1
|
Valmonte-Cortes GR, Higgins CM, MacDiarmid RM. Arabidopsis Calcium Dependent Protein Kinase 3, and Its Orthologues OsCPK1, OsCPK15, and AcCPK16, Are Involved in Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2025; 14:294. [PMID: 39861648 PMCID: PMC11768100 DOI: 10.3390/plants14020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. Arabidopsis thaliana CPK3 (AtCPK3) is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, AtCPK3 and its orthologues in relatively distant plant species such as rice (Oryza sativa, monocot) and kiwifruit (Actinidia chinensis, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections. Two orthologues were studied in O. sativa, namely OsCPK1 and OsCPK15, while one orthologue-AcCPK16-was identified in A. chinensis. Reverse-transcriptase quantitative PCR (RT-qPCR) analysis revealed that OsCPK1 and AcCPK16 exhibit similar responses to stressors to AtCPK3. OsCPK15 responded differently, particularly in bacterial and fungal infections. An increase in expression was consistently observed among AtCPK3 and its orthologues in response to virus infection. Overexpression mutants in both Arabidopsis and kiwifruit showed slight tolerance to drought, while knockout mutants were slightly more susceptible or had little difference with wild-type plants. Overexpression mutants in Arabidopsis showed slight tolerance to virus infection. These findings highlight the importance of AtCPK3 and its orthologues in drought and pathogen responses and suggest such function must be conserved in its orthologues in a wide range of plants.
Collapse
Affiliation(s)
| | - Colleen M. Higgins
- School of Science, AUT City Campus, Auckland University of Technology, Auckland 1142, New Zealand;
| | - Robin M. MacDiarmid
- The New Zealand Institute for Plant & Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand;
- School of Biological Sciences, The University of Auckland, Thomas Building, 3a Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Alharbi K, Hafez EM, Elhawat N, Omara AED, Rashwan E, Mohamed HH, Alshaal T, Gadow SI. Revitalizing Soybean Plants in Saline, Cd-Polluted Soil Using Si-NPs, Biochar, and PGPR. PLANTS (BASEL, SWITZERLAND) 2024; 13:3550. [PMID: 39771248 PMCID: PMC11680020 DOI: 10.3390/plants13243550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Excessive irrigation of saline-alkaline soils with Cd-contaminated wastewater has resulted in deterioration of both soil and plant quality. To an investigate this, a study was conducted to explore the effects of biochar (applied at 10 t ha-1), PGPRs (Bradyrhizobium japonicum (USDA 110) + Trichoderma harzianum at 1:1 ratio), and Si-NPs (25 mg L-1) on soybean plants grown in saline-alkali soil irrigated with wastewater. The results showed that the trio-combination of biochar with PGPRs, (as soil amendments) and Si-NPs (as foliar spraying), was more effective than individual or coupled applications in reducing Cd bioavailability in the soil, minimizing its absorption, translocation and bioconcentration in soybean tissues. The trio-combination reduced Cd bioavailability in the soil by 39.1% and Cd accumulation in plant roots, shoots, and seeds by 61.0%, 69.3%, and 61.1%, respectively. Physiological improvements in soybean plants were also observed, including 197.8% increase in root growth, 209.3% increase in chlorophyll content, and 297.4% increase in carotenoid levels. The trio-combination significantly improved soil physicochemical characteristics, enhanced soil microbial indicators and boosted soil enzymes activity, which in turn facilitated nutrient uptake and increased antioxidant enzymes activity. These positive outcomes enhanced photosynthesis, improved productivity and increased seed nutritional value. Overall, the trio-combination of biochar with PGPRs and Si-NPs are considered a reliable approach not only for revitalizing soybean growth but also for immobilizing Cd and improving soil health under wastewater irrigation.
