1
|
You JH, Kim NY, Choi YY, Choi HW, Chung BG. Dual-stimuli-responsive nanoparticles for the co-delivery of small molecules to promote neural differentiation of human iPSCs. NANOSCALE 2025; 17:2506-2519. [PMID: 39815767 DOI: 10.1039/d4nr04413d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The differentiation of human induced pluripotent stem cells (hiPSCs) into neural progenitor cells (NPCs) is a promising approach for the treatment of neurodegenerative diseases and regenerative medicine. Dual-SMAD inhibition using small molecules has been identified as a key strategy for directing the differentiation of hiPSCs into NPCs by regulating specific cell signaling pathways. However, conventional culture methods are time-consuming and exhibit low differentiation efficiency in neural differentiation. Nanocarriers can address these obstacles as an efficient platform for the controlled release and accurate delivery of small molecules. In this paper, we developed calcium phosphate-coated mesoporous silica nanoparticles capable of delivering multiple small molecules, including LDN193189 as a bone morphogenetic protein (BMP) inhibitor and SB431542 as a transforming growth factor (TGF)-beta inhibitor, for direct differentiation of hiPSC-mediated NPCs. Our results demonstrated that this nanocarrier-mediated small molecule release system not only enhanced the in vitro formation of neural rosettes but also modulated the expression levels of key markers. In particular, it downregulated OCT4, a marker of pluripotency, while upregulating PAX6, a critical marker for the neuroectoderm. These findings suggest that this controlled small molecule release system holds significant potential for therapeutic applications in neural development and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jeong Hyun You
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea.
| | - Na Yeon Kim
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea.
| | - Yoon Young Choi
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Hyung Woo Choi
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
| | - Bong Geun Chung
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea.
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
- Institute of Smart Biosensor, Sogang University, Seoul 04107, Korea
| |
Collapse
|
2
|
Enríquez S, Briceño S, Ramirez-Cando L, Debut A, Borrero-González LJ, González G. Luminescence Properties of Samarium-Doped Hydroxyapatite Nanoparticles and Cytotoxicity Assessment on SH-SY5Y Neuroblastoma Cells. ACS OMEGA 2024; 9:49857-49866. [PMID: 39713680 PMCID: PMC11656358 DOI: 10.1021/acsomega.4c08654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
Samarium-doped nanohydroxyapatite is a biomaterial with nerve regeneration activity and bioimaging. In this work, Sm/HAp; (Ca10-x Sm x (PO4)6(OH)2) (0 ≤ x ≤ 1) was synthesized using the hydrothermal method and thermally treated from 200 to 800 °C. The samples were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, and luminescence spectroscopy. The results confirmed the successful integration of Sm3+ ions into the hydroxyapatite. Our findings revealed the influence of the Sm3+ content and thermal treatment on the emission properties, obtaining a maximum emission at Sm = 0.05 thermally treated at 800 °C. The SH-SY5Y neuroblastoma cell viability study revealed a Sm3+ concentration-and particle size-dependent response. This research emphasizes the optical and cell viability of Sm/HAp in SH-SY5Y neuroblastoma cells, making them suitable for further research as agents that activate regenerative processes in cells and neurons.
Collapse
Affiliation(s)
- Stephanie Enríquez
- School
of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Sarah Briceño
- School
of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Lenin Ramirez-Cando
- School
of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Alexis Debut
- Centro
de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolqui 171103, Ecuador
| | - Luis J. Borrero-González
- Facultad
de Ciencias Exactas y Naturales, Escuela de Ciencias Físicas
y Matemática, Laboratorio de Optica Aplicada, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - Gema González
- School
of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador
| |
Collapse
|
3
|
Boyetey MJ, Sukyai P, Kamonsutthipaijit N, Nijpanich S, Chanlek N. Fabrication and Characterization of a Polydopamine-Modified Bacterial Cellulose and Sugarcane Filter Cake-Derived Hydroxyapatite Composite Scaffold. ACS OMEGA 2023; 8:43295-43303. [PMID: 38024664 PMCID: PMC10652255 DOI: 10.1021/acsomega.3c07266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
The search for environmentally friendly and sustainable sources of raw materials has been ongoing for quite a while, and currently, the utilization and applications of agro-industrial biomass residues in biomedicine are being researched. In this study, a polydopamine (PDA)-modified bacterial cellulose (BC) and hydroxyapatite (HA) composite scaffold was fabricated using the freeze-drying method. The as-prepared hydroxyapatite was synthesized via the chemical precipitation method using sugarcane filter cake as a calcium source, as reported in a previous study. X-ray diffraction analysis revealed a carbonated phase of the prepared hydroxyapatite, similar to that of the natural bone mineral. Wide-angle X-ray scattering analysis revealed the successful fabrication of BC/HA composite scaffolds, while X-ray photoelectron spectroscopy suggested that PDA was deposited on the surface of the BC/HA composite scaffolds. In vitro cell viability assays indicated that BC/HA and PDA-modified composite scaffolds did not induce cytotoxicity and were biocompatible with MC3T3-E1 preosteoblasts. PDA-modified composite scaffolds showed enhanced protein adsorption capacity in vitro compared to the unmodified scaffolds. On a concluding note, these results demonstrate that agro-industrial biomass residues have the potential to be used in biomedical applications and that PDA-modified BC/HA composite scaffolds are a promising biomaterial for bone tissue engineering.
