1
|
Cui Z, Hao F, Dong X, Gao Y, Yao B, Wang Y, Zhang Y, Lin G. Integrated physiological, transcriptomic and metabolomic analyses reveal ROS regulatory mechanisms in two castor bean varieties under alkaline stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109518. [PMID: 39864292 DOI: 10.1016/j.plaphy.2025.109518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/28/2025]
Abstract
Saline-alkaline stress has caused severe ecological and environmental problems. Castor bean is a potential alkali-tolerant plant, however, its reactive oxygen species (ROS) regulatory mechanisms under alkaline stress remain unclear. This study investigated the physiological, transcriptomic, and metabolomic characteristics of two varieties (ZB8, alkaline-sensitive; JX22, alkaline-resistant) under alkaline stress. Results showed that under alkaline stress, JX22's root length was 1.66-fold greater than ZB8's, while its superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities were 1.25-, 1.41-, and 1.29-fold higher than ZB8's, respectively. The levels of superoxide anion (O2-) and malondialdehyde (MDA) in JX22 were 0.2- and 0.68-fold of those in ZB8, respectively. Integrated transcriptomic and metabolomic analyses revealed that regarding ROS generation, alkaline stress promoted the upregulation of ACX1 and RBOHD genes in JX22, enabling more efficient ROS signal transduction and subsequent stress response regulation. In terms of ROS signal transduction, alkaline stress induced significant upregulation of protein kinase-encoding genes including CPK4, CPK9, and CPK10 in JX22, which cooperated with RBOHD to regulate ROS production. Concerning ROS scavenging, significant upregulation of SODA, CAT2, and PRXⅡB genes ensured a more efficient enzymatic ROS scavenging system in JX22 under alkaline stress. In contrast, ZB8 could only rely on less efficient non-enzymatic systems, such as carotenoid antioxidants, to mitigate oxidative damage, where genes like CCD7, CYP897B and metabolites including lutein and zeaxanthin played crucial roles. These findings elucidate the ROS response mechanisms of castor bean under alkaline stress, paving new ways for breeding alkaline-resistant varieties.
Collapse
Affiliation(s)
- Zhigang Cui
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Fei Hao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xuan Dong
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China; Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, 8 No. 1 Xuefu Road, Anning Town, Xichang, 615000, China.
| | - Yan Gao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Bingyu Yao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yunlong Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yongyong Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Guolin Lin
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
2
|
Meng X, Feng C, Chen Z, Shah FA, Zhao Y, Fei Y, Zhao H, Ren J. Genome-wide analyses of the NAC transcription factor gene family in Acer palmatum provide valuable insights into the natural process of leaf senescence. PeerJ 2025; 13:e18817. [PMID: 39822972 PMCID: PMC11737331 DOI: 10.7717/peerj.18817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/14/2024] [Indexed: 01/19/2025] Open
Abstract
Acer palmatum is a deciduous shrub or small tree. It is a popular ornamental plant because of its beautiful leaves, which change colour in autumn. This study revealed 116 ApNAC genes within the genome of A. palmatum. These genes are unevenly distributed on the 13 chromosomes of A. palmatum. An analysis of the phylogenetic tree of Arabidopsis thaliana NAC family members revealed that ApNAC proteins could be divided into 16 subgroups. A comparison of ApNAC proteins with NAC genes from other species suggested their potential involvement in evolutionary processes. Studies suggest that tandem and segmental duplications may be key drivers of the expansion of the ApNAC gene family. Analysis of the transcriptomic data and qRT‒PCR results revealed significant upregulation of most ApNAC genes during autumn leaf senescence compared with their expression levels in summer leaves. Coexpression network analysis revealed that the expression profiles of 10 ApNAC genes were significantly correlated with those of 200 other genes, most of which are involved in plant senescence processes. In conclusion, this study contributes to elucidating the theoretical foundation of the ApNAC gene family and provides a valuable basis for future investigations into the role of NAC genes in regulating leaf senescence in woody ornamental plants.
Collapse
Affiliation(s)
- Xin Meng
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
- College of Urban Construction, Zhejiang Shuren University, Hangzhou, Zhejiang, China
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Chun Feng
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhu Chen
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Faheem Afzal Shah
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Yue Zhao
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Yuzhi Fei
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Hongfei Zhao
- College of Urban Construction, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| |
Collapse
|
3
|
Shah FA, Chen Z, Ni F, Kamal KA, Zhang J, Chen J, Ren J. ArNAC148 induces Acer rubrum leaf senescence by activating the transcription of the ABA receptor gene ArPYR13. Int J Biol Macromol 2024; 279:134950. [PMID: 39226982 DOI: 10.1016/j.ijbiomac.2024.134950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
Acer rubrum, an ornamental tree known for its stunning autumn colors, has an elusive molecular mechanism that governs its leaf senescence. We performed the genome-wide analysis of NAC transcription factor genes and PYRABACTIN RESISTANCE1-LIKE (PYLs) and found that ArNAC148 and ArPYL13 were significantly upregulated in senescing leaves as compared to mature leaves. Subcellular localization studies confirmed the nuclear localization of ArNAC148 and the cytoplasmic localization of ArPYL13. Electrophoretic mobility shift assay and yeast one-hybrid assay demonstrated that ArNAC148 directly binds to the promoter of ArPYL13. Luciferase reporter assays further showed that ArNAC148 activates the transcription of ArPYL13. The transient expression of ArNAC148 and ArPYL13 in tobacco leaves promoted chlorophyll degradation, increased H2O2 level, MDA contents, and electrolyte leakage in response to abscisic acid (ABA). Moreover, the virus-induced gene silencing of ArNAC148 and ArPYL13 in A. rubrum produced results that were opposite to those observed in transient expression experiments. Our findings suggest that ArNAC148 induces leaf senescence by directly activating the transcription of ArPYL13, providing insights into the ABA-mediated regulatory mechanisms governing leaf senescence in A. rubrum. This study offers new perspectives for researchers to explore the roles of NAC and PYL genes in regulating leaf senescence in woody ornamental plants.
Collapse
Affiliation(s)
- Faheem Afzal Shah
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zhu Chen
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Fang Ni
- Anhui Wenda University of Information Engineering, Anhui Province, Anhui 230032, China
| | - Khan Arif Kamal
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Jimei Zhang
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Jinhuan Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| |
Collapse
|
4
|
Lim C, Kang K, Lim J, Lee H, Cho SH, Paek NC. RICE LONG GRAIN 3 delays dark-induced senescence by downregulating abscisic acid signaling and upregulating reactive oxygen species scavenging activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1474-1487. [PMID: 39378337 DOI: 10.1111/tpj.17061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024]
Abstract
Leaf senescence is a complex developmental process influenced by abscisic acid (ABA) and reactive oxygen species (ROS), both of which increase during senescence. Understanding the regulatory mechanisms of leaf senescence can provide insights into enhancing crop yield and stress tolerance. In this study, we aimed to elucidate the role and mechanisms of rice (Oryza sativa) LONG GRAIN 3 (OsLG3), an APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factor, in orchestrating dark-induced leaf senescence. The transcript levels of OsLG3 gradually increased during dark-induced and natural senescence. Transgenic plants overexpressing OsLG3 exhibited delayed senescence, whereas CRISPR/Cas9-mediated oslg3 mutants exhibited accelerated leaf senescence. OsLG3 overexpression suppressed senescence-induced ABA signaling by downregulating OsABF4 (an ABA-signaling-related gene) and reduced ROS accumulation by enhancing catalase activity through upregulation of OsCATC. In vivo and in vitro binding assays demonstrated that OsLG3 downregulated OsABF4 and upregulated OsCATC by binding directly to their promoter regions. These results demonstrate the critical role of OsLG3 in fine-tuning leaf senescence progression by suppressing ABA-mediated signaling while simultaneously activating ROS-scavenging mechanisms. These findings suggest that OsLG3 could be targeted to enhance crop resilience and longevity.