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Nevien Elhawat
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, 4032 Debrecen, Hungary
- Faculty of Agriculture (for Girls), Al-Azhar University, Tanta 31732, Egypt
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt;
| | - Emadelden Rashwan
- Agronomy Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| | - Hossam H. Mohamed
- Agronomy Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| | - Tarek Alshaal
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, 4032 Debrecen, Hungary
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Samir I. Gadow
- Department of Agricultural Microbiology, Agriculture and Biology Research Institute, National Research Centre, 33 EI Buhouth St., Dokki, Cairo 12622, Egypt;
| |
Collapse
|
3
|
Yang X, Hu Q, Zhao Y, Chen Y, Li C, He J, Wang ZY. Identification of GmPT proteins and investigation of their expressions in response to abiotic stress in soybean. PLANTA 2024; 259:76. [PMID: 38418674 DOI: 10.1007/s00425-024-04348-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
MAIN CONCLUSION Investigation the expression patterns of GmPT genes in response to various abiotic stresses and overexpression of GmPT11 in soybean hairy roots and Arabidopsis exhibited hypersensitivity to salt stress. Soybean is considered to be one of the significant oil crops globally, as it offers a diverse range of essential nutrients that contribute to human health. Salt stress seriously affects the yield of soybean through negative impacts on the growth, nodulation, reproduction, and other agronomy traits. The phosphate transporters 1(PHT1) subfamily, which is a part of the PHTs family in plants, is primarily found in the cell membrane and responsible for the uptake and transport of phosphorus. However, the role of GmPT (GmPT1-GmPT14) genes in response to salt stress has not been comprehensively studied. Here, we conducted a systematic analysis to ascertain the distribution and genomic duplications of GmPT genes, as well as their expression patterns in response to various abiotic stresses. Promoter analysis of GmPT genes revealed that six stress-related cis-elements were enriched in these genes. The overexpression of GmPT11 in soybean hairy roots and Arabidopsis exhibited hypersensitivity to salt stress, while no significant change was observed under low phosphate treatment, suggesting a crucial role in the response to salt stress. These findings provide novel insights into enhancing plant tolerance to salt stress.
Collapse
Affiliation(s)
- Xiaolan Yang
- College of Agriculture, Guizhou University, Guizhou, 550025, China
| | - Qing Hu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yunfeng Zhao
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yanhang Chen
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 524300, China
| | - Cong Li
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China.
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 524300, China.
| | - Jin He
- College of Agriculture, Guizhou University, Guizhou, 550025, China.
| | - Zhen-Yu Wang
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 524300, China
| |
Collapse
|
4
|
Li A, Lv D, Zhang Y, Zhang D, Zong Y, Shi X, Li P, Hao X. Elevated CO 2 concentration enhances drought resistance of soybean by regulating cell structure, cuticular wax synthesis, photosynthesis, and oxidative stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108266. [PMID: 38103338 DOI: 10.1016/j.plaphy.2023.108266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/04/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The atmospheric [CO2] and the frequency and intensity of extreme weather events such as drought are increased, leading to uncertainty to soybean production. Elevated [CO2] (eCO2) partially mitigates the adverse effects of drought stress on crop growth and photosynthetic performance, but the mitigative mechanism is not well understood. In this study, soybean seedlings under drought stress simulated by PEG-6000 were grown in climate chambers with different [CO2] (400 μmol mol-1 and 700 μmol mol-1). The changes in anatomical structure, wax content, photosynthesis, and antioxidant enzyme were investigated by the analysis of physiology and transcriptome sequencing (RNA-seq). The results showed that eCO2 increased the thickness of mesophyll cells and decreased the thickness of epidermal cells accompanied by reduced stomatal conductance, thus reducing water loss in soybean grown under drought stress. Meanwhile, eCO2 up-regulated genes related to wax anabolism, thus producing more epidermal wax. Under drought stress, eCO2 increased net photosynthetic rate (PN), ribulose-1,5-bisphosphate carboxylase/oxygenase activity, and alerted the gene expressions in photosynthesis. The increased sucrose synthesis and decreased sucrose decomposition contributed to the progressive increase in the soluble saccharide contents under drought stress with or without eCO2. In addition, eCO2 increased the expressions of genes associated with peroxidase (POD) and proline (Pro), thus enhancing POD activity and Pro content and improving the drought resistance in soybean. Taken together, these findings deepen our understanding of the effects of eCO2 on alleviating drought stress in soybean and provide potential target genes for the genetic improvement of drought tolerance in soybean.
Collapse
Affiliation(s)
- Ali Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030800, Shanxi, China; Hybrid Rape Research Center of Shaanxi Province, Yangling, 712100, China
| | - Danni Lv
- College of Agriculture, Shanxi Agricultural University, Taigu, 030800, Shanxi, China
| | - Yan Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030800, Shanxi, China
| | - Dongsheng Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030800, Shanxi, China
| | - Yuzheng Zong
- College of Agriculture, Shanxi Agricultural University, Taigu, 030800, Shanxi, China
| | - Xinrui Shi
- College of Agriculture, Shanxi Agricultural University, Taigu, 030800, Shanxi, China
| | - Ping Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030800, Shanxi, China.
| | - Xingyu Hao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030800, Shanxi, China.
