1
|
Patil M, Munteanu T, Brasseur G, Ferreira C, Costa SS, Couto I, Athar M, Asunis E, Vargiu AV, Viveiros M, DiGiorgio C, Brunel F, Raimundo J, Camplo M, Siri O, Bolla J. Unlocking the Gates: A Novel Diagnostic Molecule for Quantifying Efflux Levels in Gram-Positive Bacteria. Adv Healthc Mater 2025; 14:e2404145. [PMID: 40066601 PMCID: PMC12023841 DOI: 10.1002/adhm.202404145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/21/2025] [Indexed: 04/26/2025]
Abstract
Efflux-mediated antibiotic resistance poses a significant global threat, affecting diverse bacterial species. Clinicians recognize the danger of efflux mechanisms during antibiotic treatment, yet precise diagnostic tools remain unavailable. The antibiogram currently infers abnormal efflux pump activity in clinical isolates, which is subsequently confirmed through transcriptomic or genomic analysis. This study harnesses the colorimetric, fluorescence, and solubility properties of phenazinium derivatives to develop a rapid protocol for detecting bacterial efflux. Among several synthesized phenazinium compounds, the compound demonstrating differential MIC in Staphylococcus efflux mutants and exhibiting appropriate physicochemical properties is selected. A diagnostic protocol is developed using the selected compound to assess efflux levels, categorized as no, weak, or strong, through colorimetry and spectroscopy techniques. Testing on Gram-positive efflux mutants and clinical Staphylococcus isolates further validates the approach. In-silico docking analysis confirms the interaction between the chosen compound and the NorA efflux pump in S. aureus. Flow cytometry is employed to re-evaluate the detection assays. The developed molecule and protocol represent the first known method to evaluate efflux levels in any Gram-positive species through a streamlined and user-friendly process. This pioneering test significantly advances the epidemiological analysis of efflux mechanisms and enables more informed therapeutic decision-making, leading to more effective treatment.
Collapse
Affiliation(s)
- Mrunal Patil
- Aix Marseille UniversitéCNRSCINaM UMR 7325Campus de LuminyCase 913, Cedex 09Marseille13288France
- Aix Marseille UniversitéINSERMSSAMCTMarseille13385France
| | - Tatiana Munteanu
- Aix Marseille UniversitéCNRSCINaM UMR 7325Campus de LuminyCase 913, Cedex 09Marseille13288France
| | - Gaël Brasseur
- Laboratoire de Chimie BactérienneInstitut de Microbiologie de la MéditerranéeCNRSAix‐Marseille UniversitéMarseille13402France
| | - Carolina Ferreira
- Global Health and Tropical MedicineGHTMAssociate Laboratory in Translation and Innovation Towards Global HealthLA‐REALInstituto de Higiene e Medicina TropicalIHMTUniversidade NOVA de LisboaUNLLisbon1349‐008Portugal
| | - Sofia Santos Costa
- Global Health and Tropical MedicineGHTMAssociate Laboratory in Translation and Innovation Towards Global HealthLA‐REALInstituto de Higiene e Medicina TropicalIHMTUniversidade NOVA de LisboaUNLLisbon1349‐008Portugal
| | - Isabel Couto
- Global Health and Tropical MedicineGHTMAssociate Laboratory in Translation and Innovation Towards Global HealthLA‐REALInstituto de Higiene e Medicina TropicalIHMTUniversidade NOVA de LisboaUNLLisbon1349‐008Portugal
| | - Mohd Athar
- Physics DepartmentUniversity of CagliariSP 8, km 0.700Monserrato09042CagliariItaly
| | - Elisa Asunis
- Physics DepartmentUniversity of CagliariSP 8, km 0.700Monserrato09042CagliariItaly
| | | | - Miguel Viveiros
- Global Health and Tropical MedicineGHTMAssociate Laboratory in Translation and Innovation Towards Global HealthLA‐REALInstituto de Higiene e Medicina TropicalIHMTUniversidade NOVA de LisboaUNLLisbon1349‐008Portugal
| | - Carole DiGiorgio
- Laboratoire de Mutagénèse EnvironnementaleAix‐Marseille UniversitéCNRSIRDAvignon UniversitéIMBE UMR 7263Marseille13385France
| | - Frédéric Brunel
- Aix Marseille UniversitéCNRSCINaM UMR 7325Campus de LuminyCase 913, Cedex 09Marseille13288France
| | - Jean‐Manuel Raimundo
- Aix Marseille UniversitéCNRSCINaM UMR 7325Campus de LuminyCase 913, Cedex 09Marseille13288France
| | - Michel Camplo
- Aix Marseille UniversitéCNRSCINaM UMR 7325Campus de LuminyCase 913, Cedex 09Marseille13288France
| | - Olivier Siri
- Aix Marseille UniversitéCNRSCINaM UMR 7325Campus de LuminyCase 913, Cedex 09Marseille13288France
| | | |
Collapse
|
2
|
Işık EB, Serçinoğlu O. Unraveling the ligand specificity and promiscuity of the Staphylococcus aureus NorA efflux pump: a computational study. J Biomol Struct Dyn 2024:1-12. [PMID: 38497784 DOI: 10.1080/07391102.2024.2326670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
Staphylococcus aureus, a gram-positive bacterial pathogen, develops antibiotic resistance partly through enhanced activity of transmembrane multi-drug efflux pump proteins like NorA. Being a prominent member of the Major Facilitator Superfamily (MFS), NorA transports various small molecules including hydrophilic fluoroquinolone antibiotics across the cell membrane. Intriguingly, NorA is inhibited by a structurally diverse set of small molecule inhibitors as well, indicating a highly promiscuous ligand/inhibitor recognition. Our study aims to elucidate the structural facets of this promiscuity. Known NorA inhibitors were grouped into five clusters based on chemical class and docked into ligand binding pockets on NorA conformations generated via molecular dynamics simulations. We discovered that several key residues, such as I23, E222, and F303, are involved in inhibitor binding. Additionally, residues I244, T223, F303, and F140 were identified as prominent in interactions with specific ligand clusters. Our findings suggest that NorA's substrate binding site, encompassing residues aiding ligand recognition based on chemical nature, facilitates the recognition of chemically diverse ligands. This insight into NorA's structural promiscuity in ligand recognition not only enhances understanding of antibiotic resistance mechanisms in S. aureus but also sets the stage for the development of more effective efflux pump inhibitors, vital for combating multidrug resistance.