Collapse
Affiliation(s)
- Chaemyeong Lim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Jisun Lim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Haeun Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung-Hwan Cho
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Xing J, Wang J, Cao J, Li K, Meng X, Wen J, Mysore KS, Wang G, Zhou C, Yin P. Identification of a Novel Gene MtbZIP60 as a Negative Regulator of Leaf Senescence through Transcriptome Analysis in Medicago truncatula. Int J Mol Sci 2024; 25:10410. [PMID: 39408738 PMCID: PMC11477300 DOI: 10.3390/ijms251910410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Leaves are the primary harvest portion in forage crops such as alfalfa (Medicago sativa). Delaying leaf senescence is an effective strategy to improve forage biomass production and quality. In this study, we employed transcriptome sequencing to analyze the transcriptional changes and identify key senescence-associated genes under age-dependent leaf senescence in Medicago truncatula, a legume forage model plant. Through comparing the obtained expression data at different time points, we obtained 1057 differentially expressed genes, with 108 consistently up-regulated genes across leaf growth and senescence. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed that the 108 SAGs mainly related to protein processing, nitrogen metabolism, amino acid metabolism, RNA degradation and plant hormone signal transduction. Among the 108 SAGs, seven transcription factors were identified in which a novel bZIP transcription factor MtbZIP60 was proved to inhibit leaf senescence. MtbZIP60 encodes a nuclear-localized protein and possesses transactivation activity. Further study demonstrated MtbZIP60 could associate with MtWRKY40, both of which exhibited an up-regulated expression pattern during leaf senescence, indicating their crucial roles in the regulation of leaf senescence. Our findings help elucidate the molecular mechanisms of leaf senescence in M. truncatula and provide candidates for the genetic improvement of forage crops, with a focus on regulating leaf senescence.
Collapse
Affiliation(s)
- Jiayu Xing
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Jialan Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Jianuo Cao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Ke Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Xiao Meng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Jiangqi Wen
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA;
| | - Kirankumar S. Mysore
- Department of Biochemistry and Molecular Biology, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA;
| | - Geng Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Chunjiang Zhou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Pengcheng Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| |
Collapse
|
6
|
Guo Y, Jiang Y, Wu M, Tu A, Yin J, Yang J. TaWRKY50-TaSARK7 module-mediated cysteine-rich protein phosphorylation suppresses the programmed cell death response to Chinese wheat mosaic virus infection. Virology 2024; 595:110071. [PMID: 38593594 DOI: 10.1016/j.virol.2024.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
WRKY transcription factors are widely involved in plant responses to biotic and abiotic stresses. However, there is currently a limited understanding of the regulation of viral infection by WRKY transcription factors in wheat (Triticum aestivum). The WRKY transcription factor TaWRKY50 in group IIb wheat exhibited a significant response to Chinese wheat mosaic virus infection. TaWRKY50 is localized in the nucleus and is an activating transcription factor. Interestingly, we found that silencing TaWRKY50 induces cell death following inoculation with CWMV. The protein kinase TaSAPK7 is specific to plants, whereas NbSRK is a closely related kinase with high homology to TaSAPK7. The transcriptional activities of both TaSAPK7 and NbSRK can be enhanced by TaWRKY50 binding to their promoters. CRP is an RNA silencing suppressor. Furthermore, TaWRKY50 may regulate CWMV infection by regulating the expression of TaSAPK7 and NbSRK to increase CRP phosphorylation and reduce the amount of programmed cell death (PCD).
Collapse
Affiliation(s)
- Yunfei Guo
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yaoyao Jiang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Mila Wu
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Aizhu Tu
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jingliang Yin
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
7
|
Kim SH, Yoon J, Kim H, Lee SJ, Paek NC. Rice Basic Helix-Loop-Helix 079 (OsbHLH079) Delays Leaf Senescence by Attenuating ABA Signaling. RICE (NEW YORK, N.Y.) 2023; 16:60. [PMID: 38093151 PMCID: PMC10719235 DOI: 10.1186/s12284-023-00673-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Leaf senescence represents the final phase of leaf development and is characterized by a highly organized degenerative process involving the active translocation of nutrients from senescing leaves to growing tissues or storage organs. To date, a large number of senescence-associated transcription factors (sen-TFs) have been identified that regulate the initiation and progression of leaf senescence. Many of these TFs, including NAC (NAM/ATAF1/2/CUC2), WRKY, and MYB TFs, have been implicated in modulating the expression of downstream senescence-associated genes (SAGs) and chlorophyll degradation genes (CDGs) under the control of phytohormones. However, the involvement of basic helix-loop-helix (bHLH) TFs in leaf senescence has been less investigated. Here, we show that OsbHLH079 delays both natural senescence and dark-induced senescence: Overexpression of OsbHLH079 led to a stay-green phenotype, whereas osbhlh079 knockout mutation displayed accelerated leaf senescence. Similar to other sen-TFs, OsbHLH079 showed a gradual escalation in expression as leaves underwent senescence. During this process, the mRNA levels of SAGs and CDGs remained relatively low in OsbHLH079 overexpressors, but increased sharply in osbhlh079 mutants, suggesting that OsbHLH079 negatively regulates the transcription of SAGs and CDGs under senescence conditions. Additionally, we found that OsbHLH079 delays ABA-induced senescence. Subsequent RT-qPCR and dual-luciferase reporter assays revealed that OsbHLH079 downregulates the expression of ABA signaling genes, such as OsABF2, OsABF4, OsABI5, and OsNAP. Taken together, these results demonstrate that OsbHLH079 functions in delaying leaf yellowing by attenuating the ABA responses.
