (MOs) suppressing the oncogene expression of HOTAIR, BCYRN1, and cyrano, antisense oligonucleotides (ASOs) suppressing the expression of ncRNAs such as MALAT1 and miR-10b, locked nucleic acids (LNAs) suppressing miR-21, and peptide nucleic acids (PNAs) suppressing the expression of miR-155 inhibited the PI3K pathway, tumor growth, angiogenesis, proliferation, migration, and invasion. Targeting oncogenic ncRNAs with RNA-interfering strategies such as MOs, ASOs, LNAs, CRISPR-Cas9 gene editing, and PNA approaches may represent a promising therapeutic strategy for GBM. This review emphasizes the critical role of ncRNAs in GBM pathogenesis, as well as the potential for new therapeutic strategies targeting these pathways to improve the prognosis and quality of life for GBM patients.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India.
| |
Collapse
|
19
|
Tsai HC, Tsai MH, Hua CH, Huang CW, Lu CC, Chen KJ, Yuan-Chien Chen M, Lien MY, Tang CH. Circ_0002722-induced regulation of YAP promotes platinum resistance in oral squamous cell carcinoma: Implications for verteporfin therapy. Biochem Pharmacol 2024; 229:116460. [PMID: 39098731 DOI: 10.1016/j.bcp.2024.116460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Oral squamous cell carcinoma (OSCC) poses a significant public health burden due to its high prevalence and poor prognosis. Platinum resistance is one of the major challenges in OSCC treatment. Yes-associated protein (YAP) has been identified as a pivotal player in OSCC tumorigenesis and progression. Circular RNA (circRNA) has been implicated in chemoresistance in various cancers by regulation the function of microRNA. Nevertheless, the specific mechanisms linking circRNA to YAP expression in OSCC remain poorly understood. In this study, we detected the YAP and circRNA hsa_circ_0002722 (circ_0002722) expression by western blot (WB) and quantitative polymerase chain reaction (qPCR). We found that YAP and circ_0002722 were up-regulated in platinum resistance in OSCC tissues. Furthermore, transfection of circ_0002722 siRNA into platinum-resistant cells revealed that circ_0002722 acted as a regulator of miR-1305, which influenced YAP expression and thereby affected platinum sensitivity. In vivo experiments corroborated the synergistic effects of cisplatin and verteporfin (a YAP inhibitor) in combating platinum resistance. Targeting YAP emerges as a promising therapeutic strategy for addressing platinum resistance in OSCC, with circ_0002722 serving as a potential therapy target and valuable diagnostic marker. These findings shed light on the underlying mechanisms of platinum resistance, paving the way for the development of effective treatment approaches.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cisplatin/pharmacology
- Cisplatin/therapeutic use
- Drug Resistance, Neoplasm
- Mice, Inbred BALB C
- Mice, Nude
- Mouth Neoplasms/drug therapy
- Mouth Neoplasms/genetics
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/antagonists & inhibitors
- Verteporfin/pharmacology
- Verteporfin/therapeutic use
- Xenograft Model Antitumor Assays/methods
- YAP-Signaling Proteins/metabolism
Collapse
Affiliation(s)
- Hsiao-Chi Tsai
- Department of Medicine Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Ming-Hsui Tsai
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Hung Hua
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Wei Huang
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chien-Chi Lu
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Kwei-Jing Chen
- School of Dentistry, China Medical University, Taichung, Taiwan; Department of Dentistry, China Medical University Hospital, Taichung, Taiwan
| | - Michael Yuan-Chien Chen
- School of Dentistry, China Medical University, Taichung, Taiwan; Department of Dentistry, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Yu Lien
- School of Medicine, China Medical University, Taichung, Taiwan; Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
20
|
Saranya I, Selvamurugan N. Regulation of TGF-β/BMP signaling during osteoblast development by non-coding RNAs: Potential therapeutic applications. Life Sci 2024; 355:122969. [PMID: 39142506 DOI: 10.1016/j.lfs.2024.122969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Bone is a connective tissue that is metabolically active and serves multiple functions, including movement, structural support, and organ protection. It is comprised primarily of three types of bone cells, namely osteoblasts, osteocytes, and osteoclasts. Osteoblasts are bone-forming cells, and the differentiation of mesenchymal stem cells towards osteoblasts is regulated by several growth factors, cytokines, and hormones via various signaling pathways, including TGF-β/BMP (transforming growth factor-beta/bone morphogenetic protein) signaling as a primary one. Non-coding RNAs (ncRNAs), such as microRNAs and long ncRNAs, play crucial roles in regulating osteoblast differentiation via the TGF-β/BMP signaling cascade. Dysregulation of these ncRNAs leads to bone-pathological conditions such as osteoporosis, skeletal dysplasia, and osteosclerosis. This review provides a concise overview of the latest advancements in understanding the involvement of ncRNAs/TGF-β/BMP axis in osteoblast differentiation. These findings have the potential to identify new molecular targets for early detection of bone metabolism disorders and the development of innovative therapy strategies.
Collapse
Affiliation(s)
- Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
21
|
Liang L, Gao M, Li W, Tang J, He Q, Zeng F, Cao J, Liu S, Chen Y, Li X, Zhou Y. CircGSK3β mediates PD-L1 transcription through miR-338-3p/PRMT5/H3K4me3 to promote breast cancer cell immune evasion and tumor progression. Cell Death Discov 2024; 10:426. [PMID: 39366935 PMCID: PMC11452702 DOI: 10.1038/s41420-024-02197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Circular RNA (circRNA) plays a pivotal role in breast cancer onset and progression. Understanding the biological functions and underlying molecular mechanisms of dysregulated circRNAs in breast cancer is crucial for elucidating its pathogenesis and identifying potential therapeutic targets. In this study, we investigated the role and molecular mechanism of circGSK3β in breast cancer. We found that circGSK3β is highly expressed in breast cancer cell lines, where it promotes cell proliferation, migration, and invasion, thereby driving breast cancer progression. Furthermore, we observed a close association between circGSK3β expression levels and immune evasion in breast cancer cells. Mechanistically, circGSK3β acts as a competing endogenous RNA (ceRNA) by interacting with miR-338-3p, thereby promoting breast cancer cell proliferation, migration, and invasion. Additionally, circGSK3β positively regulates the expression of the target gene PRMT5 through its interaction with miR-338-3p. This, in turn, enhances H3K4me3 recruitment to the promoter region of PD-L1, resulting in upregulation of PD-L1 expression and consequent immune evasion in breast cancer. In summary, our findings underscore the significance of the circGSK3β-miR-338-3p-PRMT5-H3K4me3 axis in promoting breast cancer progression and immune evasion. CircGSK3β emerges as a critical player in breast cancer pathogenesis, potentially serving as a diagnostic and prognostic marker, and offering novel insights into the role of circRNAs in breast cancer progression.
Collapse
Affiliation(s)
- Lin Liang
- Breast Cancer Center, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Mengxiang Gao
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Wentao Li
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Jingqiong Tang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Qian He
- Department of Radiation Oncology, Hunan Cancer Hospital & the Afliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Feng Zeng
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Jiaying Cao
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Siyi Liu
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Yan Chen
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Xin Li
- Breast Cancer Center, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China.