Collapse
Affiliation(s)
- Esra Büşra Işık
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, Gebze, Kocaeli, Türkiye
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakıf University, Beykoz, Istanbul, Türkiye
| | - Onur Serçinoğlu
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, Gebze, Kocaeli, Türkiye
| |
Collapse
|
3
|
Truong-Bolduc QC, Yonker LM, Wang Y, Lawton BG, Hooper DC. NorA efflux pump mediates Staphylococcus aureus response to Pseudomonas aeruginosa pyocyanin toxicity. Antimicrob Agents Chemother 2024; 68:e0100123. [PMID: 38231535 PMCID: PMC10848749 DOI: 10.1128/aac.01001-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024] Open
Abstract
Endogenous transporters protect Staphylococcus aureus against antibiotics and also contribute to bacterial defense from environmental toxins. We evaluated the effect of overexpression of four efflux pumps, NorA, NorB, NorC, and Tet38, on S. aureus survival following exposure to pyocyanin (PYO) of Pseudomonas aeruginosa, using a well diffusion assay. We measured the PYO-created inhibition zone and found that only an overexpression of NorA reduced S. aureus susceptibility to pyocyanin killing. The MICPYO of the NorA overexpressor increased threefold compared to that of wild-type RN6390 and was reduced 2.5-fold with reserpine, suggesting that increased NorA efflux caused PYO resistance. The PYO-created inhibition zone of a ΔnorA mutant was consistently larger than that of a plasmid-borne NorA overexpressor. PYO also produced a modest increase in norA expression (1.8-fold at 0.25 µg/mL PYO) that gradually decreased with increasing PYO concentrations. Well diffusion assays carried out using P. aeruginosa showed that ΔnorA mutant was less susceptible to killing by PYO-deficient mutants PA14phzM and PA14phzS than to killing by PA14. NorA overexpression led to reduced killing by all tested P. aeruginosa. We evaluated the NorA-PYO interaction using a collection of 22 clinical isolates from adult and pediatric cystic fibrosis (CF) patients, which included both S. aureus (CF-SA) and P. aeruginosa (CF-PA). We found that when isolated alone, CF-PA and CF-SA expressed varying levels of PYO and norA transcripts, but all four CF-PA/CF-SA pairs isolated concurrently from CF patients produced a low level of PYO and low norA transcript levels, respectively, suggesting a partial adaptation of the two bacteria in circumstances of persistent co-colonization.
Collapse
Affiliation(s)
- Q. C. Truong-Bolduc
- Infectious Diseases Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - L. M. Yonker
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Y. Wang
- Infectious Diseases Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - B. G. Lawton
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D. C. Hooper
- Infectious Diseases Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Ika Irianti M, Vincken JP, van Dinteren S, Ter Beest E, Pos KM, Araya-Cloutier C. Prenylated isoflavonoids from Fabaceae against the NorA efflux pump in Staphylococcus aureus. Sci Rep 2023; 13:22548. [PMID: 38110428 PMCID: PMC10728173 DOI: 10.1038/s41598-023-48992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023] Open
Abstract
Overexpression of NorA efflux pumps plays a pivotal role in the multidrug-resistance mechanism in S. aureus. Here, we investigated the activities of prenylated isoflavonoids, present in the legume plant family (Fabaceae), as natural efflux pump inhibitors (EPIs) in fluoroquinolone-resistant S. aureus. We found that four prenylated isoflavonoids, namely neobavaisoflavone, glabrene, glyceollin I, and glyceollin III, showed efflux pump inhibition in the norA overexpressing S. aureus. At sub-inhibitory concentrations, neobavaisoflavone (6.25 µg/mL, 19 µM) and glabrene (12.5 µg/mL, 39 µM), showed up to 6 times more Eth accumulation in norA overexpressing S. aureus than in the control. In addition, these two compounds boosted the MIC of fluoroquinolones up to eightfold. No fluoroquinolone potentiation was observed with these isoflavonoids in the norA knockout strain, indicating NorA as the main target of these potential EPIs. In comparison to the reported NorA EPI reserpine, neobavaisoflavone showed similar potentiation of fluoroquinolone activity at 10 µM, higher Eth accumulation, and less cytotoxicity. Neobavaisoflavone and glabrene did not exhibit membrane permeabilization effects or cytotoxicity on Caco-2 cells. In conclusion, our findings suggest that the prenylated isoflavonoids neobavaisoflavone and glabrene are promising phytochemicals that could be developed as antimicrobials and resistance-modifying agents to treat fluoroquinolone-resistant S. aureus strains.
