1
|
Ali M, Kumar KG, Singh K, Rabyang S, Thinlas T, Mishra A. Evaluation of the cell death markers for aberrated cell free DNA release in high altitude pulmonary edema. Clin Sci (Lond) 2024; 138:1467-1480. [PMID: 39509268 DOI: 10.1042/cs20242052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
The effect of high altitude (HA, altitude >2500 m) can trigger a maladaptive response in unacclimatized individuals, leading to various HA illnesses such as high altitude pulmonary edema (HAPE). The present study investigates circulating cell free (cf) DNA, a minimally invasive biomarker that can elicit a pro-inflammatory response. Our earlier study observed altered cfDNA fragment patterns in HAPE patients and the significant correlation of these patterns with peripheral oxygen saturation levels. However, the unclear release mechanisms of cfDNA in circulation limit its characterization and clinical utility. The present study not only observed a significant increase in cfDNA levels in HAPE patients (27.03 ± 1.37 ng/ml; n = 145) compared to healthy HA sojourners (controls, 14.57 ± 0.74 ng/ml; n = 65) and highlanders (HLs, 15.50 ± 0.8 ng/ml; n = 34) but also assayed the known cell death markers involved in cfDNA release at HA. The study found significantly elevated levels of the apoptotic marker, annexin A5, and secondary necrosis or late apoptotic marker, high mobility group box 1, in HAPE patients. In addition, we observed a higher oxidative DNA damage marker, 8-hydroxy-2'-deoxyguanosine, in HAPE compared with controls, suggestive of the role of oxidative DNA status in promoting the inflammatory potential of cfDNA fragments and their plausible role in manifesting HAPE pathophysiology. Extensive in vitro future assays can confirm the immunogenic role of cfDNA fragments that may act as a danger-associated molecular pattern and associate with markers of cellular stresses in HAPE.
Collapse
Affiliation(s)
- Manzoor Ali
- Genomics and Genome Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Krishna G Kumar
- Genomics and Genome Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Kanika Singh
- Genomics and Genome Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Stanzen Rabyang
- Department of Medicine, Sonam Norboo Memorial Hospital, Leh 194101, India
| | - Tashi Thinlas
- Department of Medicine, Sonam Norboo Memorial Hospital, Leh 194101, India
| | - Aastha Mishra
- Genomics and Genome Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Ren S, Wu D, Shen X, Wu Q, Li C, Xiong H, Xiong Z, Gong R, Liu Z, Wang W, Chen J. Deciphering the role of extrachromosomal circular DNA in adipose stem cells from old and young donors. Stem Cell Res Ther 2023; 14:341. [PMID: 38017497 PMCID: PMC10683086 DOI: 10.1186/s13287-023-03575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND The functional impairment of adipose stem cells (ASCs) during aging limits their clinical transformation. Studies have shown that extrachromosomal circular DNAs (eccDNAs) are associated with tumor progression and cell aging, but the roles of eccDNAs in ASCs remain unknown. METHOD We conducted Circle sequencing (Circle-seq) to identify eccDNAs in ASCs isolated from young and old donors. The differentially expressed eccDNAs were calculated, annotated and validated via polymerase chain reaction. RESULTS Thousands of eccDNAs were identified and comprehensively characterized. Most of them were GC-rich, < 1000 base pairs in size, and were enriched on chromosome 19 and 17 with a high density of Alu elements and genes, 2 kb upstream/downstream of genes and satellites. In total, 3025 eccDNAs were differentially expressed among the two ASC groups. Conjoint analysis of the Circle-seq results and previous RNA-seq results revealed that 73 eccDNAs and 55 genes exhibited the same differential expression between the two groups. KEGG and GO analyses revealed that genes encoding differentially expressed eccDNAs were enriched for cell adhesion, cellular senescence and TGF-β receptor signaling pathway. We also found that aged ASCs exhibited loss of eccDNAs, including CAMK2G (chr10: 75577899-75578176), TRABD2B (chr1: 48305638-48307008) and TRABD2B (chr1: 48305425-48307091). CONCLUSION In this study, we elucidated the first eccDNA profile relating to ASCs and demonstrated that three eccDNAs are lost in aged ASCs, which may be potential biomarkers of stem cell aging and valuable targets for stem cell rejuvenation.