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
22
|
Butz H, Patócs A, Igaz P. Circulating non-coding RNA biomarkers of endocrine tumours. Nat Rev Endocrinol 2024; 20:600-614. [PMID: 38886617 DOI: 10.1038/s41574-024-01005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Circulating non-coding RNA (ncRNA) molecules are being investigated as biomarkers of malignancy, prognosis and follow-up in several neoplasms, including endocrine tumours of the pituitary, parathyroid, pancreas and adrenal glands. Most of these tumours are classified as neuroendocrine neoplasms (comprised of neuroendocrine tumours and neuroendocrine carcinomas) and include tumours of variable aggressivity. We consider them together here in this Review owing to similarities in their clinical presentation, pathomechanism and genetic background. No preoperative biomarkers of malignancy are available for several forms of these endocrine tumours. Moreover, biomarkers are also needed for the follow-up of tumour progression (especially in hormonally inactive tumours), prognosis and treatment efficacy monitoring. Circulating blood-borne ncRNAs show promising utility as biomarkers. These ncRNAs, including microRNAs, long non-coding RNAs and circular RNAs, are involved in several aspects of gene expression regulation, and their stability and tissue-specific expression could make them ideal biomarkers. However, no circulating ncRNA biomarkers have yet been introduced into routine clinical practice, which is mostly owing to methodological and standardization problems. In this Review, following a brief synopsis of these endocrine tumours and the biology of ncRNAs, the major research findings, pathomechanisms and methodological questions are discussed along with an outlook for future studies.
Collapse
Affiliation(s)
- Henriett Butz
- HUN-REN-SU Hereditary Tumours Research Group, Budapest, Hungary
- Department of Molecular Genetics and the National Tumour Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Patócs
- HUN-REN-SU Hereditary Tumours Research Group, Budapest, Hungary
- Department of Molecular Genetics and the National Tumour Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Peter Igaz
- Department of Endocrinology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
23
|
Panchalingam S, Kasivelu G. Exploring the impact of circular RNA on ALS progression: A systematic review. Brain Res 2024; 1838:148990. [PMID: 38734122 DOI: 10.1016/j.brainres.2024.148990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disease that damages motor neurons and causes gradual muscular weakening and paralysis. Although studies have linked a number of genetic and environmental factors to ALS, the specific causes and mechanisms of the disease are still unclear. The pivotal role of circular RNA in the pathogenesis of ALS is a newly emerging area of research. The term "circular RNA" describes a particular class of RNA molecule that, in contrast to most RNA molecules, has a closed-loop structure. According to recent research, circular RNA might be essential for the development and progression of ALS. It has been discovered that these circular RNAs support important cellular functions related to ALS, including protein turnover, mitochondrial function, RNA processing, and cellular transport. Gaining knowledge about the precise roles and processes of circular RNA in the development of ALS could assist in understanding the pathophysiology of the disease and possibly pave the way for the development of targeted therapies. However, the understanding of circular RNA in ALS is still limited, and more research is needed to fully elucidate its role. In order to gain a comprehensive understanding of the role of circRNAs in ALS, it is imperative to delve into the various mechanisms through which circRNAs may contribute to the development and progression of the disease. Examining the current status of circRNA research in ALS and offering insights into their potential as therapeutic targets and diagnostic markers are the primary objectives of this review.
Collapse
Affiliation(s)
- Santhiya Panchalingam
- Centre for Ocean Research (DST-FIST Sponsored Centre), Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Govindaraju Kasivelu
- Centre for Ocean Research (DST-FIST Sponsored Centre), Sathyabama Institute of Science and Technology, Chennai 600119, India.
| |
Collapse
|
24
|
Wang C, Liang C. CircCNNs, a convolutional neural network framework to better understand the biogenesis of exonic circRNAs. Sci Rep 2024; 14:18982. [PMID: 39152135 PMCID: PMC11329666 DOI: 10.1038/s41598-024-69262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Circular RNAs (circRNAs) as biomarkers for cancer detection have been extensively explored, however, the biogenesis mechanism is still elusive. In contrast to linear splicing (LS) involved in linear transcript formation, the so-called back splicing (BS) process has been proposed to explain circRNA formation. To investigate the potential mechanism of BS via the machine learning approach, we curated a high-quality BS and LS exon pairs dataset with evidence-based stringent filtering. Two convolutional neural networks (CNN) base models with different structures for processing splicing junction sequences including motif extraction were created and compared after extensive hyperparameter tuning. In contrast to the previous study, we are able to identify motifs corresponding to well-established BS-associated genes such as MBNL1, QKI, and ESPR2. Importantly, despite prevalent high false positive rates in existing circRNA detection pipelines and databases, our base models demonstrated a notable high specificity (greater than 90%). To further improve the model performance, a novo fast numerical method was proposed and implemented to calculate the reverse complementary matches (RCMs) crossing two flanking regions and within each flanking region of exon pairs. Our CircCNNs framework that incorporated RCM information into the optimal base models further reduced the false positive rates leading to 88% prediction accuracy.
Collapse
Affiliation(s)
- Chao Wang
- Department of Biology, Miami University, Oxford, OH, 45056, USA.
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
25
|
D’Aversa E, Salvatori F, Vaccarezza M, Antonica B, Grisafi M, Singh AV, Secchiero P, Zauli G, Tisato V, Gemmati D. circRNAs as Epigenetic Regulators of Integrity in Blood-Brain Barrier Architecture: Mechanisms and Therapeutic Strategies in Multiple Sclerosis. Cells 2024; 13:1316. [PMID: 39195206 PMCID: PMC11352526 DOI: 10.3390/cells13161316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease leading to progressive demyelination and neuronal loss, with extensive neurological symptoms. As one of the most widespread neurodegenerative disorders, with an age onset of about 30 years, it turns out to be a socio-health and economic issue, thus necessitating therapeutic interventions currently unavailable. Loss of integrity in the blood-brain barrier (BBB) is one of the distinct MS hallmarks. Brain homeostasis is ensured by an endothelial cell-based monolayer at the interface between the central nervous system (CNS) and systemic bloodstream, acting as a selective barrier. MS results in enhanced barrier permeability, mainly due to the breakdown of tight (TJs) and adherens junctions (AJs) between endothelial cells. Specifically, proinflammatory mediator release causes failure in cytoplasmic exposure of junctions, resulting in compromised BBB integrity that enables blood cells to cross the barrier, establishing iron deposition and neuronal impairment. Cells with a compromised cytoskeletal protein network, fiber reorganization, and discontinuous junction structure can occur, resulting in BBB dysfunction. Recent investigations on spatial transcriptomics have proven circularRNAs (circRNAs) to be powerful multi-functional molecules able to epigenetically regulate transcription and structurally support proteins. In the present review, we provide an overview of the recent role ascribed to circRNAs in maintaining BBB integrity/permeability via cytoskeletal stability. Increased knowledge of the mechanisms responsible for impairment and circRNA's role in driving BBB damage and dysfunction might be helpful for the recognition of novel therapeutic targets to overcome BBB damage and unrestrained neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta D’Aversa
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Bianca Antonica
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Miriana Grisafi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 11462, Saudi Arabia
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
26
|