Collapse
Affiliation(s)
- Marina Ika Irianti
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
- Laboratory of Microbiology and Biotechnology, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, Indonesia
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Sarah van Dinteren
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Ellen Ter Beest
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Klaas Martinus Pos
- Institute of Biochemistry, Goethe-University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Carla Araya-Cloutier
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Palazzotti D, Felicetti T, Sabatini S, Moro S, Barreca ML, Sturlese M, Astolfi A. Fighting Antimicrobial Resistance: Insights on How the Staphylococcus aureus NorA Efflux Pump Recognizes 2-Phenylquinoline Inhibitors by Supervised Molecular Dynamics (SuMD) and Molecular Docking Simulations. J Chem Inf Model 2023; 63:4875-4887. [PMID: 37515548 PMCID: PMC10428217 DOI: 10.1021/acs.jcim.3c00516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 07/31/2023]
Abstract
The superbug Staphylococcus aureus (S. aureus) exhibits several resistance mechanisms, including efflux pumps, that strongly contribute to antimicrobial resistance. In particular, the NorA efflux pump activity is associated with S. aureus resistance to fluoroquinolone antibiotics (e.g., ciprofloxacin) by promoting their active extrusion from cells. Thus, since efflux pump inhibitors (EPIs) are able to increase antibiotic concentrations in bacteria as well as restore their susceptibility to these agents, they represent a promising strategy to counteract bacterial resistance. Additionally, the very recent release of two NorA efflux pump cryo-electron microscopy (cryo-EM) structures in complex with synthetic antigen-binding fragments (Fabs) represents a real breakthrough in the study of S. aureus antibiotic resistance. In this scenario, supervised molecular dynamics (SuMD) and molecular docking experiments were combined to investigate for the first time the molecular mechanisms driving the interaction between NorA and efflux pump inhibitors (EPIs), with the ultimate goal of elucidating how the NorA efflux pump recognizes its inhibitors. The findings provide insights into the dynamic NorA-EPI intermolecular interactions and lay the groundwork for future drug discovery efforts aimed at the identification of novel molecules to fight antimicrobial resistance.
Collapse
Affiliation(s)
- Deborah Palazzotti
- Department
of Pharmaceutical Sciences, Department of Excellence 2018−2022, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Tommaso Felicetti
- Department
of Pharmaceutical Sciences, Department of Excellence 2018−2022, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Stefano Sabatini
- Department
of Pharmaceutical Sciences, Department of Excellence 2018−2022, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Stefano Moro
- Molecular
Modeling Section (MMS), Department of Pharmaceutical and Pharmacological
Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Maria Letizia Barreca
- Department
of Pharmaceutical Sciences, Department of Excellence 2018−2022, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Mattia Sturlese
- Molecular
Modeling Section (MMS), Department of Pharmaceutical and Pharmacological
Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Andrea Astolfi
- Department
of Pharmaceutical Sciences, Department of Excellence 2018−2022, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| |
Collapse
|
6
|
Li Y, Ge X. Role of Berberine as a Potential Efflux Pump Inhibitor against MdfA from Escherichia coli: In Vitro and In Silico Studies. Microbiol Spectr 2023; 11:e0332422. [PMID: 36786641 PMCID: PMC10100983 DOI: 10.1128/spectrum.03324-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Infections by Gram-negative pathogens are usually difficult to manage due to the drug export by efflux pumps. With the evolution and horizontal transfer of efflux pumps, there is an urgent need to discover safe and effective efflux pump inhibitors. Here, we found that the natural compound berberine (BBR), a traditional medicine for intestinal infection, is an inhibitor against the major facilitator superfamily (MFS) efflux pump MdfA in Escherichia coli. The impact of BBR on MdfA was evaluated in a recombinant E. coli reporter strain. We demonstrated that low levels of BBR significantly increased intracellular ciprofloxacin concentrations and restored antibiotic susceptibility of the reporter strain. At the same time, we conducted molecular dynamics simulations to investigate the mechanisms of BBR's effect on MdfA. Our data indicated that BBR can aggregate to the periplasmic and cytoplasmic sides of MdfA in both of its inward and outward conformations. Protein rigidities were affected to different degrees. More importantly, two major driving forces for the conformational transition, salt bridges and hydrophilic interactions with water, were changed by BBR's aggregation to MdfA, which affected its conformational transition. In summary, our data provide evidence for the extended application of BBR as an efflux pump inhibitor at a clinically meaningful level. We also reveal the mechanisms and provide insights into BBR's effect on the reciprocal motion of MdfA. IMPORTANCE In this work, we evaluated the role of berberine (BBR) as an inhibitor of the MFS efflux pump MdfA from E. coli. We demonstrated that low levels of BBR significantly increased intracellular ciprofloxacin concentrations and restored antibiotic susceptibility of the reporter strain. Molecular dynamics simulations revealed the effect of BBR on the conformational transition of MdfA. Our data suggested that driving forces for MdfA's conformational transition were affected by BBR and provided evidence for BBR's extended application as an effective inhibitor of MdfA.