Collapse
Affiliation(s)
- Mark-Jefferson
Buer Boyetey
- Cellulose
for Future Materials and Technologies Special Research Unit, Department
of Biotechnology, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Prakit Sukyai
- Cellulose
for Future Materials and Technologies Special Research Unit, Department
of Biotechnology, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Center
for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University
Institute for Advanced Studies, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| | - Nuntaporn Kamonsutthipaijit
- Synchrotron
Light Research Institute (Public Organization) 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Supinya Nijpanich
- Synchrotron
Light Research Institute (Public Organization) 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Narong Chanlek
- Synchrotron
Light Research Institute (Public Organization) 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
4
|
Roldan L, Isaza C, Ospina J, Montoya C, Domínguez J, Orrego S, Correa S. A Comparative Study of HA/DBM Compounds Derived from Bovine and Porcine for Bone Regeneration. J Funct Biomater 2023; 14:439. [PMID: 37754853 PMCID: PMC10532284 DOI: 10.3390/jfb14090439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/25/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
This comparative study investigated the tissue regeneration and inflammatory response induced by xenografts comprised of hydroxyapatite (HA) and demineralized bone matrix (DBM) extracted from porcine (P) and bovine (B) sources. First, extraction of HA and DBM was independently conducted, followed by chemical and morphological characterization. Second, mixtures of HA/DBM were prepared in 50/50 and 60/40 concentrations, and the chemical, morphological, and mechanical properties were evaluated. A rat calvarial defect model was used to evaluate the tissue regeneration and inflammatory responses at 3 and 6 months. The commercial allograft DBM Puros® was used as a clinical reference. Different variables related to tissue regeneration were evaluated, including tissue thickness regeneration (%), amount of regenerated bone area (%), and amount of regenerated collagen area (%). The inflammatory response was evaluated by quantifying the blood vessel area. Overall, tissue regeneration from porcine grafts was superior to bovine. After 3 months of implantation, the tissue thickness regeneration in the 50/50P compound and the commercial DBM was significantly higher (~99%) than in the bovine materials (~23%). The 50/50P and DBM produced higher tissue regeneration than the naturally healed controls. Similar trends were observed for the regenerated bone and collagen areas. The blood vessel area was correlated with tissue regeneration in the first 3 months of evaluation. After 6 months of implantation, HA/DBM compounds showed less regenerated collagen than the DBM-only xenografts. In addition, all animal-derived xenografts improved tissue regeneration compared with the naturally healed defects. No clinical complications associated with any implanted compound were noted.
Collapse
Affiliation(s)
- Lina Roldan
- Grupo de Investigación en Bioingeniería (GIB), Universidad EAFIT, Medellín 050022, Colombia; (L.R.); (C.I.)
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19122, USA; (C.M.); (S.O.)
| | - Catalina Isaza
- Grupo de Investigación en Bioingeniería (GIB), Universidad EAFIT, Medellín 050022, Colombia; (L.R.); (C.I.)
| | - Juan Ospina
- Centro de Investigación y Desarrollo Cárnico, Industrias de Alimentos Zenú S.A.S., Grupo Nutresa, Medellín 050044, Colombia;
| | - Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19122, USA; (C.M.); (S.O.)
| | - José Domínguez
- Grupo de Investigación en Bioingeniería (GIB), Universidad EAFIT, Medellín 050022, Colombia; (L.R.); (C.I.)
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19122, USA; (C.M.); (S.O.)