Collapse
Affiliation(s)
- Suk-Hwan Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jungwon Yoon
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hanna Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Ji Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Zhang XW, Xu RR, Liu Y, You CX, An JP. MdVQ10 promotes wound-triggered leaf senescence in association with MdWRKY75 and undergoes antagonistic modulation of MdCML15 and MdJAZs in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1599-1618. [PMID: 37277961 DOI: 10.1111/tpj.16341] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
Wounding stress leads to leaf senescence. However, the underlying molecular mechanism has not been elucidated. In this study, we investigated the role of the MdVQ10-MdWRKY75 module in wound-induced leaf senescence. MdWRKY75 was identified as a key positive modulator of wound-induced leaf senescence by activating the expression of the senescence-associated genes MdSAG12 and MdSAG18. MdVQ10 interacted with MdWRKY75 to enhance MdWRKY75-activated transcription of MdSAG12 and MdSAG18, thereby promoting leaf senescence triggered by wounding. In addition, the calmodulin-like protein MdCML15 promoted MdVQ10-mediated leaf senescence by stimulating the interaction between MdVQ10 and MdWRKY75. Moreover, the jasmonic acid signaling repressors MdJAZ12 and MdJAZ14 antagonized MdVQ10-mediated leaf senescence by weakening the MdVQ10-MdWRKY75 interaction. Our results demonstrate that the MdVQ10-MdWRKY75 module is a key modulator of wound-induced leaf senescence and provides insights into the mechanism of leaf senescence caused by wounding.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Rui-Rui Xu
- College of Biology and Oceanography, Weifang University, Weifang, 261061, Shandong, China
| | - Yankai Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Jian-Ping An
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
9
|
Xiong X, Li J, Su P, Duan H, Sun L, Xu S, Sun Y, Zhao H, Chen X, Ding D, Zhang X, Tang J. Genetic dissection of maize (Zea mays L.) chlorophyll content using multi-locus genome-wide association studies. BMC Genomics 2023; 24:384. [PMID: 37430212 DOI: 10.1186/s12864-023-09504-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The chlorophyll content (CC) is a key factor affecting maize photosynthetic efficiency and the final yield. However, its genetic basis remains unclear. The development of statistical methods has enabled researchers to design and apply various GWAS models, including MLM, MLMM, SUPER, FarmCPU, BLINK and 3VmrMLM. Comparative analysis of their results can lead to more effective mining of key genes. RESULTS The heritability of CC was 0.86. Six statistical models (MLM, BLINK, MLMM, FarmCPU, SUPER, and 3VmrMLM) and 1.25 million SNPs were used for the GWAS. A total of 140 quantitative trait nucleotides (QTNs) were detected, with 3VmrMLM and MLM detecting the most (118) and fewest (3) QTNs, respectively. The QTNs were associated with 481 genes and explained 0.29-10.28% of the phenotypic variation. Additionally, 10 co-located QTNs were detected by at least two different models or methods, three co-located QTNs were identified in at least two different environments, and six co-located QTNs were detected by different models or methods in different environments. Moreover, 69 candidate genes within or near these stable QTNs were screened based on the B73 (RefGen_v2) genome. GRMZM2G110408 (ZmCCS3) was identified by multiple models and in multiple environments. The functional characterization of this gene indicated the encoded protein likely contributes to chlorophyll biosynthesis. In addition, the CC differed significantly between the haplotypes of the significant QTN in this gene, and CC was higher for haplotype 1. CONCLUSION This study's results broaden our understanding of the genetic basis of CC, mining key genes related to CC and may be relevant for the ideotype-based breeding of new maize varieties with high photosynthetic efficiency.
Collapse
Affiliation(s)
- Xuehang Xiong
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jianxin Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Pingping Su
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Haiyang Duan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Li Sun
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shuhao Xu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yan Sun
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Haidong Zhao
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaoyang Chen
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China.
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| |
Collapse
|
10
|
Chen W, Zheng Y, Wang J, Wang Z, Yang Z, Chi X, Dai L, Lu G, Yang Y, Sun B. Ethylene-responsive SbWRKY50 suppresses leaf senescence by inhibition of chlorophyll degradation in sorghum. THE NEW PHYTOLOGIST 2023; 238:1129-1145. [PMID: 36683397 DOI: 10.1111/nph.18757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The onset of leaf de-greening and senescence is governed by a complex regulatory network including environmental cues and internal factors such as transcription factors (TFs) and phytohormones, in which ethylene (ET) is one key inducer. However, the detailed mechanism of ET signalling for senescence regulation is still largely unknown. Here, we found that the WRKY TF SbWRKY50 from Sorghum bicolor L., a direct target of the key component ETHYLENE INSENSITIVE 3 in ET signalling, functioned for leaf senescence repression. The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein9-edited SbWRKY50 mutant (SbWRKY5O-KO) of sorghum displayed precocious senescent phenotypes, while SbWRKY50 overexpression delayed age-dependent and dark-induced senescence in sorghum. SbWRKY50 negatively regulated chlorophyll degradation through direct binding to the promoters of several chlorophyll catabolic genes. In addition, SbWRKY50 recruited the Polycomb repressive complex 1 through direct interaction with SbBMI1A, to induce histone 2A mono-ubiquitination accumulation on the chlorophyll catabolic genes for epigenetic silencing and thus delayed leaf senescence. Especially, SbWRKY50 can suppress early steps of chlorophyll catabolic pathway via directly repressing SbNYC1 (NON-YELLOW COLORING 1). Other senescence-related hormones could also influence leaf senescence through repression of SbWRKY50. Hence, our work shows that SbWRKY50 is an essential regulator downstream of ET and SbWRKY50 also responds to other phytohormones for senescence regulation in sorghum.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuchen Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jingyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhen Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiaoyu Chi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Lingyan Dai
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Guihua Lu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, 223300, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Bo Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
11
|
Bioinformatics Analysis of WRKY Family Genes in Erianthus fulvus Ness. Genes (Basel) 2022; 13:genes13112102. [DOI: 10.3390/genes13112102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most prominent transcription factors in higher plants, the WRKY gene family, is crucial for secondary metabolism, phytohormone signaling, plant defense responses, and plant responses to abiotic stresses. It can control the expression of a wide range of target genes by coordinating with other DNA-binding or non-DNA-binding interacting proteins. In this study, we performed a genome-wide analysis of the EfWRKY genes and initially identified 89 members of the EfWRKY transcription factor family. Using some members of the OsWRKY transcription factor family, an evolutionary tree was built using the neighbor-joining (NJ) method to classify the 89 members of the EfWRKY transcription factor family into three major taxa and one unclassified group. Molecular weights ranged from 22,614.82 to 303,622.06 Da; hydrophilicity ranged from (−0.983)–(0.159); instability coefficients ranged from 40.97–81.30; lipid coefficients ranged from 38.54–91.89; amino acid numbers ranged from 213–2738 bp; isoelectric points ranged from 4.85–10.06. A signal peptide was present in EfWRKY41 but not in the other proteins, and EfWRK85 was subcellularly localized to the cell membrane. Chromosome localization revealed that the WRKY gene was present on each chromosome, proving that the conserved pattern WRKYGQK is the family’s central conserved motif. Conserved motif analysis showed that practically all members have this motif. Analysis of the cis-acting elements indicated that, in addition to the fundamental TATA-box, CAAT-box, and light-responsive features (GT1-box), there are response elements implicated in numerous hormones, growth regulation, secondary metabolism, and abiotic stressors. These results inform further studies on the function of EfWRKY genes and will lead to the improvement of sugarcane.
Collapse
|
12
|
Kim SH, Shim KC, Lee HS, Jeon YA, Adeva C, Luong NH, Ahn SN. Brassinosteroid biosynthesis gene OsD2 is associated with low-temperature germinability in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:985559. [PMID: 36204076 PMCID: PMC9530605 DOI: 10.3389/fpls.2022.985559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
In rice, low-temperature germinability (LTG) is essential for stable stand establishment using the direct seeding method in temperate and high-altitude areas. Previously, we reported that the quantitative trait locus qLTG1 is associated with LTG. qLTG1 is also associated with tolerance to several abiotic stresses, such as salt and osmotic conditions. In this study, map-based cloning and sequence analysis indicated that qLTG1 is allelic to DWARF2 (OsD2), which encodes cytochrome P450 D2 (LOC_Os01g10040) involved in brassinosteroid (BR) biosynthesis. Sequence comparison of the two parental lines, Hwaseong and Oryza rufipogon (IRGC 105491), revealed five single nucleotide polymorphisms (SNPs) in the coding region. Three of these SNPs led to missense mutations in OsD2, whereas the other two SNPs were synonymous. We evaluated two T-DNA insertion mutants, viz., overexpression (OsD2-OE) and knockdown (OsD2-KD) mutants of OsD2, with the Dongjin genetic background. OsD2-KD plants showed a decrease in LTG and grain size. In contrast, OsD2-OE plants showed an increase in grain size and LTG. We also examined the expression levels of several BR signaling and biosynthetic genes using the T-DNA insertion mutants. Gene expression analysis and BR application experiments demonstrated that BR enhanced the seed germination rate under low-temperature conditions. These results suggest that OsD2 is associated with the regulation of LTG and improving grain size. Thus, OsD2 may be a suitable target for rice breeding programs to improve rice yield and LTG.