Hussen BM, Abdullah SR, Mohammed AA, Rasul MF, Hussein AM, Eslami S, Glassy MC, Taheri M. Advanced strategies of targeting circular RNAs as therapeutic approaches in colorectal cancer drug resistance. Pathol Res Pract 2024; 260:155402. [PMID: 38885593 DOI: 10.1016/j.prp.2024.155402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Colorectal cancer (CRC) stands second in terms of mortality and third among the highest prevalent kinds of cancer globally. CRC prevalence is rising in moderately and poorly developed regions and is greater in economically advanced regions. Despite breakthroughs in targeted therapy, resistance to chemotherapeutics remains a significant challenge in the long-term management of CRC. Circular RNAs (circRNAs) have been involved in growing cancer therapy resistance, particularly in CRC, according to an increasing number of studies in recent years. CircRNAs are one of the novel subclasses of non-coding RNAs, previously thought of as viroid. According to studies, circRNAs have been recommended as biological markers for therapeutic targets and diagnostic and prognostic purposes. That is particularly notable given that the expression of circRNAs has been linked to the hallmarks of CRC since they are responsible for drug resistance in CRC patients; thereby, circRNAs are significant for chemotherapy failure. Moreover, knowledge concerning circRNAs remains relatively unclear despite using all these advanced techniques. Here, in this study, we will go over the most recent published work to highlight the critical roles of circRNAs in CRC development and drug resistance and highlight the main strategies to overcome drug resistance to improve clinical outcomes.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | | | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Ali M Hussein
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mark C Glassy
- Translational Neuro-Oncology Laboratory, San Diego (UCSD) Moores Cancer Center, University of California, CA, United States
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
27
|
Mafi A, Khoshnazar SM, Shahpar A, Nabavi N, Hedayati N, Alimohammadi M, Hashemi M, Taheriazam A, Farahani N. Mechanistic insights into circRNA-mediated regulation of PI3K signaling pathway in glioma progression. Pathol Res Pract 2024; 260:155442. [PMID: 38991456 DOI: 10.1016/j.prp.2024.155442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Circular RNAs (CircRNAs) are non-coding RNAs (ncRNAs) characterized by a stable circular structure that regulates gene expression at both transcriptional and post-transcriptional levels. They play diverse roles, including protein interactions, DNA methylation modification, protein-coding potential, pseudogene creation, and miRNA sponging, all of which influence various physiological processes. CircRNAs are often highly expressed in brain tissues, and their levels vary with neural development, suggesting their significance in nervous system diseases such as gliomas. Research has shown that circRNA expression related to the PI3K pathway correlates with various clinical features of gliomas. There is an interact between circRNAs and the PI3K pathway to regulate glioma cell processes such as proliferation, differentiation, apoptosis, inflammation, angiogenesis, and treatment resistance. Additionally, PI3K pathway-associated circRNAs hold potential as biomarkers for cancer diagnosis, prognosis, and treatment. In this study, we reviewed the latest advances in the expression and cellular roles of PI3K-mediated circRNAs and their connections to glioma carcinogenesis and progression. We also highlighted the significance of circRNAs as diagnostic and prognostic biomarkers and therapeutic targets in glioma.
Collapse
Affiliation(s)
- Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhossein Shahpar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
28
|
Mafi A, Hedayati N, Milasi YE, Kahkesh S, Daviran M, Farahani N, Hashemi M, Nabavi N, Alimohammadi M, Rahimzadeh P, Taheriazam A. The function and mechanism of circRNAs in 5-fluorouracil resistance in tumors: Biological mechanisms and future potential. Pathol Res Pract 2024; 260:155457. [PMID: 39018926 DOI: 10.1016/j.prp.2024.155457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
5-Fluorouracil (5-FU) is a well-known chemotherapy drug extensively used in the treatment of breast cancer. It works by inhibiting cancer cell proliferation and inducing cell death through direct incorporation into DNA and RNA via thymidylate synthase (TS). Circular RNAs (circRNAs), a novel family of endogenous non-coding RNAs (ncRNAs) with limited protein-coding potential, contribute to 5-FU resistance. Their identification and targeting are crucial for enhancing chemosensitivity. CircRNAs can regulate tumor formation and invasion by adhering to microRNAs (miRNAs) and interacting with RNA-binding proteins, regulating transcription and translation. MiRNAs can influence enzymes responsible for 5-FU metabolism in cancer cells, affecting their sensitivity or resistance to the drug. In the context of 5-FU resistance, circRNAs can target miRNAs and regulate biological processes such as cell proliferation, cell death, glucose metabolism, hypoxia, epithelial-to-mesenchymal transition (EMT), and drug efflux. This review focuses on the function of circRNAs in 5-FU resistance, discussing the underlying molecular pathways and biological mechanisms. It also presents recent circRNA/miRNA-targeted cancer therapeutic strategies for future clinical application.
Collapse
Affiliation(s)
- Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Minoo Daviran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
29
|
Yang S, Cao D, Jaijyan DK, Wang M, Liu J, Cruz-Cosme R, Wu S, Huang J, Zeng M, Liu X, Sun W, Xiong D, Tang Q, Xiao L, Zhu H. Identification and characterization of Varicella Zoster Virus circular RNA in lytic infection. Nat Commun 2024; 15:4932. [PMID: 38858365 PMCID: PMC11164961 DOI: 10.1038/s41467-024-49112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
This study investigates the role of circular RNAs (circRNAs) in the context of Varicella-Zoster Virus (VZV) lytic infection. We employ two sequencing technologies, short-read sequencing and long-read sequencing, following RNase R treatment on VZV-infected neuroblastoma cells to identify and characterize both cellular and viral circRNAs. Our large scanning analysis identifies and subsequent experiments confirm 200 VZV circRNAs. Moreover, we discover numerous VZV latency-associated transcripts (VLTs)-like circRNAs (circVLTslytic), which contain multiple exons and different isoforms within the same back-splicing breakpoint. To understand the functional significance of these circVLTslytic, we utilize the Bacteria Artificial Chromosome system to disrupt the expression of viral circRNAs in genomic DNA location. We reveal that the sequence flanking circVLTs' 5' splice donor plays a pivotal role as a cis-acting element in the formation of circVLTslytic. The circVLTslytic is dispensable for VZV replication, but the mutation downstream of circVLTslytic exon 5 leads to increased acyclovir sensitivity in VZV infection models. This suggests that circVLTslytic may have a role in modulating the sensitivity to antiviral treatment. The findings shed new insight into the regulation of cellular and viral transcription during VZV lytic infection, emphasizing the intricate interplay between circRNAs and viral processes.
Collapse
Affiliation(s)
- Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Di Cao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 070101, USA
| | - Mei Wang
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jian Liu
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, 363000, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC, 20059, USA
| | - Songbin Wu
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Jiabin Huang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Mulan Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 070101, USA
| | - Xiaolian Liu
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Donglin Xiong
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC, 20059, USA.
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 070101, USA.
| |
Collapse
|
30
|
Włodarczyk K, Kuryło W, Pawłowska-Łachut A, Skiba W, Suszczyk D, Pieniądz P, Majewska M, Boniewska-Bernacka E, Wertel I. circRNAs in Endometrial Cancer-A Promising Biomarker: State of the Art. Int J Mol Sci 2024; 25:6387. [PMID: 38928094 PMCID: PMC11203539 DOI: 10.3390/ijms25126387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Endometrial cancer (EC) is one of the most common malignant tumors among women in the 21st century, whose mortality rate is increasing every year. Currently, the diagnosis of EC is possible only after a biopsy. However, it is necessary to find a new biomarker that will help in both the diagnosis and treatment of EC in a non-invasive way. Circular RNAs (circRNAs) are small, covalently closed spherical and stable long non-coding RNAs (lncRNAs) molecules, which are abundant in both body fluids and human tissues and are expressed in various ways. Considering the new molecular classification of EC, many studies have appeared, describing new insights into the functions and mechanisms of circRNAs in EC. In this review article, we focused on the problem of EC and the molecular aspects of its division, as well as the biogenesis, functions, and diagnostic and clinical significance of circRNAs in EC.