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA 191122, USA
| | - Santiago Correa
- Grupo de Investigación en Bioingeniería (GIB), Universidad EAFIT, Medellín 050022, Colombia; (L.R.); (C.I.)
- Escuela de Ciencias Aplicadas e Ingeniería, Universidad EAFIT, Medellín 050022, Colombia
| |
Collapse
|
5
|
Asokan V, Yelleti G, Bhat C, Bajaj M, Banerjee P. A novel peptide isolated from Catla skin collagen acts as a self-assembling scaffold promoting nucleation of calcium-deficient hydroxyapatite nanocrystals. J Biochem 2023; 173:197-224. [PMID: 36494197 DOI: 10.1093/jb/mvac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Catla collagen hydrolysate (CH) was fractionated by chromatography and each fraction was subjected to HA nucleation, with the resultant HA-fraction composites being scored based on the structural and functional group of the HA formed. The process was repeated till a single peptide with augmented HA nucleation capacity was obtained. The peptide (4.6 kDa), exhibited high solubility, existed in polyproline-II conformation and displayed a dynamic yet stable hierarchical self-assembling property. The 3D modelling of the peptide revealed multiple calcium and phosphate binding sites and a high propensity to self-assemble. Structural analysis of the peptide-HA crystals revealed characteristic diffraction planes of HA with mineralization following the (002) plane, retention of the self-assembled hierarchy of the peptide and intense ionic interactions between carboxyl groups and calcium. The peptide-HA composite crystals were mostly of 25-40 nm dimensions and displayed 79% mineralization, 92% crystallinity, 39.25% porosity, 12GPa Young's modulus and enhanced stability in physiological pH. Cells grown on peptide-HA depicted faster proliferation rates and higher levels of osteogenic markers. It was concluded that the prerequisite for HA nucleation by a peptide included: a conserved sequence with a unique charge topology allowing calcium chelation and its ability to form a dynamic self-assembled hierarchy for crystal propagation.
Collapse
Affiliation(s)
- Vishwadeep Asokan
- Department of Biochemistry, School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka 560078, India
| | - Geethika Yelleti
- Department of Biochemistry, School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka 560078, India
| | - Chetna Bhat
- Department of Biochemistry, School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka 560078, India
| | - Mayur Bajaj
- School of Biological Sciences, Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh 517507, India
| | - Pradipta Banerjee
- Department of Biochemistry, School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka 560078, India
| |
Collapse
|
6
|
Li Q, Wang Y, Zhang G, Su R, Qi W. Biomimetic mineralization based on self-assembling peptides. Chem Soc Rev 2023; 52:1549-1590. [PMID: 36602188 DOI: 10.1039/d2cs00725h] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomimetic science has attracted great interest in the fields of chemistry, biology, materials science, and energy. Biomimetic mineralization is the process of synthesizing inorganic minerals under the control of organic molecules or biomolecules under mild conditions. Peptides are the motifs that constitute proteins, and can self-assemble into various hierarchical structures and show a high affinity for inorganic substances. Therefore, peptides can be used as building blocks for the synthesis of functional biomimetic materials. With the participation of peptides, the morphology, size, and composition of mineralized materials can be controlled precisely. Peptides not only provide well-defined templates for the nucleation and growth of inorganic nanomaterials but also have the potential to confer inorganic nanomaterials with high catalytic efficiency, selectivity, and biotherapeutic functions. In this review, we systematically summarize research progress in the formation mechanism, nanostructural manipulation, and applications of peptide-templated mineralized materials. These can further inspire researchers to design structurally complex and functionalized biomimetic materials with great promising applications.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Gong Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
7
|
Preparation, Characterization, and Biological Properties of Hydroxyapatite from Bigeye Snapper ( Priancanthus tayenus) Bone. Int J Mol Sci 2023; 24:ijms24032776. [PMID: 36769139 PMCID: PMC9917361 DOI: 10.3390/ijms24032776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The optimum condition of acid hydrolysis for hydroxyapatite extraction from bigeye snapper (Priancanthus tayenus) bone and the effects of extraction time (10-60 min) and HCl concentration (2.0-5.0% w/v) on yield and hydroxyapatite properties were determined. The optimum extracted condition was found using 5% HCl for 60 min, which was 13.4% yield; 19.8 g/100 g Ca content; 9.6 g/100 g P content; 2.1 Ca/P ratio; L*, a*, b*; and ΔE as 84.5, 2.8, 16.5, and 15.6, respectively. The using of 5% NaOH solution was optimum for hydroxyapatite precipitation from the extracted solution. The characteristic and biological properties of the obtained hydroxyapatite were studied. Fourier transform infrared spectroscopy and X-ray diffraction results showed a good comparison between the extracted and commercial hydroxyapatite. The microstructure of the extracted hydroxyapatite from a scanning electron microscope showed an irregular and flat-plate shape, large surface area, and roughness. The extracted hydroxyapatite was non- and low-cytotoxicity at a concentration of 50 and 100-400 µg/mL, respectively. Bovine serum albumin (BSA) adsorption and desorption of hydroxyapatite was studied. An increasing BSA concentration, hydroxyapatite amount, and adsorption time significantly increased protein adsorption on hydroxyapatite. Protein desorption from BSA-loaded hydroxyapatite showed an increase of release initially in the first 4 days and became a steady release rate until 14 days.