Collapse
Affiliation(s)
- Sun Ha Kim
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Kyu-Chan Shim
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Hyun-Sook Lee
- Crop Breeding Division, National Institute of Crop Science, Wanju-Gun, South Korea
| | - Yun-A Jeon
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Cheryl Adeva
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Ngoc Ha Luong
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Sang-Nag Ahn
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
13
|
Astigueta FH, Baigorria AH, García MN, Delfosse VC, González SA, Pérez de la Torre MC, Moschen S, Lia VV, Heinz RA, Fernández P, Trupkin SA. Characterization and expression analysis of WRKY genes during leaf and corolla senescence of Petunia hybrida plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1765-1784. [PMID: 36387973 PMCID: PMC9636358 DOI: 10.1007/s12298-022-01243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Several families of transcription factors (TFs) control the progression of senescence. Many key TFs belonging to the WRKY family have been described to play crucial roles in the regulation of leaf senescence, mainly in Arabidopsis thaliana. However, little is known about senescence-associated WRKY members in floricultural species. Delay of senescence in leaves and petals of Petunia hybrida, a worldwide ornamental crop are highly appreciated traits. In this work, starting from 28 differentially expressed WRKY genes of A. thaliana during the progression of leaf senescence, we identified the orthologous in P. hybrida and explored the expression profiles of 20 PhWRKY genes during the progression of natural (age-related) leaf and corolla senescence as well as in the corollas of flowers undergoing pollination-induced senescence. Simultaneous visualization showed consistent and similar expression profiles of PhWRKYs during natural leaf and corolla senescence, although weak expression changes were observed during pollination-induced senescence. Comparable expression trends between PhWRKYs and the corresponding genes of A. thaliana were observed during leaf senescence, although more divergence was found in petals of pollinated petunia flowers. Integration of expression data with phylogenetics, conserved motif and cis-regulatory element analyses were used to establish a list of candidates that could regulate more than one senescence process. Our results suggest that several members of the WRKY family of TFs are tightly linked to the regulation of senescence in P. hybrida. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01243-y.
Collapse
Affiliation(s)
- Francisco H. Astigueta
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Escuela de Ciencia Y Tecnología, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires Argentina
| | - Amilcar H. Baigorria
- Escuela de Ciencia Y Tecnología, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires Argentina
| | - Martín N. García
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas Y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
| | - Verónica C. Delfosse
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Escuela de Ciencia Y Tecnología, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires Argentina
| | - Sergio A. González
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
| | - Mariana C. Pérez de la Torre
- Instituto de Floricultura, Centro de Investigación de Recursos Naturales, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
| | - Sebastián Moschen
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Famaillá, 4142 Tucumán, Argentina
| | - Verónica V. Lia
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas Y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
- Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - Ruth A. Heinz
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas Y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
| | - Paula Fernández
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Escuela de Ciencia Y Tecnología, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires Argentina
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas Y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
| | - Santiago A. Trupkin
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Instituto de Floricultura, Centro de Investigación de Recursos Naturales, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
| |
Collapse
|
14
|
Chen W, Huang B. Cytokinin or ethylene regulation of heat-induced leaf senescence involving transcriptional modulation of WRKY in perennial ryegrass. PHYSIOLOGIA PLANTARUM 2022; 174:e13766. [PMID: 36053893 DOI: 10.1111/ppl.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Heat stress is a major abiotic stress for temperate plant species with characteristic symptoms of premature leaf senescence. The objectives of this study were to evaluate the physiological effects of cytokinins (CK) and an ethylene inhibitor, aminoethoxyvinylglycine (AVG) on heat-induced leaf senescence in the temperate perennial grass species, perennial ryegrass (Lolium perenne), and to investigate whether WRKY transcription factors (TFs) could be associated with CK- or ethylene-mediated regulation of heat-induced leaf senescence by exogenously applying CK or AVG to perennial ryegrass. Perennial ryegrass plants foliar-sprayed with 6-benzylaminopurine (6-BA), and AVG exhibited prolonged stay-green phenotypes and a lesser degree of leaf senescence under heat stress (35/30°C), as shown by a decline in electrolyte leakage, malondialdehyde content, hydrogen peroxide, and superoxide content, and increased chlorophyll (Chl) content along with reduced activities of Chl-degrading enzymes (pheophytinase and chlorophyllase) and increased activity of Chl-synthesizing enzyme (porphobilinogen deaminase) due to 6-BA or AVG application. The suppression of heat-induced leaf senescence by 6-BA or AVG treatment corresponded with the upregulation of LpWRKY69 and LpWRKY70. The LpWRKY69 and LpWRKY70 promoters were predicted to share conserved cis-elements potentially recognized by TFs in the CK or ethylene pathways. These results indicate that LpWRKY69 and LpWRKY70 may negatively regulate heat-induced leaf senescence through CK or ethylene pathways, conferring heat tolerance in perennial ryegrass.
Collapse
Affiliation(s)
- Wei Chen
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| | - Bingru Huang
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
15
|
Son S, Im JH, Song G, Nam S, Park SR. OsWRKY114 Inhibits ABA-Induced Susceptibility to Xanthomonas oryzae pv. oryzae in Rice. Int J Mol Sci 2022; 23:ijms23158825. [PMID: 35955958 PMCID: PMC9369203 DOI: 10.3390/ijms23158825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
The phytohormone abscisic acid (ABA) regulates various aspects of plant growth, development, and stress responses. ABA suppresses innate immunity to Xanthomonas oryzae pv. oryzae (Xoo) in rice (Oryza sativa), but the identity of the underlying regulator is unknown. In this study, we revealed that OsWRKY114 is involved in the ABA response during Xoo infection. ABA-induced susceptibility to Xoo was reduced in OsWRKY114-overexpressing rice plants. OsWRKY114 attenuated the negative effect of ABA on salicylic acid-dependent immunity. Furthermore, OsWRKY114 decreased the transcript levels of ABA-associated genes involved in ABA response and biosynthesis. Moreover, the endogenous ABA level was lower in OsWRKY114-overexpressing plants than in the wild-type plants after Xoo inoculation. Taken together, our results suggest that OsWRKY114 is a negative regulator of ABA that confers susceptibility to Xoo in rice.