Collapse
Affiliation(s)
- Karolina Włodarczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (W.K.); (A.P.-Ł.); (W.S.); (D.S.); (P.P.); (I.W.)
| | - Weronika Kuryło
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (W.K.); (A.P.-Ł.); (W.S.); (D.S.); (P.P.); (I.W.)
| | - Anna Pawłowska-Łachut
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (W.K.); (A.P.-Ł.); (W.S.); (D.S.); (P.P.); (I.W.)
| | - Wiktoria Skiba
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (W.K.); (A.P.-Ł.); (W.S.); (D.S.); (P.P.); (I.W.)
| | - Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (W.K.); (A.P.-Ł.); (W.S.); (D.S.); (P.P.); (I.W.)
| | - Paulina Pieniądz
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (W.K.); (A.P.-Ł.); (W.S.); (D.S.); (P.P.); (I.W.)
- Department of Virology and Immunology, Institute of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-031 Lublin, Poland
| | - Małgorzata Majewska
- Department of Industrial and Environmental Microbiology, Institute of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-031 Lublin, Poland;
| | - Ewa Boniewska-Bernacka
- Medical Department, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052 Opole, Poland;
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (W.K.); (A.P.-Ł.); (W.S.); (D.S.); (P.P.); (I.W.)
| |
Collapse
|
31
|
Mosca N, Alessio N, Di Paola A, Marrapodi MM, Galderisi U, Russo A, Rossi F, Potenza N. Osteosarcoma in a ceRNET perspective. J Biomed Sci 2024; 31:59. [PMID: 38835012 PMCID: PMC11151680 DOI: 10.1186/s12929-024-01049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Osteosarcoma (OS) is the most prevalent and fatal type of bone tumor. It is characterized by great heterogeneity of genomic aberrations, mutated genes, and cell types contribution, making therapy and patients management particularly challenging. A unifying picture of molecular mechanisms underlying the disease could help to transform those challenges into opportunities.This review deeply explores the occurrence in OS of large-scale RNA regulatory networks, denominated "competing endogenous RNA network" (ceRNET), wherein different RNA biotypes, such as long non-coding RNAs, circular RNAs and mRNAs can functionally interact each other by competitively binding to shared microRNAs. Here, we discuss how the unbalancing of any network component can derail the entire circuit, driving OS onset and progression by impacting on cell proliferation, migration, invasion, tumor growth and metastasis, and even chemotherapeutic resistance, as distilled from many studies. Intriguingly, the aberrant expression of the networks components in OS cells can be triggered also by the surroundings, through cytokines and vesicles, with their bioactive cargo of proteins and non-coding RNAs, highlighting the relevance of tumor microenvironment. A comprehensive picture of RNA regulatory networks underlying OS could pave the way for the development of innovative RNA-targeted and RNA-based therapies and new diagnostic tools, also in the perspective of precision oncology.
Collapse
Affiliation(s)
- Nicola Mosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Di Paola
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
32
|
Bhat AA, Gupta G, Goyal A, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Sekar M, Meenakshi DU, Singh SK, MacLoughlin R, Dua K. Unwinding circular RNA's role in inflammatory pulmonary diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2567-2588. [PMID: 37917370 DOI: 10.1007/s00210-023-02809-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Circular RNAs (circRNAs) have emerged as pivotal regulators of gene expression and cellular processes in various physiological and pathological conditions. In recent years, there has been a growing interest in investigating the role of circRNAs in inflammatory lung diseases, owing to their potential to modulate inflammation-associated pathways and contribute to disease pathogenesis. Inflammatory lung diseases, like asthma, chronic obstructive pulmonary disease (COPD), and COVID-19, pose significant global health challenges. The dysregulation of inflammatory responses demonstrates a pivotal function in advancing these diseases. CircRNAs have been identified as important players in regulating inflammation by functioning as miRNA sponges, engaging with RNA-binding proteins, and participating in intricate ceRNA networks. These interactions enable circRNAs to regulate the manifestation of key inflammatory genes and signaling pathways. Furthermore, emerging evidence suggests that specific circRNAs are differentially expressed in response to inflammatory stimuli and exhibit distinct patterns in various lung diseases. Their involvement in immune cell activation, cytokine production, and tissue remodeling processes underscores their possible capabilities as therapeutic targets and diagnostic biomarkers. Harnessing the knowledge of circRNA-mediated regulation in inflammatory lung diseases could lead to the development of innovative strategies for disease management and intervention. This review summarizes the current understanding of the role of circRNAs in inflammatory lung diseases, focusing on their regulatory mechanisms and functional implications.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India.
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72388, Al-Jouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ronan MacLoughlin
- Research and Development, Aerogen Limited, IDA Business Park, Galway, Connacht, H91 HE94, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster, D02 YN77, Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster, D02 PN40, Ireland
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
33
|
Liu X, Xiong H, Lu M, Liu B, Hu C, Liu P. Trans-3, 5, 4'-trimethoxystilbene restrains non-small-cell lung carcinoma progression via suppressing M2 polarization through inhibition of m6A modified circPACRGL-mediated Hippo signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155436. [PMID: 38394728 DOI: 10.1016/j.phymed.2024.155436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Non-small-cell lung carcinoma (NSCLC) accounts for ∼85% of all lung carcinomas. Trans-3,5,4'-trimethoxystilbene (TMS) shows strong anti-tumor activity and induces tumor cell apoptosis. However, its function and mechanism in NSCLC still require investigation. METHODS PMA was used to treated THP-1 cells for macrophage differentiation. The abundance and m6A modification of circPACRGL were examined with qRT-PCR and MeRIP. Colony forming, transwell, wound healing, and Western blotting assays were applied to analyze proliferation, invasion, migration, and EMT. Macrophage polarization was determined through flow cytometry analysis of M1 and M2 markers. The interplay between circPACRGL, IGF2BP2 and YAP1 was validated by RNA pull-down and RIP assays. Mice received subcutaneous injection of NSCLC cells as a mouse model of subcutaneous tumor. RESULTS CircPACRGL was upregulated in NSCLC cells, but it was reduced by TMS treatment. CircPACRGL depletion blocked proliferation, migration, and invasion in H1299 and H1975 cells. TMS suppressed these malignant behaviors, but it was abolished by circPACRGL overexpression. In addition, NSCLC-derived exosomes delivered circPACRGL into THP-1 cells to promote its M2 polarization, but TMS inhibited these effects by downregulating exosomal circPACRGL. Mechanically, exosomal circPACRGL bound to IGF2BP2 to improve the stability of YAP1 mRNA and regulate Hippo signaling in polarized THP-1 cells. TMS inhibited NSCLC growth via suppressing Hippo signaling and M2 polarization in vivo. CONCLUSION TMS restrains M2 polarization and NSCLC progression by reducing circPACRGL and inhibiting exosomal circPACRGL-mediated Hippo signaling. Thus, these findings provide a novel mechanism underlying NSCLC progression and potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, PR China
| | - Hui Xiong
- Department of Oncology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, PR China
| | - Min Lu
- Department of Oncology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, PR China
| | - Bin Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, PR China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, PR China
| | - Ping Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, PR China.