Collapse
|
8
|
Shokri M, Kharaziha M, Tafti HA, Eslaminejad MB, Aghdam RM. Synergic role of zinc and gallium doping in hydroxyapatite nanoparticles to improve osteogenesis and antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112684. [DOI: 10.1016/j.msec.2022.112684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 10/19/2022]
|
9
|
Litak J, Grochowski C, Rysak A, Mazurek M, Blicharski T, Kamieniak P, Wolszczak P, Rahnama-Hezavah M, Litak G. New Horizons for Hydroxyapatite Supported by DXA Assessment-A Preliminary Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:942. [PMID: 35160888 PMCID: PMC8839981 DOI: 10.3390/ma15030942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 12/10/2022]
Abstract
Dual Energy X-ray Absorptiometry (DXA) is a tool that allows the assessment of bone density. It was first presented by Cameron and Sorenson in 1963 and was approved by the Food and Drug Administration. Misplacing the femoral neck box, placing a trochanteric line below the midland and improper placement of boundary lines are the most common errors made during a DXA diagnostic test made by auto analysis. Hydroxyapatite is the most important inorganic component of teeth and bone tissue. It is estimated to constitute up to 70% of human bone weight and up to 50% of its volume. Calcium phosphate comes in many forms; however, studies have shown that only tricalcium phosphate and hydroxyapatite have the characteristics that allow their use as bone-substituted materials. The purpose of this study is aimed at analyzing the results of hip densitometry and hydorxyapatite distribution in order to better assess the structure and mineral density of the femoral neck. However, a detailed analysis of the individual density curves shows some qualitative differences that may be important in assessing bone strength in the area under study. To draw more specific conclusions on the therapy applied for individual patients, we need to determine the correct orientation of the bone from the resulting density and document the trends in the density distribution change. The average results presented with the DXA method are insufficient.
Collapse
Affiliation(s)
- Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (C.G.); (M.M.); (P.K.)
- Department of Automation, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland; (A.R.); (P.W.); (G.L.)
| | - Cezary Grochowski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (C.G.); (M.M.); (P.K.)
- Department of Automation, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland; (A.R.); (P.W.); (G.L.)
| | - Andrzej Rysak
- Department of Automation, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland; (A.R.); (P.W.); (G.L.)
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (C.G.); (M.M.); (P.K.)
| | - Tomasz Blicharski
- Department of Rehabilitation and Orthopedics, Medical University of Lublin, ul. Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (C.G.); (M.M.); (P.K.)
| | - Piotr Wolszczak
- Department of Automation, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland; (A.R.); (P.W.); (G.L.)
| | - Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Grzegorz Litak
- Department of Automation, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland; (A.R.); (P.W.); (G.L.)