Collapse
Affiliation(s)
- Ying Li
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Xizhen Ge
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| |
Collapse
|
7
|
Li Y, Ge X. Molecular Dynamics Investigation of MFS Efflux Pump MdfA Reveals an Intermediate State between Its Inward and Outward Conformations. Int J Mol Sci 2022; 24:356. [PMID: 36613823 PMCID: PMC9820426 DOI: 10.3390/ijms24010356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Multidrug resistance poses a major challenge to antibiotic therapy. A principal cause of antibiotic resistance is through active export by efflux pumps embedded in the bacterial membrane. Major facilitator superfamily (MFS) efflux pumps constitute a major group of transporters, which are often related to quinolone resistance in clinical settings. Although a rocker-switch model is proposed for description of their conformational transitions, detailed changes in this process remain poorly understood. Here we used MdfA from E. coli as a representative MFS efflux pump to investigate factors that can affect its conformational transition in silico. Molecular dynamics (MD) simulations of MdfA's inward and outward conformations revealed an intermediate state between these two conformations. By comparison of the subtle differences between the intermediate state and the average state, we indicated that conformational transition from outward to inward was initiated by protonation of the periplasmic side. Subsequently, hydrophilic interaction of the periplasmic side with water was promoted and the regional structure of helix 1 was altered to favor this process. As the hydrophobic interaction between MdfA and membrane was also increased, energy was concentrated and stored for the opposite transition. In parallel, salt bridges at the cytoplasmic side were altered to lower probabilities to facilitate the entrance of substrate. In summary, we described the total and local changes during MdfA's conformational transition, providing insights for the development of potential inhibitors.
Collapse
Affiliation(s)
| | - Xizhen Ge
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| |
Collapse
|
8
|
Pavan M, Bassani D, Sturlese M, Moro S. Investigating RNA-protein recognition mechanisms through supervised molecular dynamics (SuMD) simulations. NAR Genom Bioinform 2022; 4:lqac088. [PMID: 36458023 PMCID: PMC9706429 DOI: 10.1093/nargab/lqac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/20/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Ribonucleic acid (RNA) plays a key regulatory role within the cell, cooperating with proteins to control the genome expression and several biological processes. Due to its characteristic structural features, this polymer can mold itself into different three-dimensional structures able to recognize target biomolecules with high affinity and specificity, thereby attracting the interest of drug developers and medicinal chemists. One successful example of the exploitation of RNA's structural and functional peculiarities is represented by aptamers, a class of therapeutic and diagnostic tools that can recognize and tightly bind several pharmaceutically relevant targets, ranging from small molecules to proteins, making use of the available structural and conformational freedom to maximize the complementarity with their interacting counterparts. In this scientific work, we present the first application of Supervised Molecular Dynamics (SuMD), an enhanced sampling Molecular Dynamics-based method for the study of receptor-ligand association processes in the nanoseconds timescale, to the study of recognition pathways between RNA aptamers and proteins, elucidating the main advantages and limitations of the technique while discussing its possible role in the rational design of RNA-based therapeutics.
Collapse
Affiliation(s)
- Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Stefano Moro
- To whom correspondence should be addressed. Tel: +39 0498275704; Fax: +39 0498275366;
| |
Collapse
|
9
|
Singh K, Coopoosamy RM, Gumede NJ, Sabiu S. Computational Insights and In Vitro Validation of Antibacterial Potential of Shikimate Pathway-Derived Phenolic Acids as NorA Efflux Pump Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082601. [PMID: 35458799 PMCID: PMC9031328 DOI: 10.3390/molecules27082601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022]
Abstract
The expression of the efflux pump systems is the most important mechanism of antibiotic resistance in bacteria, as it contributes to reduced concentration and the subsequent inactivity of administered antibiotics. NorA is one of the most studied antibacterial targets used as a model for efflux-mediated resistance. The present study evaluated shikimate pathway-derived phenolic acids against NorA (PDB ID: 1PW4) as a druggable target in antibacterial therapy using in silico modelling and in vitro methods. Of the 22 compounds evaluated, sinapic acid (−9.0 kcal/mol) and p-coumaric acid (−6.3 kcal/mol) had the best and most prominent affinity for NorA relative to ciprofloxacin, a reference standard (−4.9 kcal/mol). A further probe into the structural stability and flexibility of the resulting NorA-phenolic acids complexes through molecular dynamic simulations over a 100 ns period revealed p-coumaric acid as the best inhibitor of NorA relative to the reference standard. In addition, both phenolic acids formed H-bonds with TYR 76, a crucial residue implicated in NorA efflux pump inhibition. Furthermore, the phenolic acids demonstrated favourable drug likeliness and conformed to Lipinski’s rule of five for ADME properties. For the in vitro evaluation, the phenolic acids had MIC values in the range 31.2 to 62.5 μg/mL against S. aureus, and E. coli, and there was an overall reduction in MIC following their combination with ciprofloxacin. Taken together, the findings from both the in silico and in vitro evaluations in this study have demonstrated high affinity of p-coumaric acid towards NorA and could be suggestive of its exploration as a novel NorA efflux pump inhibitor.