Collapse
Affiliation(s)
- Sen Ren
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Du Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaoyong Shen
- Hospital of Stomatology Wuhan University, Wuhan, 430079, China
| | - Qian Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chengcheng Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hewei Xiong
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhongwei Xiong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Rui Gong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zheng Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Wei Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
3
|
Pastorek M, Konečná B, Janko J, Janovičová Ľ, Podracká Ľ, Záhumenský J, Šteňová E, Dúbrava M, Hodosy J, Vlková B, Celec P. Mitochondria-induced formation of neutrophil extracellular traps is enhanced in the elderly via Toll-like receptor 9. J Leukoc Biol 2023; 114:651-665. [PMID: 37648664 DOI: 10.1093/jleuko/qiad101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023] Open
Abstract
Neutrophil extracellular traps are potent antimicrobial weapons; however, their formation during sterile inflammation is detrimental, and the mechanism of induction is still unclear. Since advanced age is the primary clinical risk factor for poor outcomes in inflammatory diseases, we hypothesized that sterile stimuli, represented by mitochondria, would induce neutrophil extracellular trap formation in an age-dependent manner. Therefore, we analyzed induction of neutrophil extracellular traps in patients grouped according to age or immune status and observed that neutrophils from elderly patients responded to the presence of mitochondria with enhanced neutrophil extracellular trap formation. These neutrophil extracellular traps were also found to be more oxidized and exhibited higher resistance to DNase I degradation. Additionally, a higher concentration of residual neutrophil extracellular traps was detected in the plasma of the elderly. This plasma was capable of priming neutrophils through TLR9-mediated signaling, leading to further neutrophil extracellular trap formation, which was successfully inhibited with chloroquine. Finally, in a mouse model of mitochondria-induced acute lung injury, we observed that neutrophils from aged mice displayed impaired chemotactic activity but exhibited a trend of higher neutrophil extracellular trap formation. Thus, we propose that residual neutrophil extracellular traps circulating in the elderly preactivate neutrophils, making them more prone to enhanced neutrophil extracellular trap formation when exposed to mitochondria during sterile inflammation. Further investigation is needed to determine whether this vicious circle could be a suitable therapeutic target.
Collapse
Affiliation(s)
- Michal Pastorek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Barbora Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Jakub Janko
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ľubica Janovičová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ľudmila Podracká
- Department of Pediatrics, Faculty of Medicine, Comenius University and National Institute of Children's Diseases, Limbová 1, 831 01 Bratislava, Slovakia
| | - Jozef Záhumenský
- 2nd Department of Gynecology and Obstetrics, Faculty of Medicine, University Hospital, Comenius University, Ružinovská 6, 821 06 Bratislava, Slovakia
| | - Emöke Šteňová
- 1st Department of Internal Medicine, Faculty of Medicine, University Hospital, Comenius University, Mickiewiczova 13, 813 69 Bratislava, Slovakia
| | - Martin Dúbrava
- 1st Department of Geriatrics, Faculty of Medicine, Comenius University, Limbová 5, 833 05 Bratislava, Slovakia
| | - Július Hodosy
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Emergency Medicine Ružinov, Faculty of Medicine, University Hospital, Comenius University, Ružinovská 6, 821 06 Bratislava, Slovakia
| | - Barbora Vlková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
4
|
Janovičová Ľ, Kmeťová K, Pribulová N, Janko J, Gromová B, Gardlík R, Celec P. Endogenous DNase Activity in an Animal Model of Acute Liver Failure. Int J Mol Sci 2023; 24:ijms24032984. [PMID: 36769306 PMCID: PMC9918174 DOI: 10.3390/ijms24032984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Deoxyribonucleases (DNases) cleave extracellular DNA (ecDNA) and are under intense research as interventions for diseases associated with high ecDNA, such as acute live injury. DNase I treatment decreases morbidity and mortality in this animal model. Endogenous DNase activity has high interindividual variability. In this study, we tested the hypothesis that high endogenous DNase activity is beneficial in an animal model of acute liver failure. DNase activity was measured in the plasma of adult male mice taken before i.p. injection of thioacetamide to induce acute liver failure. The survival of mice was monitored for 48 h. Mice were retrospectively divided into two groups based on the median DNase activity assessed using the gel-based single-radial enzyme diffusion assay. In acute liver failure, mice with a higher baseline DNase activity had lower mortality after 48 h (by 25%). Different protection of ecDNA against nucleases by vesicles or DNA-binding proteins could play a role and should be further evaluated. Similarly, the role of endogenous DNase activity should be analyzed in other disease models associated with high ecDNA.