Collapse
Affiliation(s)
- Seungmin Son
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Jong Hee Im
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Giha Song
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Suhyeon Nam
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
- Department of Crop Science & Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| | - Sang Ryeol Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
16
|
Sasi JM, Gupta S, Singh A, Kujur A, Agarwal M, Katiyar-Agarwal S. Know when and how to die: gaining insights into the molecular regulation of leaf senescence. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1515-1534. [PMID: 36389097 PMCID: PMC9530073 DOI: 10.1007/s12298-022-01224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 06/16/2023]
Abstract
Senescence is the ultimate phase in the life cycle of leaves which is crucial for recycling of nutrients to maintain plant fitness and reproductive success. The earliest visible manifestation of leaf senescence is their yellowing, which usually commences with the breakdown of chlorophyll. The degradation process involves a gradual and highly coordinated disassembly of macromolecules resulting in the accumulation of nutrients, which are subsequently mobilized from the senescing leaves to the developing organs. Leaf senescence progresses under overly tight genetic and molecular control involving a well-orchestrated and intricate network of regulators that coordinate spatio-temporally with the influence of both internal and external cues. Owing to the advancements in omics technologies, the availability of mutant resources, scalability of molecular analyses methodologies and the advanced capacity to integrate multidimensional data, our understanding of the genetic and molecular basis of leaf ageing has greatly expanded. The review provides a compilation of the multitier regulation of senescence process and the interrelation between the environment and the terminal phase of leaf development. The knowledge gained would benefit in devising the strategies for manipulation of leaf senescence process to improve crop quality and productivity.
Collapse
Affiliation(s)
- Jyothish Madambikattil Sasi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Shitij Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Apurva Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Alice Kujur
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
- USDA-ARS Plant Genetics Research Unit, The Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- Centre of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana 502324 India
| | - Manu Agarwal
- Department of Botany, University of Delhi North Campus, Delhi, 110007 India
| | - Surekha Katiyar-Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
17
|
Hui Z, Xu J, Jian Y, Bian C, Duan S, Hu J, Li G, Jin L. Identification of Long-Distance Transport Signal Molecules Associated with Plant Maturity in Tetraploid Cultivated Potatoes (Solanum tuberosum L.). PLANTS 2022; 11:plants11131707. [PMID: 35807658 PMCID: PMC9268856 DOI: 10.3390/plants11131707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022]
Abstract
Maturity is a key trait for breeders to identify potato cultivars suitable to grow in different latitudes. However, the molecular mechanism regulating maturity remains unclear. In this study, we performed a grafting experiment using the early-maturing cultivar Zhongshu 5 (Z5) and the late-maturing cultivar Zhongshu 18 (Z18) and found that abscisic acid (ABA) and salicylic acid (SA) positively regulate the early maturity of potato, while indole-3-acetic acid (IAA) negatively regulated early maturity. A total of 43 long-distance transport mRNAs are observed to be involved in early maturity, and 292 long-distance transport mRNAs involved in late maturity were identified using RNA sequencing. Specifically, StMADS18, StSWEET10C, and StSWEET11 are detected to be candidate genes for their association with potato early maturity. Metabolomic data analysis shows a significant increase in phenolic acid and flavonoid contents increased in the scion of the early-maturing cultivar Z5, but a significant decrease in amino acid, phenolic acid, and alkaloid contents increased in the scion of the late-maturing cultivar Z18. This work reveals a significant association between the maturity of tetraploid cultivated potato and long-distance transport signal molecules and provides useful data for assessing the molecular mechanisms underlying the maturity of potato plants and for breeding early-maturing potato cultivars.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guangcun Li
- Correspondence: (G.L.); (L.J.); Tel.: +86-010-82105955 (G.L.); +86-010-82109543 (L.J.)
| | - Liping Jin
- Correspondence: (G.L.); (L.J.); Tel.: +86-010-82105955 (G.L.); +86-010-82109543 (L.J.)
| |
Collapse
|
18
|
Mahmood K, Torres-Jerez I, Krom N, Liu W, Udvardi MK. Transcriptional Programs and Regulators Underlying Age-Dependent and Dark-Induced Senescence in Medicago truncatula. Cells 2022; 11:cells11091570. [PMID: 35563875 PMCID: PMC9103780 DOI: 10.3390/cells11091570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022] Open
Abstract
In forage crops, age-dependent and stress-induced senescence reduces forage yield and quality. Therefore, delaying leaf senescence may be a way to improve forage yield and quality as well as plant resilience to stresses. Here, we used RNA-sequencing to determine the molecular bases of age-dependent and dark-induced leaf senescence in Medicago truncatula. We identified 6845 differentially expressed genes (DEGs) in M3 leaves associated with age-dependent leaf senescence. An even larger number (14219) of DEGs were associated with dark-induced senescence. Upregulated genes identified during age-dependent and dark-induced senescence were over-represented in oxidation–reduction processes and amino acid, carboxylic acid and chlorophyll catabolic processes. Dark-specific upregulated genes also over-represented autophagy, senescence and cell death. Mitochondrial functions were strongly inhibited by dark-treatment while these remained active during age-dependent senescence. Additionally, 391 DE transcription factors (TFs) belonging to various TF families were identified, including a core set of 74 TFs during age-dependent senescence while 759 DE TFs including a core set of 338 TFs were identified during dark-induced senescence. The heterologous expression of several senescence-induced TFs belonging to NAC, WKRY, bZIP, MYB and HD-zip TF families promoted senescence in tobacco leaves. This study revealed the dynamics of transcriptomic responses to age- and dark-induced senescence in M. truncatula and identified senescence-associated TFs that are attractive targets for future work to control senescence in forage legumes.
Collapse
Affiliation(s)
- Kashif Mahmood
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
- Noble Research Institute, L.L.C., Ardmore, OK 73401, USA
| | - Ivone Torres-Jerez
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
- Noble Research Institute, L.L.C., Ardmore, OK 73401, USA
| | - Nick Krom
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
| | - Wei Liu
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX 76201, USA
| | - Michael K. Udvardi
- Noble Research Institute, L.L.C., Ardmore, OK 73401, USA
- Centre for Crop Science, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
- Correspondence:
| |
Collapse
|
19
|
Lim C, Kang K, Shim Y, Yoo SC, Paek NC. Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways. PLANT PHYSIOLOGY 2022; 188:1900-1916. [PMID: 34718775 PMCID: PMC8968288 DOI: 10.1093/plphys/kiab492] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 05/18/2023]
Abstract
During crop cultivation, water-deficit conditions retard growth, thus reducing crop productivity. Therefore, uncovering the mechanisms behind drought tolerance is a critical task for crop improvement. Here, we show that the rice (Oryza sativa) WRKY transcription factor OsWRKY5 negatively regulates drought tolerance. We determined that OsWRKY5 was mainly expressed in developing leaves at the seedling and heading stages, and that its expression was reduced by drought stress and by treatment with NaCl, mannitol, and abscisic acid (ABA). Notably, the genome-edited loss-of-function alleles oswrky5-2 and oswrky5-3 conferred enhanced drought tolerance, measured as plant growth under water-deficit conditions. Conversely, the overexpression of OsWRKY5 in the activation-tagged line oswrky5-D resulted in higher susceptibility under the same conditions. The loss of OsWRKY5 activity increased sensitivity to ABA, thus promoting ABA-dependent stomatal closure. Transcriptome deep sequencing and reverse transcription quantitative polymerase chain reaction analyses demonstrated that the expression of abiotic stress-related genes including rice MYB2 (OsMYB2) was upregulated in oswrky5 knockout mutants and downregulated in oswrky5-D mutants. Moreover, dual-luciferase, yeast one-hybrid, and chromatin immunoprecipitation assays showed that OsWRKY5 directly binds to the W-box sequences in the promoter region of OsMYB2 and represses OsMYB2 expression, thus downregulating genes downstream of OsMYB2 in the ABA signaling pathways. Our results demonstrate that OsWRKY5 functions as a negative regulator of ABA-induced drought stress tolerance, strongly suggesting that inactivation of OsWRKY5 or manipulation of key OsWRKY5 targets could be useful to improve drought tolerance in rice cultivars.