| |
Collapse
|
5
|
Long Y, Xu W, Liu C, Dong M, Liu W, Pei X, Li L, Chen R, Jin W. Genetically modified soybean lines exhibit less transcriptomic variation compared to natural varieties. GM CROPS & FOOD 2023; 14:1-11. [PMID: 37454359 DOI: 10.1080/21645698.2023.2233122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Genetically modified (GM) soybeans provide a huge amount of food for human consumption and animal feed. However, the possibility of unexpected effects of transgenesis has increased food safety concerns. High-throughput sequencing profiling provides a potential approach to directly evaluate unintended effects caused by foreign genes. In this study, we performed transcriptomic analyses to evaluate differentially expressed genes (DEGs) in individual soybean tissues, including cotyledon (C), germ (G), hypocotyl (H), and radicle (R), instead of using the whole seed, from four GM and three non-GM soybean lines. A total of 3,351 DEGs were identified among the three non-GM soybean lines. When the GM lines were compared with their non-GM parents, 1,836 to 4,551 DEGs were identified. Furthermore, Gene Ontology (GO) analysis of the DEGs showed more abundant categories of GO items (199) among non-GM lines than between GM lines and the non-GM natural varieties (166). Results of Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that most KEGG pathways were the same for the two types of comparisons. The study successfully employed RNA sequencing to assess the differences in gene expression among four tissues of seven soybean varieties, and the results suggest that transgenes do not induce massive transcriptomic alterations in transgenic soybeans compared with those that exist among natural varieties. This work offers empirical evidence to investigate the genomic-level disparities induced by genetic modification in soybeans, specifically focusing on seed tissues.
Collapse
Affiliation(s)
- Yan Long
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China
| | - Caiyue Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mei Dong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weixiao Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinwu Pei
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Liang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wujun Jin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Fan S, Yang S, Li G, Wan S. Genome-Wide Identification and Characterization of CDPK Gene Family in Cultivated Peanut ( Arachis hypogaea L.) Reveal Their Potential Roles in Response to Ca Deficiency. Cells 2023; 12:2676. [PMID: 38067104 PMCID: PMC10705679 DOI: 10.3390/cells12232676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
This study identified 45 calcium-dependent protein kinase (CDPK) genes in cultivated peanut (Arachis hypogaea L.), which are integral in plant growth, development, and stress responses. These genes, classified into four subgroups based on phylogenetic relationships, are unevenly distributed across all twenty peanut chromosomes. The analysis of the genetic structure of AhCDPKs revealed significant similarity within subgroups, with their expansion primarily driven by whole-genome duplications. The upstream promoter sequences of AhCDPK genes contained 46 cis-acting regulatory elements, associated with various plant responses. Additionally, 13 microRNAs were identified that target 21 AhCDPK genes, suggesting potential post-transcriptional regulation. AhCDPK proteins interacted with respiratory burst oxidase homologs, suggesting their involvement in redox signaling. Gene ontology and KEGG enrichment analyses affirmed AhCDPK genes' roles in calcium ion binding, protein kinase activity, and environmental adaptation. RNA-seq data revealed diverse expression patterns under different stress conditions. Importantly, 26 AhCDPK genes were significantly induced when exposed to Ca deficiency during the pod stage. During the seedling stage, four AhCDPKs (AhCDPK2/-25/-28/-45) in roots peaked after three hours, suggesting early signaling roles in pod Ca nutrition. These findings provide insights into the roles of CDPK genes in plant development and stress responses, offering potential candidates for predicting calcium levels in peanut seeds.
Collapse
Affiliation(s)
| | | | - Guowei Li
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan 250100, China; (S.F.); (S.Y.)
| | - Shubo Wan
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan 250100, China; (S.F.); (S.Y.)
| |
Collapse
|
7
|
Leung HS, Chan LY, Law CH, Li MW, Lam HM. Twenty years of mining salt tolerance genes in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:45. [PMID: 37313223 PMCID: PMC10248715 DOI: 10.1007/s11032-023-01383-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/12/2023] [Indexed: 06/15/2023]
Abstract
Current combined challenges of rising food demand, climate change and farmland degradation exert enormous pressure on agricultural production. Worldwide soil salinization, in particular, necessitates the development of salt-tolerant crops. Soybean, being a globally important produce, has its genetic resources increasingly examined to facilitate crop improvement based on functional genomics. In response to the multifaceted physiological challenge that salt stress imposes, soybean has evolved an array of defences against salinity. These include maintaining cell homeostasis by ion transportation, osmoregulation, and restoring oxidative balance. Other adaptations include cell wall alterations, transcriptomic reprogramming, and efficient signal transduction for detecting and responding to salt stress. Here, we reviewed functionally verified genes that underly different salt tolerance mechanisms employed by soybean in the past two decades, and discussed the strategy in selecting salt tolerance genes for crop improvement. Future studies could adopt an integrated multi-omic approach in characterizing soybean salt tolerance adaptations and put our existing knowledge into practice via omic-assisted breeding and gene editing. This review serves as a guide and inspiration for crop developers in enhancing soybean tolerance against abiotic stresses, thereby fulfilling the role of science in solving real-life problems. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01383-3.