Collapse
Affiliation(s)
- Karishma Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa;
| | - Roger M. Coopoosamy
- Department of Nature Conservation, Faculty of Natural Sciences, Mangosuthu University of Technology, P.O. Box 12363, Durban 4026, South Africa;
| | - Njabulo J. Gumede
- Department of Chemistry, Faculty of Natural Sciences, Mangosuthu University of Technology, P.O. Box 12363, Durban 4026, South Africa;
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa;
- Correspondence:
| |
Collapse
|
10
|
Dashtbani-Roozbehani A, Brown MH. Efflux Pump Mediated Antimicrobial Resistance by Staphylococci in Health-Related Environments: Challenges and the Quest for Inhibition. Antibiotics (Basel) 2021; 10:antibiotics10121502. [PMID: 34943714 PMCID: PMC8698293 DOI: 10.3390/antibiotics10121502] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/04/2023] Open
Abstract
The increasing emergence of antimicrobial resistance in staphylococcal bacteria is a major health threat worldwide due to significant morbidity and mortality resulting from their associated hospital- or community-acquired infections. Dramatic decrease in the discovery of new antibiotics from the pharmaceutical industry coupled with increased use of sanitisers and disinfectants due to the ongoing COVID-19 pandemic can further aggravate the problem of antimicrobial resistance. Staphylococci utilise multiple mechanisms to circumvent the effects of antimicrobials. One of these resistance mechanisms is the export of antimicrobial agents through the activity of membrane-embedded multidrug efflux pump proteins. The use of efflux pump inhibitors in combination with currently approved antimicrobials is a promising strategy to potentiate their clinical efficacy against resistant strains of staphylococci, and simultaneously reduce the selection of resistant mutants. This review presents an overview of the current knowledge of staphylococcal efflux pumps, discusses their clinical impact, and summarises compounds found in the last decade from plant and synthetic origin that have the potential to be used as adjuvants to antibiotic therapy against multidrug resistant staphylococci. Critically, future high-resolution structures of staphylococcal efflux pumps could aid in design and development of safer, more target-specific and highly potent efflux pump inhibitors to progress into clinical use.
Collapse
|
11
|
Microbial Efflux Pump Inhibitors: A Journey around Quinoline and Indole Derivatives. Molecules 2021; 26:molecules26226996. [PMID: 34834098 PMCID: PMC8618814 DOI: 10.3390/molecules26226996] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance (AMR) is a complex threat to human health and, to date, it represents a hot topic in drug discovery. The use of non-antibiotic molecules to block resistance mechanisms is a powerful alternative to the identification of new antibiotics. Bacterial efflux pumps exert the early step of AMR development, allowing the bacteria to grow in presence of sub-inhibitory drug concentration and develop more specific resistance mechanisms. Thus, efflux pump inhibitors (EPIs) offer a great opportunity to fight AMR, potentially restoring antibiotic activity. Based on our experience in designing and synthesizing novel EPIs, herein, we retrieved information around quinoline and indole derivatives reported in literature on this topic. Thus, our aim was to collect all data around these promising classes of EPIs in order to delineate a comprehensive structure–activity relationship (SAR) around each core for different microbes. With this review article, we aim to help future research in the field in the discovery of new microbial EPIs with improved activity and a better safety profile.
Collapse
|
12
|
Shang Y, Lv P, Li S, Wang W, Liu Y, Yang C. Allele-based analysis revealed the critical functions of region 277-297 in the NorA efflux pump of Staphylococcus aureus. J Antimicrob Chemother 2021; 76:1420-1427. [PMID: 33677568 DOI: 10.1093/jac/dkab066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/11/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The NorA efflux pump in Staphylococcus aureus mediates resistance to many fluoroquinolone (FQ) antibiotics. Three norA alleles with high sequence similarity are found in various S. aureus strains exhibiting different FQ resistance profiles. This study aimed to elucidate the underlying molecular basis for the varying efflux activity of these three allelic variations. METHODS The norA genotypes of 20 S. aureus isolates were analysed. Multiple alignments and conservative analyses were conducted to explore the evolutionary variations. After heterologous expression in Escherichia coli, seven mutants were constructed for MIC tests, efflux activity and conformational change measurements. RESULTS Three NorA alleles were identified that displayed different FQ MICs and varying efflux activity for ethidium bromide, with the NorAII protein showing the strongest activity. A total of 29 single amino acid polymorphisms were identified by conservative analysis within three allelic peptides, with seven sites densely distributed in the 277-297 region. Mutations of these seven residues in NorAII all significantly impaired drug resistance and efflux activity, and three key mutants showed conformational changes in fluorescence resonance energy transfer (FRET) analysis. CONCLUSIONS Evolutionary variations of the 277-297 region could be a major explanation for the functional difference of three norA alleles and serve as a potential target for the development of novel NorA inhibitors.