Collapse
Affiliation(s)
| | | | - Yejin Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo-Cheul Yoo
- Department of Plant Life and Environmental Science, Hankyong National University, Anseong 17579, Republic of Korea
| | | |
Collapse
|
20
|
Xie W, Li X, Wang S, Yuan M. OsWRKY53 Promotes Abscisic Acid Accumulation to Accelerate Leaf Senescence and Inhibit Seed Germination by Downregulating Abscisic Acid Catabolic Genes in Rice. FRONTIERS IN PLANT SCIENCE 2022; 12:816156. [PMID: 35154213 PMCID: PMC8828546 DOI: 10.3389/fpls.2021.816156] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/29/2021] [Indexed: 05/29/2023]
Abstract
Abscisic acid (ABA) largely promotes leaf senescence and inhibits seed germination in plants. Endogenous ABA content is finely tuned by many transcription factors. In this study, we showed that OsWRKY53 is a positive regulator of leaf senescence and a negative regulator of seed germination in rice. OsWRKY53 expression was induced in leaves under aging, dark, and ABA treatment. The OsWRKY53-overexpressing (OsWRKY53-oe) plants showed early yellowing leaves, while the OsWRKY53 (oswrky53) knockout mutants maintained green leaves than the wild type under natural, dark-induced, and ABA-induced senescence conditions. Transcriptional analysis revealed that ABA catabolic genes, namely, OsABA8ox1 and OsABA8ox2, two key genes participating in ABA catabolism harboring ABA 8'-hydroxylase activity, were markedly downregulated in OsWRKY53-oe leaves. Chromatin immunoprecipitation and protoplast transient assays revealed that OsWRKY53 directly bound to the promoters of OsABA8ox1 and OsABA8ox2 to repress their transcription, resulting in elevated endogenous ABA contents that promoted premature leaf senescence in the OsWRKY53-oe plants. It indicates that OsWRKY53 is a positive regulator through regulating ABA accumulation to promote leaf senescence. In addition, accumulated ABA simultaneously inhibited seed germination and post-germination growth in OsWRKY53-oe plants. Taken together, OsWRKY53 suppresses the transcript of ABA catabolic genes to promote ABA accumulation to modulate ABA-induced leaf senescence and ABA-mediated inhibition of seed germination.
Collapse
|
21
|
Abhilasha A, Roy Choudhury S. Molecular and Physiological Perspectives of Abscisic Acid Mediated Drought Adjustment Strategies. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122769. [PMID: 34961239 PMCID: PMC8708728 DOI: 10.3390/plants10122769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 05/15/2023]
Abstract
Drought is the most prevalent unfavorable condition that impairs plant growth and development by altering morphological, physiological, and biochemical functions, thereby impeding plant biomass production. To survive the adverse effects, water limiting condition triggers a sophisticated adjustment mechanism orchestrated mainly by hormones that directly protect plants via the stimulation of several signaling cascades. Predominantly, water deficit signals cause the increase in the level of endogenous ABA, which elicits signaling pathways involving transcription factors that enhance resistance mechanisms to combat drought-stimulated damage in plants. These responses mainly include stomatal closure, seed dormancy, cuticular wax deposition, leaf senescence, and alteration of the shoot and root growth. Unraveling how plants adjust to drought could provide valuable information, and a comprehensive understanding of the resistance mechanisms will help researchers design ways to improve crop performance under water limiting conditions. This review deals with the past and recent updates of ABA-mediated molecular mechanisms that plants can implement to cope with the challenges of drought stress.
Collapse
|
22
|
Lu D, Liu B, Ren M, Wu C, Ma J, Shen Y. Light Deficiency Inhibits Growth by Affecting Photosynthesis Efficiency as well as JA and Ethylene Signaling in Endangered Plant Magnolia sinostellata. PLANTS (BASEL, SWITZERLAND) 2021; 10:2261. [PMID: 34834626 PMCID: PMC8618083 DOI: 10.3390/plants10112261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 12/27/2022]
Abstract
The endangered plant Magnolia sinostellata largely grows in the understory of forest and suffers light deficiency stress. It is generally recognized that the interaction between plant development and growth environment is intricate; however, the underlying molecular regulatory pathways by which light deficiency induced growth inhibition remain obscure. To understand the physiological and molecular mechanisms of plant response to shading caused light deficiency, we performed photosynthesis efficiency analysis and comparative transcriptome analysis in M. sinostellata leaves, which were subjected to shading treatments of different durations. Most of the parameters relevant to the photosynthesis systems were altered as the result of light deficiency treatment, which was also confirmed by the transcriptome analysis. Gene Ontology and KEGG pathway enrichment analyses illustrated that most of differential expression genes (DEGs) were enriched in photosynthesis-related pathways. Light deficiency may have accelerated leaf abscission by impacting the photosynthesis efficiency and hormone signaling. Further, shading could repress the expression of stress responsive transcription factors and R-genes, which confer disease resistance. This study provides valuable insight into light deficiency-induced molecular regulatory pathways in M. sinostellata and offers a theoretical basis for conservation and cultivation improvements of Magnolia and other endangered woody plants.
Collapse
Affiliation(s)
- Danying Lu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (D.L.); (M.R.); (C.W.)
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Bin Liu
- Department of Plant Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Bellaterra, Spain;
| | - Mingjie Ren
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (D.L.); (M.R.); (C.W.)
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Chao Wu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (D.L.); (M.R.); (C.W.)
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jingjing Ma
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (D.L.); (M.R.); (C.W.)
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yamei Shen
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (D.L.); (M.R.); (C.W.)
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| |
Collapse
|
23
|
Xu J, Gad AG, Luo Y, Fan C, Uddin JBG, ul Ain N, Huang C, Zhang Y, Miao Y, Zheng X. Five OsS40 Family Members Are Identified as Senescence-Related Genes in Rice by Reverse Genetics Approach. FRONTIERS IN PLANT SCIENCE 2021; 12:701529. [PMID: 34539694 PMCID: PMC8446524 DOI: 10.3389/fpls.2021.701529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/09/2021] [Indexed: 05/30/2023]
Abstract
A total of 16 OsS40 genes of Oryza sativa were identified in our previous work, but their functions remain unclear. In this study, 13 OsS40 members were knocked out using the CRISPR/cas9 gene-editing technology. After screening phenotype characterization of CRISPR/Cas9 mutants compared to WT, five oss40s mutants exhibited a stay-green phenotype at 30 days after heading. Moreover, increased grain size and grain weight occurred in the oss40-1, oss40-12, and oss40-14 lines, while declined grain weight appeared in the oss40-7 and oss40-13 mutants. The transcript levels of several senescence-associated genes (SAGs), chlorophyll degradation-related genes (CDGs), as well as WRKY members were differentially decreased in the five stay-green oss40s mutants compared to WT. Five oss40 mutants also exhibited a stay-green phenotype when the detached leaves were incubated under darkness for 4 days. OsSWEET4 and OsSWEET1b were significantly upregulated, while OsSWEET1a and OsSWEET13 were significantly downregulated in both oss40-7 and oss40-14 compared to WT. Furthermore, these five OsS40 displayed strong transcriptional activation activity and were located in the nucleus. Most of the OsS40 genes were downregulated in the oss40-1, oss40-7, and oss40-12 mutants, but upregulated in the oss40-13 and oss40-14 mutants, indicating coordinated regulation among OsS40 members. These results suggest that OsS40-1, OsS40-7, OsS40-12, OsS40-13, and OsS40-14 are senescence-associated genes, involved in the senescence and carbon allocation network by modulating other OsS40 members, SWEET member genes, and senescence-related gene expression.