| |
Collapse
|
10
|
Gao W, Wang Y, Zhang F, Zhang S, Lian HZ. Tetrasulfonate calix[4]arene modified large pore mesoporous silica microspheres: Synthesis, characterization, and application in protein separation. Talanta 2021; 226:122171. [PMID: 33676713 DOI: 10.1016/j.talanta.2021.122171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Effective protein adsorption by solid matrices from complex biological samples has attracted attention for broad application in biomedical field. Immobilization of calixarenes to solid supports is an essential process for their application in protein separation and purification. Silica is the most widely used support material in calixarene immobilization. With high concentration of polymer microspheres as templates, the large pore mesoporous silica microspheres with controllable, uniform size and structure were successfully synthesized and the resulting large pore mesoporous silica microspheres were modified with water-soluble tetrasulfonate calix[4]arene of unique hollow cavity-shaped structure. The tetrasulfonate calix[4]arene modified large pore mesoporous silica microspheres (SCLX4@LPMS) were characterized by diverse analytical techniques and their protein adsorption performance were also investigated. The obtained SCLX4@LPMS gave rise to an adsorption efficiency of >90% for cytochrome c and lysozyme within a wide pH range of 3.0-10.0 and possessed remarkably high adsorption capacity of cytochrome c (363.64 mg g-1) and lysozyme (166.11 mg g-1). The retained cytochrome c and lysozyme can be readily eluted by using phosphate buffer solution containing NaCl as a stripping reagent with the recoveries of 81% and 86% after 5 times enrichment, respectively. The SCLX4@LPMS microspheres have been applied for the selective adsorption of proteins in real samples and had the application potential in protein adsorption, drug delivery, biosensors, and other biomedical fields.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Ye Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Feng Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Sen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
11
|
Kato K, Lee S, Nagata F. Preparation of Protein-Peptide-Calcium Phosphate Composites for Controlled Protein Release. Molecules 2020; 25:E2312. [PMID: 32423135 PMCID: PMC7287863 DOI: 10.3390/molecules25102312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/25/2022] Open
Abstract
Protein-peptide-calcium phosphate composites were developed for achieving sustainable and controlled protein release. Bovine serum albumin (BSA) as a model acidic protein was efficiently encapsulated with basic polypeptides such as polylysine and polyarginine during the precipitation of calcium phosphate (CaP). The prepared composites were fully characterized in terms of their morphologies, crystallinities, and the porosity of their structures, and from these analyses, it was observed that there are no significant differences between the composites. Scanning transmission electron microscopy and energy dispersive X-ray spectroscopy analysis indicated a homogeneous distribution of nitrogen and sulfur, confirming the uniform distribution of BSA and polypeptide in the CaP composite. In vitro release studies demonstrated that the composite prepared with the peptides α-polylysine and polyarginine were suitable for the gradual release of the protein BSA, while those containing ε-polylysine and no peptide were unsuitable for protein release. Additionally, these composites showed high hemocompatibility for mouse red blood cells, and the osteoblast-like cell proliferation and spread in media with the composites prepared using BSA and α-polylysine showed similar tendencies to medium with no composite. From these results, protein-peptide-CaP composites are expected to be useful as highly biocompatible protein delivery agents.
Collapse
Affiliation(s)
- Katsuya Kato
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560, Japan; (S.L.); (F.N.)
| | | | | |
Collapse
|
12
|
Designer Biopolymers: Self-Assembling Proteins and Nucleic Acids. Int J Mol Sci 2020; 21:ijms21093276. [PMID: 32384600 PMCID: PMC7247343 DOI: 10.3390/ijms21093276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 11/25/2022] Open
|
13
|
da Silva Brum I, de Carvalho JJ, da Silva Pires JL, de Carvalho MAA, Dos Santos LBF, Elias CN. Nanosized hydroxyapatite and β-tricalcium phosphate composite: Physico-chemical, cytotoxicity, morphological properties and in vivo trial. Sci Rep 2019; 9:19602. [PMID: 31863078 PMCID: PMC6925105 DOI: 10.1038/s41598-019-56124-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/08/2019] [Indexed: 02/06/2023] Open
Abstract
The objective of this work was to characterize the properties of a synthetic biomaterial composite with nanoparticles size (Blue Bone). This biomaterial is a composite recommended for dental and orthopedic grafting surgery, for guided bone regeneration, including maxillary sinus lift, fresh alveolus filling, and treatment of furcation lesions. The nano biomaterials surface area is from 30% to 50% higher than those with micro dimensions. Another advantage is that the alloplastic biomaterial has homogeneous properties due to the complete manufacturing control. The analyzed biomaterial composite was characterized by XRD, cytochemistry, scanning electron microscopy, porosimetry and in vivo experiments (animals). The results showed that the analyzed biomaterial composite has 78.76% hydroxyapatite [Ca5(PO4)3(OH)] with monoclinic structure, 21.03% β-tricalcium phosphate [β -Ca3(PO4)2] with trigonal structure and 0.19% of CaO with cubic structure, nanoparticles with homogeneous shapes, and nanoporosity. The in vivo experiments showed that the composite has null cytotoxicity, and the site of insertion biomaterials has a high level of vascularization and bone formation. The conclusion is that the synthetic biomaterial with Blue Bone designation presents characteristics suitable for use in grafting surgery applications.
Collapse
|