Collapse
Affiliation(s)
- Yan Shang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Peiwen Lv
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Shannan Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Wenkai Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Yuanxiang Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
13
|
Broni E, Kwofie SK, Asiedu SO, Miller WA, Wilson MD. A Molecular Modeling Approach to Identify Potential Antileishmanial Compounds Against the Cell Division Cycle (cdc)-2-Related Kinase 12 (CRK12) Receptor of Leishmania donovani. Biomolecules 2021; 11:458. [PMID: 33803906 PMCID: PMC8003136 DOI: 10.3390/biom11030458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022] Open
Abstract
The huge burden of leishmaniasis caused by the trypanosomatid protozoan parasite Leishmania is well known. This illness was included in the list of neglected tropical diseases targeted for elimination by the World Health Organization. However, the increasing evidence of resistance to existing antimonial drugs has made the eradication of the disease difficult to achieve, thus warranting the search for new drug targets. We report here studies that used computational methods to identify inhibitors of receptors from natural products. The cell division cycle-2-related kinase 12 (CRK12) receptor is a plausible drug target against Leishmania donovani. This study modelled the 3D molecular structure of the L. donovani CRK12 (LdCRK12) and screened for small molecules with potential inhibitory activity from African flora. An integrated library of 7722 African natural product-derived compounds and known inhibitors were screened against the LdCRK12 using AutoDock Vina after performing energy minimization with GROMACS 2018. Four natural products, namely sesamin (NANPDB1649), methyl ellagic acid (NANPDB1406), stylopine (NANPDB2581), and sennecicannabine (NANPDB6446) were found to be potential LdCRK12 inhibitory molecules. The molecular docking studies revealed two compounds NANPDB1406 and NANPDB2581 with binding affinities of -9.5 and -9.2 kcal/mol, respectively, against LdCRK12 which were higher than those of the known inhibitors and drugs, including GSK3186899, amphotericin B, miltefosine, and paromomycin. All the four compounds were predicted to have inhibitory constant (Ki) values ranging from 0.108 to 0.587 μM. NANPDB2581, NANPDB1649 and NANPDB1406 were also predicted as antileishmanial with Pa and Pi values of 0.415 and 0.043, 0.391 and 0.052, and 0.351 and 0.071, respectively. Molecular dynamics simulations coupled with molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) computations reinforced their good binding mechanisms. Most compounds were observed to bind in the ATP binding pocket of the kinase domain. Lys488 was predicted as a key residue critical for ligand binding in the ATP binding pocket of the LdCRK12. The molecules were pharmacologically profiled as druglike with inconsequential toxicity. The identified molecules have scaffolds that could form the backbone for fragment-based drug design of novel leishmanicides but warrant further studies to evaluate their therapeutic potential.
Collapse
Affiliation(s)
- Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana;
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana;
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 54, Ghana
| | - Seth O. Asiedu
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana; (S.O.A.); (M.D.W.)
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, IL 19104, USA
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana; (S.O.A.); (M.D.W.)
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
| |
Collapse
|
14
|
Siqueira MMR, Freire PDTC, Cruz BG, de Freitas TS, Bandeira PN, Silva Dos Santos H, Nogueira CES, Teixeira AMR, Pereira RLS, Xavier JDC, Campina FF, Dos Santos Barbosa CR, Neto JBDA, da Silva MMC, Siqueira-Júnior JP, Douglas Melo Coutinho H. Aminophenyl chalcones potentiating antibiotic activity and inhibiting bacterial efflux pump. Eur J Pharm Sci 2020; 158:105695. [PMID: 33383131 DOI: 10.1016/j.ejps.2020.105695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/02/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023]
Abstract
Chalcones and their derivatives are substances of great interest for medicinal chemistry due to their antibacterial activities. As the bacterial resistance to clinically available antibiotics has become a worldwide public health problem, it is essential to search for compounds capable of reverting the bacterial resistance. As a possibility, the chalcone class could be an interesting answer to this problem. The chalcones (2E)-1-(4'-aminophenyl)-3-(phenyl)‑prop-2-en-1-one (APCHAL), and (2E)-1-(4'-aminophenyl)-3-(4-chlorophenyl)‑prop-2-en-1-one (ACLOPHENYL) were synthesized by the Claisen-Schmidt condensation and characterized by 1H and 13C nuclear magnetic resonance (NMR), Fourier-transform infrared (FT-IR), and mass spectrometry (MS), In addition, microbiological tests were performed to investigate the antibacterial activity, modulatory potential, and efflux pump inhibition against Staphylococcus aureus (S. aureus) multi-resistant strains. Regarding the S. aureus Gram-positive model, the APCHAL presented synergism with gentamicin and antagonism with penicillin. APCHAL reduced the Minimum inhibitory concentration (MIC) of gentamicin by almost 70%. When comparing the effects of the antibiotic modifying activity of ACLOPHENYL and APCHAL, a loss of synergism is noted with gentamicin due to the addition of a chlorine to the substance structure. For Escherichia coli (E. coli) a total lack of effect, synergistic or antagonistic, was observed between ACLOPHENYL and the antibiotics. In the evaluation of inhibition of the efflux pump, both chalcones presented a synergistic effect with norfloxacin and ciprofloxacin against S. aureus, although the effect is much less pronounced with ACLOPHENYL. The effect of APCHAL is particularly notable against the K2068 (MepA overexpresser) strain, with synergistic effects with both ciprofloxacin and ethidium bromide. The docking results also show that both compounds bind to roughly the same region of the binding site of 1199B (NorA overexpresser), and that this region overlaps with the preferred binding region of norfloxacin. The APCHAL chalcone may contribute to the prevention or treatment of infectious diseases caused by multidrug-resistant S. aureus.