| |
Collapse
|
34
|
Dawoud A, Elmasri RA, Mohamed AH, Mahmoud A, Rostom MM, Youness RA. Involvement of CircRNAs in regulating The "New Generation of Cancer Hallmarks": A Special Depiction on Hepatocellular Carcinoma. Crit Rev Oncol Hematol 2024; 196:104312. [PMID: 38428701 DOI: 10.1016/j.critrevonc.2024.104312] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
The concept of 'Hallmarks of Cancer' is an approach of reducing the enormous complexity of cancer to a set of guiding principles. As the underlying mechanism of cancer are portrayed, we find that we gain insight and additional aspects of the disease arise. The understanding of the tumor microenvironment (TME) brought a new dimension and led to the discovery of novel hallmarks such as senescent cells, non-mutational epigenetic reprogramming, polymorphic microbiomes and unlocked phenotypic plasticity. Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules that are ubiquitous across all species. Recent studies on the circRNAs have highlighted their crucial function in regulating the formation of human malignancies through a range of biological processes. The primary goal of this review is to clarify the role of circRNAs in the most common form of liver cancer, hepatocellular carcinoma (HCC). This review also addressed the topic of how circRNAs affect HCC hallmarks, including the new generation hallmarks. Finally, the enormous applications that these rapidly expanding ncRNA molecules serve in the functional and molecular development of effective HCC diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- A Dawoud
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; School of Medicine, University of North California, Chapel Hill, NC 27599, USA
| | - R A Elmasri
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt
| | - A H Mohamed
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - A Mahmoud
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; Biotechnology School, Nile University, Giza 12677, Egypt
| | - M M Rostom
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - R A Youness
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt.
| |
Collapse
|
35
|
Tavares I, Morais M, Dias F, Medeiros R, Teixeira AL. Deregulated miRNAs in enzalutamide resistant prostate cancer: A comprehensive review of key molecular alterations and clinical outcomes. Biochim Biophys Acta Rev Cancer 2024; 1879:189067. [PMID: 38160898 DOI: 10.1016/j.bbcan.2023.189067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Prostate cancer (PC) is the second most frequently diagnosed cancer and the fifth leading cause of cancer-related deaths in male population worldwide. Since the growth and progression of PC highly depend on the androgen pathway, androgen deprivation therapy (ADT) is the mainstay of systemic treatment. Enzalutamide is a second-generation antiandrogen, which is widely used for the treatment of advanced and metastatic PC. However, treatment failure and disease progression, caused by the emergence of enzalutamide resistant phenotypes, remains an important clinical challenge. MicroRNAs (miRNAs) are key regulators of gene expression and have recently emerged as potential biomarkers for being stable and easily analysed in several biological fluids. Several miRNAs that exhibit dysregulated expression patterns in enzalutamide-resistant PC have recently been identified, including miRNAs that modulate critical signalling pathways and genes involved in PC growth, survival and in the acquisition of enzalutamide phenotype. The understanding of molecular mechanisms by which miRNAs promote the development of enzalutamide resistance can provide valuable insights into the complex interplay between miRNAs, gene regulation, and treatment response in PC. Moreover, these miRNAs could serve as valuable tools for monitoring treatment response and disease progression during enzalutamide administration. This review summarises the miRNAs associated with enzalutamide resistance in PC already described in the literature, focusing on their biological roles and on their potential as biomarkers.
Collapse
Affiliation(s)
- Inês Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal; ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Porto, Portugal
| | - Mariana Morais
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal; ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal; ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Porto, Portugal; Faculty of Medicine, University of Porto (FMUP), Porto, Portugal; Biomedical Reasearch Center, Faculty of Health Sciences, Fernando Pessoa University (UFP), Porto, Portugal; Research Department, LPCC- Portuguese League Against Cancer (NRNorte), Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal.
| |
Collapse
|
36
|
Guo Y, Feng X, Wang Z, Zhang R, Zheng K, Xu J, Hu P, Zhang R. The quantification of circular RNA 0007841 during induction therapy helps estimate the response and survival benefits to bortezomib-based regimen in multiple myeloma. Ir J Med Sci 2024; 193:17-25. [PMID: 37336827 DOI: 10.1007/s11845-023-03410-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/15/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE Circular RNA_0007841 (Circ_0007841) facilitates multiple myeloma (MM) progression and resistance of the bortezomib by experimental studies, while its clinical implication in MM patients is still unclear. This study intended to evaluate the longitudinal change and prognostic role of circ_0007841 expression in MM patients receiving bortezomib-based induction therapy. METHODS In this prospective study, bone marrow plasma cell (BMPC) samples were gained from 97 MM patients at diagnosis and after bortezomib-based induction therapy, and from 30 healthy controls (HCs) proposing BM donation. Then, circ_0007841 expression in BMPC samples was measured by reverse transcription-quantitative polymerase chain reaction. Additionally, MM patients were followed up for a median of 29.4 months. RESULTS Circ_0007841 expression was increased in MM patients compared to HCs (P < 0.001), but it was decreased after bortezomib-based induction therapy in MM patients (P < 0.001). Moreover, circ_0007841 expression at diagnosis was associated with the presence of t (4; 14) (P = 0.034), while its expression after bortezomib-based induction therapy was linked with higher revised international staging system stage (P = 0.025) in MM patients. Interestingly, circ_0007841 expression after bortezomib-based induction therapy was lower in MM patients who achieved complete remissions (P = 0.001) and overall responses (P = 0.002) compared to those who did not. Prognostically, circ_0007841 expression after bortezomib-based induction therapy (over the median vs. below the median) independently predicted shorter progression-free survival (hazard ratio (HR): 2.497, P = 0.002) and overall survival (HR: 3.107, P = 0.008) in MM patients. CONCLUSION Circ_0007841 quantification during induction therapy may reflect the response and survival benefits to bortezomib-based regimen in MM patients.
Collapse
Affiliation(s)
- Yigang Guo
- Department of Hematology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xuelian Feng
- Children's Medical Center, Taihe Hospital, Hubei University of Medicine, Hubei, China.
| | - Zhen Wang
- Children's Medical Center, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Ruibo Zhang
- Children's Medical Center, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Kun Zheng
- Children's Medical Center, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Jinyun Xu
- Department of Hematology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Ping Hu
- Department of Hematology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Rongyao Zhang
- Department of Hematology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| |
Collapse
|
37
|
Zhang F, Lei X, Yang X. Emerging roles of ncRNAs regulating ABCC1 on chemotherapy resistance of cancer - a review. J Chemother 2024; 36:1-10. [PMID: 38263773 DOI: 10.1080/1120009x.2023.2247202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/20/2023] [Indexed: 01/25/2024]
Abstract
In the process of chemotherapy, drug resistance of cancer cells is a common and difficult problem of chemotherapy failure, and it is also the main cause of cancer recurrence and metastasis. Non-coding RNAs (ncRNAs) refer to the RNA that does not encode proteins, including microRNA (miRNA), long non-coding RNA (lncRNA) and circularRNA (circRNA), etc. NcRNAs are involved in a series of important life processes and further regulate the expression of ABCC1 by directly or indirectly up-regulating or down-regulating the expression of targeted mRNAs, making cancer cells more susceptible to drug resistance. A growing number of studies have shown that ncRNAs have effects on cancer cell proliferation, invasion, metastasis, and drug sensitivity, by regulating the expression of ABCC1. In this review, we will discuss the emerging roles of ncRNAs regulating ABCC1 in chemotherapy resistance and mechanisms to reverse drug resistance as well as provide potential targets for future cancer treatment.