Collapse
Affiliation(s)
- Ľubica Janovičová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Katarína Kmeťová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Nikola Pribulová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Jakub Janko
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Barbora Gromová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Roman Gardlík
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
- Correspondence: or
| |
Collapse
|
5
|
Janovičová Ľ, Čonka J, Lauková L, Celec P. Variability of endogenous deoxyribonuclease activity and its pathophysiological consequences. Mol Cell Probes 2022; 65:101844. [DOI: 10.1016/j.mcp.2022.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
|
6
|
Kmeťová K, Čonka J, Janko J, Illés J, Uličná O, Celec P. Plasma DNA and deoxyribonuclease are associated with glucose metabolism in healthy mice. PLoS One 2022; 17:e0265099. [PMID: 35385497 PMCID: PMC8985945 DOI: 10.1371/journal.pone.0265099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/23/2022] [Indexed: 12/05/2022] Open
Abstract
It is currently unknown why obesity leads in some patients to prediabetes and metabolic syndrome. Microinflammation potentially caused by extracellular DNA is supposed to be involved. The aim of this cross-sectional study in healthy mice was to analyze the association between plasma extracellular DNA and glucose metabolism. Fasting glycemia and insulin were measured in healthy adult female mice that subsequently underwent an oral glucose tolerance test. Indices of glucose metabolism and insulin sensitivity were calculated. DNA was isolated from plasma and quantified fluorometrically. Deoxyribonuclease (DNase) activity of plasma was measured using the single radial enzyme diffusion method. Fasting glycemia correlated negatively with both, extracellular DNA and DNase (r = -0.44 and r = -0.32, respectively). DNase was associated positively with the incremental area under curve (r = 0.35), while extracellular DNA correlated negatively with total area under curve of glycemia during oral glucose tolerance test (r = -0.34). Measures of insulin sensitivity were found to be associated with neither extracellular DNA, nor DNase. The hypothesis of an association of low DNase with increased fasting glucose was partially proved. Surprisingly, low extracellular DNA is associated with higher fasting glucose and lower glucose tolerance in mice. As novel therapeutic targets for prediabetes and metabolic syndrome are highly needed, this study provides novel unexpected associations within the limitations of the focus on physiological variability as it was conducted on healthy mice. The causality of these associations should be proved in further interventional experiments.
Collapse
Affiliation(s)
- Katarína Kmeťová
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Jozef Čonka
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Jakub Janko
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Júlia Illés
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Oľga Uličná
- Faculty of Medicine, Pharmacobiochemical Laboratory of Third Department of Internal Medicine, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
- Faculty of Medicine, Institute of Pathophysiology, Comenius University, Bratislava, Slovakia
- Faculty of Natural Sciences, Department of Molecular Biology, Comenius University, Bratislava, Slovakia
- * E-mail:
| |
Collapse
|
7
|
Celec P, Janovičová Ĺ, Gurecká R, Koborová I, Gardlík R, Šebeková K. Circulating extracellular DNA is in association with continuous metabolic syndrome score in healthy adolescents. Physiol Genomics 2021; 53:309-318. [PMID: 34097532 DOI: 10.1152/physiolgenomics.00029.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Obesity is associated with chronic low-grade inflammation that eventually leads to metabolic complications. Extracellular DNA (ecDNA) is a damage-associated molecular pattern. Extracellular mitochondrial DNA can activate innate immunity. We hypothesized that ecDNA, especially of mitochondrial origin, could be associated with components of the metabolic syndrome in young healthy probands. In a cross-sectional study, healthy adolescents (n = 1,249) provided blood samples. Anthropometric data, blood pressure, and blood counts were assessed. In addition, biochemical analysis of sera or plasma was conducted, including the quantification of advanced oxidation protein products (AOPPs) as a marker of oxidative stress induced by neutrophil or monocyte activation. Plasma ecDNA was isolated and measured by fluorometry. Nuclear and mitochondrial DNA were quantified by real-time PCR. Males had higher total plasma ecDNA [15 (11-21) vs. 11 (8-17) ng/mL; median (interquartile range)], nuclear [1,760 (956-3,273) vs. 1,153 (600-2,292) genome equivalents (GE)/mL], and mitochondrial [37,181 (14,836-90,896) vs. 30,089 (12,587-72,286) GE/mL] DNA. ecDNA correlated positively with the continuous metabolic syndrome score (r = 0.158 for males and r = 0.134 for females). Stronger correlations were found between ecDNA of mitochondrial origin and AOPP (r = 0.202 and 0.186 for males and females, respectively). Multivariate regression analysis revealed associations of nuclear DNA with leukocyte and erythrocyte counts. The results of this study of healthy adolescents show that circulating ecDNA is associated with the risk of metabolic syndrome, not with obesity per se. The association between mitochondrial ecDNA and AOPP requires further attention as it supports a potential role of mitochondria-induced sterile inflammation in the pathogenesis of the metabolic syndrome.