Collapse
Affiliation(s)
| | - Paulo de Tarso Cavalcante Freire
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Department of Physics, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Paulo Nogueira Bandeira
- Science and Technology Centre - Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Hélcio Silva Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Science and Technology Centre - Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Carlos Emidío Sampaio Nogueira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Department of Physics, Regional University of Cariri, Juazeiro do Norte, CE, Brazil
| | - Alexandre Magno Rodrigues Teixeira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Department of Physics, Regional University of Cariri, Juazeiro do Norte, CE, Brazil
| | | | - Jayze da Cunha Xavier
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | | | | | | | | | | | | |
Collapse
|
15
|
Oliveira-Tintino CDDM, Muniz DF, Barbosa CRDS, Pereira RLS, Begnini IM, Rebelo RA, Silva LED, Mireski SL, Nasato MC, Krautler MIL, Pereira PS, Costa JGMD, Rodrigues FFG, Teixeira AMR, Ribeiro-Filho J, Tintino SR, de Menezes IRA, Coutinho HDM, Silva TGD. The 1,8-naphthyridines sulfonamides are NorA efflux pump inhibitors. J Glob Antimicrob Resist 2020; 24:233-240. [PMID: 33385589 DOI: 10.1016/j.jgar.2020.11.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/24/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Efflux pumps are transmembrane proteins associated with bacterial resistance mechanisms. Bacteria use these proteins to actively transport antibiotics to the extracellular medium, preventing the pharmacological action of these drugs. This study aimed to evaluate in vitro the antibacterial activity of 1,8-naphthyridines sulfonamides, as well as their ability to inhibit efflux systems of Staphylococcus aureus strains expressing different levels of the NorA efflux pump. METHODS The broth microdilution test was performed to assess antibacterial activity. Efflux pump inhibition was evaluated in silico by molecular docking and in vitro by fluorometric tests, and the minimum inhibitory concentration (MIC) was determined. The MIC was determined in the association between 1,8-naphthyridine and norfloxacin or ethidium bromide. RESULTS The 1,8-naphthyridines did not show direct antibacterial activity. However, they effectively reduced the MIC of multidrug-resistant bacteria by associating with norfloxacin and ethidium bromide, in addition to increasing the fluorescence emission. In silico analysis addressing the binding between NorA and 1,8-naphthyridines suggests that hydrogen bonds and hydrophilic interactions represent the interactions with the most favourable binding energy, corroborating the experimental data. CONCLUSION Our data suggest that 1,8-naphthyridines sulfonamides inhibit bacterial resistance through molecular mechanisms associated with inhibition of the NorA efflux pump in S. aureus strains.