Collapse
Affiliation(s)
- Feng Zhang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| |
Collapse
|
38
|
Wen T, Li T, Xu Y, Zhang Y, Pan H, Wang Y. The role of m6A epigenetic modifications in tumor coding and non-coding RNA processing. Cell Commun Signal 2023; 21:355. [PMID: 38102645 PMCID: PMC10722709 DOI: 10.1186/s12964-023-01385-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/04/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Epigenetic modifications of RNA significantly contribute to the regulatory processes in tumors and have, thus, received considerable attention. The m6A modification, known as N6-methyladenosine, is the predominant epigenetic alteration found in both eukaryotic mRNAs and ncRNAs. MAIN BODY m6A methylation modifications are dynamically reversible and are catalyzed, removed, and recognized by the complex of m6A methyltransferase (MTases), m6A demethylase, and m6A methyl recognition proteins (MRPs). Published evidence suggests that dysregulated m6A modification results in abnormal biological behavior of mature mRNA, leading to a variety of abnormal physiological processes, with profound implications for tumor development in particular. CONCLUSION Abnormal RNA processing due to dysregulation of m6A modification plays an important role in tumor pathogenesis and potential mechanisms of action. In this review, we comprehensively explored the mechanisms by which m6A modification regulates mRNA and ncRNA processing, focusing on their roles in tumors, and aiming to understand the important regulatory function of m6A modification, a key RNA epigenetic modification, in tumor cells, with a view to providing theoretical support for tumor diagnosis and treatment. Video Abstract.
Collapse
Affiliation(s)
- Tongxuan Wen
- Department of Neurosurgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China
| | - Tong Li
- Department of Neurosurgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China
| | - Yeqiu Xu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China
| | - Yuanzhuang Zhang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China
| | - Hai Pan
- Department of Neurosurgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China.
| | - Yong Wang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China.
| |
Collapse
|
39
|
Pudova E, Kobelyatskaya A, Emelyanova M, Snezhkina A, Fedorova M, Pavlov V, Guvatova Z, Dalina A, Kudryavtseva A. Non-Coding RNAs and the Development of Chemoresistance to Docetaxel in Prostate Cancer: Regulatory Interactions and Approaches Based on Machine Learning Methods. Life (Basel) 2023; 13:2304. [PMID: 38137905 PMCID: PMC10744715 DOI: 10.3390/life13122304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Chemotherapy based on taxane-class drugs is the gold standard for treating advanced stages of various oncological diseases. However, despite the favorable response trends, most patients eventually develop resistance to this therapy. Drug resistance is the result of a combination of different events in the tumor cells under the influence of the drug, a comprehensive understanding of which has yet to be determined. In this review, we examine the role of the major classes of non-coding RNAs in the development of chemoresistance in the case of prostate cancer, one of the most common and socially significant types of cancer in men worldwide. We will focus on recent findings from experimental studies regarding the prognostic potential of the identified non-coding RNAs. Additionally, we will explore novel approaches based on machine learning to study these regulatory molecules, including their role in the development of drug resistance.
Collapse
Affiliation(s)
- Elena Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Marina Emelyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladislav Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Zulfiya Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia
| | - Alexandra Dalina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
40
|
Zhou H, Chen DS, Hu CJ, Hong X, Shi J, Xiao Y. Stimuli-Responsive Nanotechnology for RNA Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303597. [PMID: 37915127 PMCID: PMC10754096 DOI: 10.1002/advs.202303597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/30/2023] [Indexed: 11/03/2023]
Abstract
Ribonucleic acid (RNA) drugs have shown promising therapeutic effects for various diseases in clinical and preclinical studies, owing to their capability to regulate the expression of genes of interest or control protein synthesis. Different strategies, such as chemical modification, ligand conjugation, and nanotechnology, have contributed to the successful clinical translation of RNA medicine, including small interfering RNA (siRNA) for gene silencing and messenger RNA (mRNA) for vaccine development. Among these, nanotechnology can protect RNAs from enzymatic degradation, increase cellular uptake and cytosolic transportation, prolong systemic circulation, and improve tissue/cell targeting. Here, a focused overview of stimuli-responsive nanotechnologies for RNA delivery, which have shown unique benefits in promoting RNA bioactivity and cell/organ selectivity, is provided. Many tissue/cell-specific microenvironmental features, such as pH, enzyme, hypoxia, and redox, are utilized in designing internal stimuli-responsive RNA nanoparticles (NPs). In addition, external stimuli, such as light, magnetic field, and ultrasound, have also been used for controlling RNA release and transportation. This review summarizes a wide range of stimuli-responsive NP systems for RNA delivery, which may facilitate the development of next-generation RNA medicines.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Cardiology, Clinical Trial CenterZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan University430071WuhanChina
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications210023NanjingChina
| | - Dean Shuailin Chen
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Caleb J. Hu
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Xuechuan Hong
- Department of Cardiology, Clinical Trial CenterZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan University430071WuhanChina
| | - Jinjun Shi
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Yuling Xiao
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
41
|
Piao X, Ma L, Xu Q, Zhang X, Jin C. Noncoding RNAs: Versatile regulators of endothelial dysfunction. Life Sci 2023; 334:122246. [PMID: 37931743 DOI: 10.1016/j.lfs.2023.122246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Noncoding RNAs have recently emerged as versatile regulators of endothelial dysfunction in atherosclerosis, a chronic inflammatory disease characterized by the formation of plaques within the arterial walls. Through their ability to modulate gene expression, noncoding RNAs, including microRNAs, long noncoding RNAs, and circular RNAs, play crucial roles in various cellular processes involved in endothelial dysfunction (ECD), such as inflammation, pyroptosis, migration, proliferation, apoptosis, oxidative stress, and angiogenesis. This review provides an overview of the current understanding of the regulatory roles of noncoding RNAs in endothelial dysfunction during atherosclerosis. It highlights the specific noncoding RNAs that have been implicated in the pathogenesis of ECD, their target genes, and the mechanisms by which they contribute to ECD. Furthermore, we have reviewed the current therapeutics in atherosclerosis and explore their interaction with noncoding RNAs. Understanding the intricate regulatory network of noncoding RNAs in ECD may open up new opportunities for the development of novel therapeutic strategies to combat ECD.
Collapse
Affiliation(s)
- Xiong Piao
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China.