Collapse
Affiliation(s)
- Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Ĺubica Janovičová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Radana Gurecká
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Ivana Koborová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Roman Gardlík
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
8
|
Abstract
Extracellular DNA (ecDNA) is a potential marker and predictor in several inflammatory diseases. Periodontitis, a chronic inflammatory disease, is associated with epithelial cell death and could lead to release of DNA. Our aim was to analyze salivary DNA concentration and deoxyribonuclease (DNase) activity in periodontitis patients. We hypothesized that salivary ecDNA will be higher than in controls and could serve as a marker of periodontitis severity. Samples of saliva were collected from 25 patients with chronic periodontitis and 29 age-matched controls. DNA was quantified fluorometrically in whole saliva, as well as in supernatants after centrifugation (depletion of cells at 1600× g) and in double-centrifuged supernatants (depletion of cell debris at 1600× g and 16,000× g). The subcellular origin of ecDNA was assessed using real-time PCR. In comparison to controls, patients with periodontitis had twofold higher salivary DNA (p < 0.01), higher mitochondrial DNA in centrifuged supernatants (p < 0.05) and lower nuclear ecDNA in double-centrifuged samples (p < 0.05). No correlations were found between salivary DNA and oral health status, but mitochondrial DNA positively correlated with papillary bleeding index in centrifuged samples. Salivary DNase activity was comparable between the groups. In conclusion, we proved that salivary DNA is higher in periodontitis. The source of the higher mitochondrial DNA in cell-free saliva and the causes of lower nuclear ecDNA remain to be elucidated. Further studies should focus on the role of mitochondrial DNA as a potential driver of inflammation in periodontitis.
Collapse
|
9
|
Yaşa B, Şahin O, Öcüt E, Seven M, Sözer S. Assessment of Fetal Rhesus D and Gender with Cell-Free DNA and Exosomes from Maternal Blood. Reprod Sci 2020; 28:562-569. [PMID: 32968935 DOI: 10.1007/s43032-020-00321-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/16/2020] [Indexed: 12/30/2022]
Abstract
The detection of fetal cell-free DNA (cfDNA) from maternal plasma has enabled the development of essential techniques in prenatal diagnosis during recent years. Extracellular vesicles including exosomes were determined to carry fetal DNA fragments. Considering the known difficulties during isolation and stability of cfDNA, exosomes might provide a new opportunity for prenatal diagnosis and screening. In this study, comparison of cfDNA and exosome DNA (exoDNA) for predicting the fetal sex and Rhesus D (RHD) genotype was performed by using real-time polymerase chain reaction with simultaneous amplification of sequences of SRY and RHD genes. Fetal sex and RHD were determined in 100 and 81 RHD-negative pregnant women with cfDNA and exoDNA, respectively. The gestation ages of pregnant women were between 9 and 40 weeks. The results were compared with the neonatal phenotype for gender and a serological test for RHD. The cfDNA revealed 95.75% sensitivity and 100% specificity in RHD positivity and 100% sensitivity and 95.45% specificity in SRY positivity. Cohen's agreement coefficient in the Kappa test ranged from 0.8 to 1.0 (P < 0.00001). Although the exoDNA failed to amplify 16 cases, the remaining 65 cases revealed a true estimate for both fetal RHD and SRY genes with 100% sensitivity and specificity. Successful application of exoDNA and cfDNA with real-time PCR for fetal genotyping enables this technique to be applied in the assessment of fetal RHD and gender during pregnancy, allowing initiation of early treatment methods and avoiding unnecessary interventions and cost.
Collapse
Affiliation(s)
- Büşra Yaşa
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Orhan Şahin
- Clinic of Obstetrics and Gynecology, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Elif Öcüt
- Department of Statistics, Yıldız Technical University, Istanbul, Turkey
| | - Mehmet Seven
- Department of Medical Genetics, Cerrahpasa Medical School Istanbul University- Cerrahpasa, Istanbul, Turkey
| | - Selçuk Sözer
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
10
|
Abstract
The discovery of cell-free DNA (cfDNA) dates back to 1948, when Mandel and Metais found it in the sera of cancer patients [...].
Collapse
|