Collapse
|
24
|
Qiao H, Liu Y, Cheng L, Gu X, Yin P, Li K, Zhou S, Wang G, Zhou C. TaWRKY13-A Serves as a Mediator of Jasmonic Acid-Related Leaf Senescence by Modulating Jasmonic Acid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:717233. [PMID: 34539711 PMCID: PMC8442999 DOI: 10.3389/fpls.2021.717233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Leaf senescence is crucial for crop yield and quality. Transcriptional regulation is a key step for integrating various senescence-related signals into the nucleus. However, few regulators of senescence implicating transcriptional events have been functionally characterized in wheat. Based on our RNA-seq data, we identified a WRKY transcription factor, TaWRKY13-A, that predominately expresses at senescent stages. By using the virus-induced gene silencing (VIGS) method, we manifested impaired transcription of TaWRKY13-A leading to a delayed leaf senescence phenotype in wheat. Moreover, the overexpression (OE) of TaWRKY13-A accelerated the onset of leaf senescence under both natural growth condition and darkness in Brachypodium distachyon and Arabidopsis thaliana. Furthermore, by physiological and molecular investigations, we verified that TaWRKY13-A participates in the regulation of leaf senescence via jasmonic acid (JA) pathway. The expression of JA biosynthetic genes, including AtLOX6, was altered in TaWRKY13-A-overexpressing Arabidopsis. We also demonstrated that TaWRKY13-A can interact with the promoter of AtLOX6 and TaLOX6 by using the electrophoretic mobility shift assay (EMSA) and luciferase reporter system. Consistently, we detected a higher JA level in TaWRKY13-A-overexpressing lines than that in Col-0. Moreover, our data suggested that TaWRKY13-A is partially functional conserved with AtWRKY53 in age-dependent leaf senescence. Collectively, this study manifests TaWRKY13-A as a positive regulator of JA-related leaf senescence, which could be a new clue for molecular breeding in wheat.
Collapse
Affiliation(s)
- Hualiang Qiao
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Yongwei Liu
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Lingling Cheng
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xuelin Gu
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Pengcheng Yin
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ke Li
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shuo Zhou
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Geng Wang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chunjiang Zhou
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
25
|
Current Understanding of Leaf Senescence in Rice. Int J Mol Sci 2021; 22:ijms22094515. [PMID: 33925978 PMCID: PMC8123611 DOI: 10.3390/ijms22094515] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022] Open
Abstract
Leaf senescence, which is the last developmental phase of plant growth, is controlled by multiple genetic and environmental factors. Leaf yellowing is a visual indicator of senescence due to the loss of the green pigment chlorophyll. During senescence, the methodical disassembly of macromolecules occurs, facilitating nutrient recycling and translocation from the sink to the source organs, which is critical for plant fitness and productivity. Leaf senescence is a complex and tightly regulated process, with coordinated actions of multiple pathways, responding to a sophisticated integration of leaf age and various environmental signals. Many studies have been carried out to understand the leaf senescence-associated molecular mechanisms including the chlorophyll breakdown, phytohormonal and transcriptional regulation, interaction with environmental signals, and associated metabolic changes. The metabolic reprogramming and nutrient recycling occurring during leaf senescence highlight the fundamental role of this developmental stage for the nutrient economy at the whole plant level. The strong impact of the senescence-associated nutrient remobilization on cereal productivity and grain quality is of interest in many breeding programs. This review summarizes our current knowledge in rice on (i) the actors of chlorophyll degradation, (ii) the identification of stay-green genotypes, (iii) the identification of transcription factors involved in the regulation of leaf senescence, (iv) the roles of leaf-senescence-associated nitrogen enzymes on plant performance, and (v) stress-induced senescence. Compiling the different advances obtained on rice leaf senescence will provide a framework for future rice breeding strategies to improve grain yield.
Collapse
|
26
|
Li Y, Liao S, Mei P, Pan Y, Zhang Y, Zheng X, Xie Y, Miao Y. OsWRKY93 Dually Functions Between Leaf Senescence and in Response to Biotic Stress in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:643011. [PMID: 33828575 PMCID: PMC8019945 DOI: 10.3389/fpls.2021.643011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/11/2021] [Indexed: 05/25/2023]
Abstract
Cross talking between natural senescence and cell death in response to pathogen attack is an interesting topic; however, its action mechanism is kept open. In this study, 33 OsWRKY genes were obtained by screening with leaf aging procedure through RNA-seq dataset, and 11 of them were confirmed a significant altered expression level in the flag leaves during aging by using the reverse transcript quantitative PCR (RT-qPCR). Among them, the OsWRKY2, OsWRKY14, OsWRKY26, OsWRKY69, and OsWRKY93 members exhibited short-term alteration in transcriptional levels in response to Magnaporthe grisea infection. The CRISPR/Cas9-edited mutants of five genes were developed and confirmed, and a significant sensitivity to M. oryzae infection was observed in CRISPR OsWRKY93-edited lines; on the other hand, a significant resistance to M. oryzae infection was shown in the enhanced expression OsWRKY93 plants compared to mock plants; however, enhanced expression of other four genes have no significant affection. Interestingly, ROS accumulation was also increased in OsWRKY93 enhanced plants after flg22 treatment, compared with the controls, suggesting that OsWRKY93 is involved in PAMP-triggered immune response in rice. It indicated that OsWRKY93 was involved in both flag leaf senescence and in response to fungi attack.
Collapse
Affiliation(s)
- Yanyun Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuting Liao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengying Mei
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yueyun Pan
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangzi Zheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakun Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
27
|
Adeel Zafar S, Uzair M, Ramzan Khan M, Patil SB, Fang J, Zhao J, Lata Singla‐Pareek S, Pareek A, Li X. DPS1
regulates cuticle development and leaf senescence in rice. Food Energy Secur 2021. [DOI: 10.1002/fes3.273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Syed Adeel Zafar
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Muhammad Uzair
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology National Agricultural Research Centre Islamabad Pakistan
| | - Suyash B. Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Sneh Lata Singla‐Pareek
- Plant Stress BiologyInternational Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory School of Life Sciences Jawaharlal Nehru University New Delhi India
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
28
|
Moreno JC, Mi J, Alagoz Y, Al‐Babili S. Plant apocarotenoids: from retrograde signaling to interspecific communication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:351-375. [PMID: 33258195 PMCID: PMC7898548 DOI: 10.1111/tpj.15102] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 05/08/2023]
Abstract
Carotenoids are isoprenoid compounds synthesized by all photosynthetic and some non-photosynthetic organisms. They are essential for photosynthesis and contribute to many other aspects of a plant's life. The oxidative breakdown of carotenoids gives rise to the formation of a diverse family of essential metabolites called apocarotenoids. This metabolic process either takes place spontaneously through reactive oxygen species or is catalyzed by enzymes generally belonging to the CAROTENOID CLEAVAGE DIOXYGENASE family. Apocarotenoids include the phytohormones abscisic acid and strigolactones (SLs), signaling molecules and growth regulators. Abscisic acid and SLs are vital in regulating plant growth, development and stress response. SLs are also an essential component in plants' rhizospheric communication with symbionts and parasites. Other apocarotenoid small molecules, such as blumenols, mycorradicins, zaxinone, anchorene, β-cyclocitral, β-cyclogeranic acid, β-ionone and loliolide, are involved in plant growth and development, and/or contribute to different processes, including arbuscular mycorrhiza symbiosis, abiotic stress response, plant-plant and plant-herbivore interactions and plastid retrograde signaling. There are also indications for the presence of structurally unidentified linear cis-carotene-derived apocarotenoids, which are presumed to modulate plastid biogenesis and leaf morphology, among other developmental processes. Here, we provide an overview on the biology of old, recently discovered and supposed plant apocarotenoid signaling molecules, describing their biosynthesis, developmental and physiological functions, and role as a messenger in plant communication.