| | - Lie Ma
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Qinqi Xu
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Xiaomin Zhang
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Chengzhu Jin
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| |
Collapse
|
42
|
Samavarchi Tehrani S, Goodarzi G, Panahi G, Maniati M, Meshkani R. Multiple novel functions of circular RNAs in diabetes mellitus. Arch Physiol Biochem 2023; 129:1235-1249. [PMID: 34087083 DOI: 10.1080/13813455.2021.1933047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs), as an emerging group of non-coding RNAs (ncRNAs), have received the attention given evidence indicating that these novel ncRNAs are implicated in various biological processes. Due to the absence of 5' and 3' ends in circ-RNAs, their two ends are covalently bonded together, and they are synthesised from pre-mRNAs in a process called back-splicing, which makes them more stable than linear RNAs. There is accumulating evidence showing that circRNAs play a critical role in the pathogenesis of diabetes mellitus (DM). Moreover, it has been indicated that dysregulation of circRNAs has made them promising diagnostic biomarkers for the detection of DM. Recently, increasing attention has been paid to investigate the mechanisms underlying the DM process. It has been demonstrated that there is a strong correlation between the expression of circRNAs and DM. Hence, our aim is to discuss the crosstalk between circRNAs and DM and its complications.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Sberna G, Maggi F, Amendola A. Virus-Encoded Circular RNAs: Role and Significance in Viral Infections. Int J Mol Sci 2023; 24:16547. [PMID: 38003737 PMCID: PMC10671809 DOI: 10.3390/ijms242216547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023] Open
Abstract
Circular RNAs (circRNAs) have been the focus of intense scientific research to understand their biogenesis, mechanisms of action and regulatory functions. CircRNAs are single stranded, covalently closed RNA molecules lacking the 5'-terminal cap and the 3'-terminal polyadenine chain, characteristics that make them very stable and resistant. Synthesised by both cells and viruses, in the past circRNAs were considered to have no precise function. Today, increasing evidence shows that circRNAs are ubiquitous, some of them are tissue- and cell-specific, and critical in multiple regulatory processes (i.e., infections, inflammation, oncogenesis, gene expression). Moreover, circRNAs are emerging as important biomarkers of viral infection and disease progression. In this review, we provided an updated overview of current understanding of virus-encoded and cellular-encoded circRNAs and their involvement in cellular pathways during viral infection.
Collapse
Affiliation(s)
| | | | - Alessandra Amendola
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, 00149 Rome, Italy; (G.S.)
| |
Collapse
|
44
|
Cai YJ, Huang W, Zhu LY, Lin YX, Huang CF, Yang WF, Zhou JL, Dong JD, Zhou WH, Qin QW, Sun HY. Identification of circRNAs and circRNA-mRNA network of Epinephelus coioides during Singapore grouper iridovirus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109113. [PMID: 37788751 DOI: 10.1016/j.fsi.2023.109113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023]
Abstract
Circular RNA (circRNA), one of the important non-coding RNA molecules with a closed-loop structure, plays a key regulatory role in cell processing. In this study, circRNAs of Epinephelus coioides, an important marine cultured fish in China, were isolated and characterized, and the network of circRNAs and mRNA was explored during Singapore grouper iridovirus (SGIV) infection, one of the most important double stranded DNA virus pathogens of marine fish. 10 g of raw data was obtained by high-throughput sequencing, and 2599 circRNAs were classified. During SGIV infection, 123 and 37 circRNAs occurred differential expression in spleen and spleen cells, indicating that circRNAs would be involved in the viral infection. GO annotation and KEGG demonstrated that circRNAs could target E. coioides genes to regulate cell activity and the activation of immune factors. The results provide some insights into the circRNAs mediated immune regulatory network during bony fish virus infection.
Collapse
Affiliation(s)
- Yi-Jie Cai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511450, Guangdong Province, PR China
| | - Wei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511450, Guangdong Province, PR China
| | - Liang-Yuan Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yun-Xiang Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Cui-Fen Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Wen-Feng Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Jia-Lin Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Jun-De Dong
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Wei-Hua Zhou
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qi-Wei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511450, Guangdong Province, PR China.
| | - Hong-Yan Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511450, Guangdong Province, PR China.
| |
Collapse
|
45
|
Zeng L, Liu L, Ni WJ, Xie F, Leng XM. Circular RNAs in osteosarcoma: An update of recent studies (Review). Int J Oncol 2023; 63:123. [PMID: 37681483 DOI: 10.3892/ijo.2023.5571] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/20/2023] [Indexed: 09/09/2023] Open
Abstract
Osteosarcoma (OS) prevailing in children and adolescents mainly occurs at the metaphysis of long bones. As it is associated with a high invasive and metastatic ability, resistance to chemotherapy, and a low 5‑year survival rate, the diagnosis and treatment of OS post a global healthy issue. Over the past decades, RNA biology has shed new light onto the pathogenesis of OS. As a type of non‑coding RNAs, circular RNAs (circRNAs) have been found to play crucial roles in cellular activities. Recently, a large number of circRNAs have been identified in OS and some of them have been validated to be functional in OS. In the present review, abnormally expressed and different types of circRNAs in OS are summarized. Functional studies on circRNAs have revealed that circRNAs can regulate gene expression at different levels, such as gene transcription, precursor mRNA splicing, miRNA sponges and translation into proteins/peptides. Mechanistic analyses on circRNAs show that circRNAs can regulate JAK‑STAT3, NF‑κB, PI3K‑AKT, Wnt/β‑catenin signaling pathways during the occurrence and development of OS. Furthermore, the potential clinical applications of circRNAs are also emphasized. The present review focus on the current knowledge on the functions and mechanisms of circRNAs in the pathogenesis of OS, aiming to provide new insight into the OS diagnosis and treatment of OS.
Collapse
Affiliation(s)
- Le Zeng
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Longzhou Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Wen-Juan Ni
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Fuhua Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
46
|
Tirpe A, Streianu C, Tirpe SM, Kocijancic A, Pirlog R, Pirlog B, Busuioc C, Pop OL, Berindan-Neagoe I. The Glioblastoma CircularRNAome. Int J Mol Sci 2023; 24:14545. [PMID: 37833993 PMCID: PMC10572686 DOI: 10.3390/ijms241914545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma remains one of the most aggressive cancers of the brain, warranting new methods for early diagnosis and more efficient treatment options. Circular RNAs (circRNAs) are rather new entities with increased stability compared to their linear counterparts that interact with proteins and act as microRNA sponges, among other functions. Herein, we provide a critical overview of the recently described glioblastoma-related circRNAs in the literature, focusing on their roles on glioblastoma cancer cell proliferation, survival, migration, invasion and metastasis, metabolic reprogramming, and therapeutic resistance. The main roles of circRNAs in regulating cancer processes are due to their regulatory roles in essential oncogenic pathways, including MAPK, PI3K/AKT/mTOR, and Wnt, which are influenced by various circRNAs. The present work pictures the wide implication of circRNAs in glioblastoma, thus highlighting their potential as future biomarkers and therapeutic targets/agents.
Collapse
Affiliation(s)
- Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.T.); (R.P.)
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
| | - Cristian Streianu
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
| | - Stefana Maria Tirpe
- Department of Neurology, Ortenau-Klinikum Lahr, Klostenstrasse 19, 7933 Lahr, Germany;
| | - Anja Kocijancic
- Department of Microbiology, Oslo University Hospital, N-0424 Oslo, Norway;
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.T.); (R.P.)
| | - Bianca Pirlog
- Department of Neurology, County Emergency Hospital, 400012 Cluj-Napoca, Romania;
| | - Constantin Busuioc
- Department of Pathology, National Institute of Infectious Disease, 021105 Bucharest, Romania;
- Department of Pathology, Onco Team Diagnostic, 010719 Bucharest, Romania
| | - Ovidiu-Laurean Pop
- Department of Morphological Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.T.); (R.P.)