Collapse
Affiliation(s)
| | - Débora Feitosa Muniz
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | | | - Raimundo Luiz Silva Pereira
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | - Iêda Maria Begnini
- Department of Chemistry, Regional University of Blumenau, FURB, Itoupava Seca, 89030-903, Blumenau, SC, Brazil
| | - Ricardo Andrade Rebelo
- Department of Chemistry, Regional University of Blumenau, FURB, Itoupava Seca, 89030-903, Blumenau, SC, Brazil
| | - Luiz Everson da Silva
- Postgraduate Program in Sustainable Territorial Development, Coastal Sector, Federal University of Paraná, Curitiba, PR, Brazil
| | - Sandro Lucio Mireski
- Department of Chemistry, Regional University of Blumenau, FURB, Itoupava Seca, 89030-903, Blumenau, SC, Brazil
| | - Michele Caroline Nasato
- Department of Chemistry, Regional University of Blumenau, FURB, Itoupava Seca, 89030-903, Blumenau, SC, Brazil
| | | | - Pedro Silvino Pereira
- Laboratory of Pharmatoxicological Prospecting of Bioactive Products, Department of Antibiotics, Federal University of Pernambuco, UFPE, Recife, PE, Brazil
| | - José Galberto Martins da Costa
- Laboratory of Natural Products, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | | | - Alexandre Magno Rodrigues Teixeira
- Laboratory of simulations and molecular spectroscopy, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | - Jaime Ribeiro-Filho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, IGM-Fiocruz, Salvador, BA, Brazil
| | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | - Teresinha Gonçalves da Silva
- Laboratory of Pharmatoxicological Prospecting of Bioactive Products, Department of Antibiotics, Federal University of Pernambuco, UFPE, Recife, PE, Brazil
| |
Collapse
|
16
|
Faillace MS, Alves Borges Leal AL, Araújo de Oliveira Alcântara F, Ferreira JHL, de Siqueira-Júnior JP, Sampaio Nogueira CE, Barreto HM, Peláez WJ. Inhibition of the NorA efflux pump of S. aureus by (Z)-5-(4-Fluorobenzylidene)-Imidazolidines. Bioorg Med Chem Lett 2020; 31:127670. [PMID: 33161124 DOI: 10.1016/j.bmcl.2020.127670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Searching for new alternatives to antibiotic treatments is crucial to surmount the multidrug-resistant bacteria. In this work, the antimicrobial activity of synthetic imidazolidines was evaluated as well as their modulating effect on the resistance to fluoroquinolones in a S. aureus strain (SA-1199B), which overexpresses the norA gene that encodes the NorA efflux pump. Results showed weak antimicrobial activity (512 μg mL-1) for two fluorobenzylidene derivatives against this bacterial strain, while the other benzylidene derivatives were inactive. Despite this fact, both fluorinated compounds were able to enhance the activity of norfloxacin and ciprofloxacin against SA-1199B up to 6.4- and 3.2-fold, respectively. In addition, both derivatives potentiated the action of ethidium bromide against this strain, suggesting that the modulating effect probably involves the inhibition of the NorA efflux pump, which is in concordance with the fluorimetic assays and molecular docking analyses performed in this work.
Collapse
Affiliation(s)
- Martín S Faillace
- CONICET-INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Pabellón Argentina, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Antonio L Alves Borges Leal
- Federal University of Piaui, Laboratory of Research in Microbiology, Campus University Ministry Petrônio Portella, Ininga Neighborhood, Teresina, Piaui 64049-901, Brazil
| | - Felipe Araújo de Oliveira Alcântara
- Federal University of Piaui, Laboratory of Research in Microbiology, Campus University Ministry Petrônio Portella, Ininga Neighborhood, Teresina, Piaui 64049-901, Brazil
| | - Josie H L Ferreira
- Federal University of Piaui, Laboratory of Research in Microbiology, Campus University Ministry Petrônio Portella, Ininga Neighborhood, Teresina, Piaui 64049-901, Brazil
| | - José P de Siqueira-Júnior
- Laboratory of Genetics of Microorganisms, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | | | - Humberto M Barreto
- Federal University of Piaui, Laboratory of Research in Microbiology, Campus University Ministry Petrônio Portella, Ininga Neighborhood, Teresina, Piaui 64049-901, Brazil.
| | - Walter J Peláez
- CONICET-INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Pabellón Argentina, Ciudad Universitaria, Córdoba X5000HUA, Argentina.
| |
Collapse
|
17
|
Sun M, Zhu C, Long J, Lu C, Pan X, Wu C. PLGA microsphere-based composite hydrogel for dual delivery of ciprofloxacin and ginsenoside Rh2 to treat Staphylococcus aureus-induced skin infections. Drug Deliv 2020; 27:632-641. [PMID: 32329376 PMCID: PMC7241502 DOI: 10.1080/10717544.2020.1756985] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
When antibiotic-resistant pathogenic bacteria pose a high threat to human health, bacterial multidrug efflux pumps become major contributors to the high-level antibiotic resistance in most microorganisms. Since traditional antibiotics are still indispensable currently, we report a dual drug delivery system to maximize the antibacterial efficacy of antibiotics by inhibiting efflux pumps in bacteria before their exposure to antibiotics. In this research, a microsphere/hydrogel composite was constructed from ciprofloxacin (Cip)-loaded poly (lactic-co-glycolic acid) (PLGA) microspheres and ginsenoside Rh2 (G-Rh2) dispersed thermo-sensitive hydrogel to treat skin infections. In vitro drug release studies indicated that while G-Rh2 in hydrogel presented a faster and short-term release manner to rapidly inhibit the NorA efflux pumps, Cip showed a sustained and long-term release behavior to provide a local high concentration gradient for facilitating drug percutaneous penetration. The combination of Cip and G-Rh2 demonstrated a high degree of synergism against both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA), hence significantly improving their in vitro antibacterial activity and efficiency. Moreover, the antibacterial performance of the microsphere/hydrogel composite with a sequential release profile is superior to that of other formulations in mouse model of MRSA skin infections, indicating its great potential to treat antibiotic-resistant skin infections.
Collapse
Affiliation(s)
- Minghao Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chune Zhu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jieyu Long
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chao Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|