Collapse
Affiliation(s)
- Juan C. Moreno
- Max Planck Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1Potsdam14476Germany
- Division of Biological and Environmental Sciences and EngineeringCenter for Desert Agriculturethe BioActives LabKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| | - Jianing Mi
- Division of Biological and Environmental Sciences and EngineeringCenter for Desert Agriculturethe BioActives LabKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| | - Yagiz Alagoz
- Division of Biological and Environmental Sciences and EngineeringCenter for Desert Agriculturethe BioActives LabKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797PenrithNSW2751Australia
| | - Salim Al‐Babili
- Division of Biological and Environmental Sciences and EngineeringCenter for Desert Agriculturethe BioActives LabKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| |
Collapse
|
29
|
Xiong E, Li Z, Zhang C, Zhang J, Liu Y, Peng T, Chen Z, Zhao Q. A study of leaf-senescence genes in rice based on a combination of genomics, proteomics and bioinformatics. Brief Bioinform 2020; 22:5998850. [PMID: 33257942 DOI: 10.1093/bib/bbaa305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Leaf senescence is a highly complex, genetically regulated and well-ordered process with multiple layers and pathways. Delaying leaf senescence would help increase grain yields in rice. Over the past 15 years, more than 100 rice leaf-senescence genes have been cloned, greatly improving the understanding of leaf senescence in rice. Systematically elucidating the molecular mechanisms underlying leaf senescence will provide breeders with new tools/options for improving many important agronomic traits. In this study, we summarized recent reports on 125 rice leaf-senescence genes, providing an overview of the research progress in this field by analyzing the subcellular localizations, molecular functions and the relationship of them. These data showed that chlorophyll synthesis and degradation, chloroplast development, abscisic acid pathway, jasmonic acid pathway, nitrogen assimilation and ROS play an important role in regulating the leaf senescence in rice. Furthermore, we predicted and analyzed the proteins that interact with leaf-senescence proteins and achieved a more profound understanding of the molecular principles underlying the regulatory mechanisms by which leaf senescence occurs, thus providing new insights for future investigations of leaf senescence in rice.
Collapse
Affiliation(s)
- Erhui Xiong
- College of Agriculture, Henan Agricultural University (HAU), China
| | - Zhiyong Li
- Academy for Advanced Interdisciplinary Studies, South University of Science and Technology, Shenzhen, China
| | - Chen Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | | | - Ye Liu
- College of Agriculture, HAU
| | | | | | | |
Collapse
|
30
|
Zhao L, Zhang W, Song Q, Xuan Y, Li K, Cheng L, Qiao H, Wang G, Zhou C. A WRKY transcription factor, TaWRKY40-D, promotes leaf senescence associated with jasmonic acid and abscisic acid pathways in wheat. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:1072-1085. [PMID: 32609938 DOI: 10.1111/plb.13155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Leaf senescence is a complex and precise regulatory process that is correlated with numerous internal and environmental factors. Leaf senescence is tightly related to the redistribution of nutrients, which significantly affects productivity and quality, especially in crops. Evidence shows that the mediation of transcriptional regulation by WRKY transcription factors is vital for the fine-tuning of leaf senescence. However, the underlying mechanisms of the involvement of WRKY in leaf senescence are still unclear in wheat. Using RNA sequencing data, we isolated a novel WRKY transcription factor, TaWRKY40-D, which localizes in the nucleus and is basically induced by the progression of leaf senescence. TaWRKY40-D is a promoter of natural and dark-induced leaf senescence in transgenic Arabidopsis thaliana and wheat. We also demonstrated a positive response of TaWRKY40-D in wheat upon jasmonic acid (JA) and abscisic acid (ABA) treatment. Consistent with this, the detached leaves of TaWRKY40-D VIGS (virus-induced gene silencing) wheat plants showed a stay-green phenotype, while TaWRKY40-D overexpressing Arabidopsis plants showed premature leaf senescence after JA and ABA treatment. Moreover, our results revealed that TaWRKY40-D positively regulates leaf senescence, possibly by altering the biosynthesis and signalling of JA and ABA pathway genes. Together, our results suggest a new regulator of JA- and ABA-related leaf senescence, as well as a new candidate gene that can be used for molecular breeding in wheat.
Collapse
Affiliation(s)
- L Zhao
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - W Zhang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Q Song
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Y Xuan
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - K Li
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - L Cheng
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - H Qiao
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - G Wang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - C Zhou
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
31
|
Formyl tetrahydrofolate deformylase affects hydrogen peroxide accumulation and leaf senescence by regulating the folate status and redox homeostasis in rice. SCIENCE CHINA-LIFE SCIENCES 2020; 64:720-738. [DOI: 10.1007/s11427-020-1773-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
|
32
|
Rice Senescence-Induced Receptor-Like Kinase ( OsSRLK) Is Involved in Phytohormone-Mediated Chlorophyll Degradation. Int J Mol Sci 2019; 21:ijms21010260. [PMID: 31905964 PMCID: PMC6982081 DOI: 10.3390/ijms21010260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 01/26/2023] Open
Abstract
Chlorophyll breakdown is a vital catabolic process of leaf senescence as it allows the recycling of nitrogen and other nutrients. In the present study, we isolated rice senescence-induced receptor-like kinase (OsSRLK), whose transcription was upregulated in senescing rice leaves. The detached leaves of ossrlk mutant (ossrlk) contained more green pigment than those of the wild type (WT) during dark-induced senescence (DIS). HPLC and immunoblot assay revealed that degradation of chlorophyll and photosystem II proteins was repressed in ossrlk during DIS. Furthermore, ultrastructural analysis revealed that ossrlk leaves maintained the chloroplast structure with intact grana stacks during dark incubation; however, the retained green color and preserved chloroplast structures of ossrlk did not enhance the photosynthetic competence during age-dependent senescence in autumn. In ossrlk, the panicles per plant was increased and the spikelets per panicle were reduced, resulting in similar grain productivity between WT and ossrlk. By transcriptome analysis using RNA sequencing, genes related to phytohormone, senescence, and chlorophyll biogenesis were significantly altered in ossrlk compared to those in WT during DIS. Collectively, our findings indicate that OsSRLK may degrade chlorophyll by participating in a phytohormone-mediated pathway.
Collapse
|