| |
Collapse
|
47
|
Qin S, Wang Y, Ma C, Lv Q. Competitive endogenous network of circRNA, lncRNA, and miRNA in osteosarcoma chemoresistance. Eur J Med Res 2023; 28:354. [PMID: 37717007 PMCID: PMC10504747 DOI: 10.1186/s40001-023-01309-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/23/2023] [Indexed: 09/18/2023] Open
Abstract
Osteosarcoma is the most prevalent and fatal type of bone tumor. Despite advancements in the treatment of other cancers, overall survival rates for patients with osteosarcoma have stagnated over the past four decades Multiple-drug resistance-the capacity of cancer cells to become simultaneously resistant to multiple drugs-remains a significant obstacle to effective chemotherapy. The recent studies have shown that noncoding RNAs can regulate the expression of target genes. It has been proposed that "competing endogenous RNA" activity forms a large-scale regulatory network across the transcriptome, playing important roles in pathological conditions such as cancer. Numerous studies have highlighted that circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) can bind to microRNA (miRNA) sites as competitive endogenous RNAs, thereby affecting and regulating the expression of mRNAs and target genes. These circRNA/lncRNA-associated competitive endogenous RNAs are hypothesized to play significant roles in cancer initiation and progression. Noncoding RNAs (ncRNAs) play an important role in tumor resistance to chemotherapy. However, the molecular mechanisms of the lncRNA/circRNA-miRNA-mRNA competitive endogenous RNA network in drug resistance of osteosarcoma remain unclear. An in-depth study of the molecular mechanisms of drug resistance in osteosarcoma and the elucidation of effective intervention targets are of great significance for improving the overall recovery of patients with osteosarcoma. This review focuses on the molecular mechanisms underlying chemotherapy resistance in osteosarcoma in circRNA-, lncRNA-, and miRNA-mediated competitive endogenous networks.
Collapse
Affiliation(s)
- Shuang Qin
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065, China
| | - Yuting Wang
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065, China
| | - Chunhui Ma
- Department of Orthopedics, Shanghai General Hospital of Shanghai Jiaotong University, Wujin Road No. 85, Shanghai, 200080, China.
| | - Qi Lv
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065, China.
| |
Collapse
|
48
|
Mehmandar-Oskuie A, Jahankhani K, Rostamlou A, Arabi S, Sadat Razavi Z, Mardi A. Molecular landscape of LncRNAs in bladder cancer: From drug resistance to novel LncRNA-based therapeutic strategies. Biomed Pharmacother 2023; 165:115242. [PMID: 37531786 DOI: 10.1016/j.biopha.2023.115242] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Bladder cancer (BC) is a common and serious type of cancer that ranks among the top ten most prevalent malignancies worldwide. Due to the high occurrence rate of BC, the aggressive nature of cancer cells, and their resistance to medication, managing this disease has become a growing challenge in clinical care. Long noncoding RNAs (lncRNAs) are a group of RNA transcripts that do not code for proteins and are more than 200 nucleotides in length. They play a significant role in controlling cellular pathways and molecular interactions during the onset, development and progression of different types of cancers. Recent advancements in high-throughput gene sequencing technology have led to the identification of various differentially expressed lncRNAs in BC, which indicate abnormal expression. In this review, we summarize that these lncRNAs have been found to impact several functions related to the development of BC, including proliferation, cell growth, migration, metastasis, apoptosis, epithelial-mesenchymal transition, and chemo- and radio-resistance. Additionally, lncRNAs may improve prognosis prediction for BC patients, indicating a future use for them as prognostic and diagnostic biomarkers for BC patients. This review highlights that genetic tools and anti-tumor agents, such as CRISPR/Cas systems, siRNA, shRNA, antisense oligonucleotides, and vectors, have been created for use in preclinical cancer models. This has led to a growing interest in using lncRNAs based on positive research findings.
Collapse
Affiliation(s)
- Amirreza Mehmandar-Oskuie
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Rostamlou
- Department of Medical Biology, Faculty of Medicine, University of EGE, IZMIR, Turkey
| | - Sepideh Arabi
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zahra Sadat Razavi
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Amirhossein Mardi
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
49
|
Barbagallo C, Stella M, Ferrara C, Caponnetto A, Battaglia R, Barbagallo D, Di Pietro C, Ragusa M. RNA-RNA competitive interactions: a molecular civil war ruling cell physiology and diseases. EXPLORATION OF MEDICINE 2023:504-540. [DOI: 10.37349/emed.2023.00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 09/02/2023] Open
Abstract
The idea that proteins are the main determining factors in the functioning of cells and organisms, and their dysfunctions are the first cause of pathologies, has been predominant in biology and biomedicine until recently. This protein-centered view was too simplistic and failed to explain the physiological and pathological complexity of the cell. About 80% of the human genome is dynamically and pervasively transcribed, mostly as non-protein-coding RNAs (ncRNAs), which competitively interact with each other and with coding RNAs generating a complex RNA network regulating RNA processing, stability, and translation and, accordingly, fine-tuning the gene expression of the cells. Qualitative and quantitative dysregulations of RNA-RNA interaction networks are strongly involved in the onset and progression of many pathologies, including cancers and degenerative diseases. This review will summarize the RNA species involved in the competitive endogenous RNA network, their mechanisms of action, and involvement in pathological phenotypes. Moreover, it will give an overview of the most advanced experimental and computational methods to dissect and rebuild RNA networks.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Michele Stella
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | | | - Angela Caponnetto
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosalia Battaglia
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Davide Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cinzia Di Pietro
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
50
|
Chakravarthi VP, Hung WT, Yellapu NK, Gunewardena S, Christenson LK. LH/hCG Regulation of Circular RNA in Mural Granulosa Cells during the Periovulatory Period in Mice. Int J Mol Sci 2023; 24:13078. [PMID: 37685885 PMCID: PMC10488058 DOI: 10.3390/ijms241713078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Ovarian follicles undergo a series of dynamic changes following the ovulatory surge of luteinizing hormone including cumulus expansion, oocyte maturation, ovulation, and luteinization. Post-transcriptional gene regulatory events are critical for mediating LH follicular responses, and among all RNA isoforms, circular RNA (circRNA) is one of the most abundant forms present in cells, yet they remain the least studied. Functionally, circRNA can act as miRNA sponges, protein sponges/decoys, and regulators of transcription and translation. In the context of ovarian follicular development, the identity and roles of circRNA are relatively unknown. In the present study, high throughput RNA sequencing of granulosa cells immediately prior to and 4-h after the LH/hCG surge identified 42,381 circRNA originating from 7712 genes. A total of 54 circRNA were identified as differentially expressed between 0-h and 4-h time points (Fold Change ± 1.5, FDR ≤ 0.1), among them 42 circRNA were upregulated and 12 circRNA were downregulated. All differentially expressed circRNA between the 0-h and 4-h groups were subjected to circinteractome analysis and identified networks of circRNA-protein and circRNA-miRNA were further subjected to "micro-RNA target filter analysis" in Ingenuity Pathway Analyses, which resulted in the identification of miRNA targeted mRNAs. A comparison of these circRNA target mRNAs with LH-induced mRNAs identified Runx2, Egfr, Areg, Sult1el, Cyp19a1, Cyp11a1, and Hsd17b1 as targets of circKif2, circVcan, circMast4, and circMIIt10. These newly identified LH/hCG-induced circRNA, their target miRNA and protein networks provide new insights into the complex interactions associated with periovulatory follicular development.
Collapse
Affiliation(s)
- V. Praveen Chakravarthi
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3075 HLSIC, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (V.P.C.); (W.-T.H.); (S.G.)
| | - Wei-Ting Hung
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3075 HLSIC, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (V.P.C.); (W.-T.H.); (S.G.)
| | - Nanda Kumar Yellapu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3075 HLSIC, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (V.P.C.); (W.-T.H.); (S.G.)
| | - Lane K. Christenson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3075 HLSIC, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (V.P.C.); (W.-T.H.); (S.G.)
| |
Collapse
|