Collapse
Affiliation(s)
- Hoi-Sze Leung
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Long-Yiu Chan
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Cheuk-Hin Law
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Man-Wah Li
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000 People’s Republic of China
| |
Collapse
|
8
|
Xiong E, Qu X, Li J, Liu H, Ma H, Zhang D, Chu S, Jiao Y. The soybean ubiquitin-proteasome system: Current knowledge and future perspective. THE PLANT GENOME 2023; 16:e20281. [PMID: 36345561 DOI: 10.1002/tpg2.20281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Increasing soybean [Glycine max (L.) Merr.] yield has become a worldwide scientific problem in the world. Many studies have shown that ubiquitination plays a key role in stress response and yield formation. In the UniProtKB database, 2,429 ubiquitin-related proteins were predicted in soybean, however, <20 were studied. One key way to address this lack of progress in increasing soybean yield will be a deeper understanding of the ubiquitin-proteasome system (UPS) in soybean. In this review, we summarized the current knowledge about soybean ubiquitin-related proteins and discussed the method of combining phenotype, mutant library, transgenic system, genomics, and proteomics approaches to facilitate the exploration of the soybean UPS. We also proposed the strategy of applying the UPS in soybean improvement based on related studies in model plants. Our review will be helpful for soybean scientists to learn current research progress of the soybean UPS and further lay a theoretical reference for the molecular improvement of soybean in future research by use of this knowledge.
Collapse
Affiliation(s)
- Erhui Xiong
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Xuelian Qu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Junfeng Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Hongli Liu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Hui Ma
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Yongqing Jiao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| |
Collapse
|
9
|
Hu CH, Li BB, Chen P, Shen HY, Xi WG, Zhang Y, Yue ZH, Wang HX, Ma KS, Li LL, Chen KM. Identification of CDPKs involved in TaNOX7 mediated ROS production in wheat. FRONTIERS IN PLANT SCIENCE 2023; 13:1108622. [PMID: 36756230 PMCID: PMC9900008 DOI: 10.3389/fpls.2022.1108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
As the critical sensors and decoders of calcium signal, calcium-dependent protein kinase (CDPK) has become the focus of current research, especially in plants. However, few resources are available on the properties and functions of CDPK gene family in Triticum aestivum (TaCDPK). Here, a total of 79 CDPK genes were identified in the wheat genome. These TaCDPKs could be classified into four subgroups on phylogenesis, while they may be classified into two subgroups based on their tissue and organ-spatiotemporal expression profiles or three subgroups according to their induced expression patterns. The analysis on the signal network relationships and interactions of TaCDPKs and NADPH (reduced nicotinamide adenine dinucleotide phosphate oxidases, NOXs), the key producers for reactive oxygen species (ROS), showed that there are complicated cross-talks between these two family proteins. Further experiments demonstrate that, two members of TaCDPKs, TaCDPK2/4, can interact with TaNOX7, an important member of wheat NOXs, and enhanced the TaNOX7-mediated ROS production. All the results suggest that TaCDPKs are highly expressed in wheat with distinct tissue or organ-specificity and stress-inducible diversity, and play vital roles in plant development and response to biotic and abiotic stresses by directly interacting with TaNOXs for ROS production.
Collapse
Affiliation(s)
- Chun-Hong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Peng Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Hai-Yan Shen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Wei-Gang Xi
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yi Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Zong-Hao Yue
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Hong-Xing Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Ke-Shi Ma
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Li-Li Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Chen S, Tian Z, Guo Y. Characterization of hexokinase gene family members in Glycine max and functional analysis of GmHXK2 under salt stress. Front Genet 2023; 14:1135290. [PMID: 36911414 PMCID: PMC9996050 DOI: 10.3389/fgene.2023.1135290] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Hexokinase (HXK) is a bifunctional enzyme involved in carbohydrate metabolism and sugar signal sensing. HXK gene family has been extensively discussed in many species, while the detailed investigations of the family in Glycine max have yet to be reported. In this study, 17 GmHXK genes (GmHXKs) were identified in the G. max genome and the features of their encoded proteins, conserved domains, gene structures, and cis-acting elements were systematically characterized. The GmHXK2 gene isolated from G. max was firstly constructed into plant expression vector pMDC83 and then transformed with Agrobacterium tumefaciens into Arabidopsis thaliana. The expression of integrated protein was analyzed by Western Blotting. Subcellular localization analysis showed that the GmHXK2 was located on both vacuolar and cell membrane. Under salt stress, seedlings growth was significantly improved in Arabidopsis overexpressing GmHXK2 gene. Furthermore, physiological indicators and expression of salt stress responsive genes involved in K+ and Na+ homeostasis were significantly lower in GmHXK2-silenced soybean seedlings obtained by virus-induced gene silencing (VIGS) technique under salt stress compared with the control plants. Our study showed that GmHXK2 gene played an important role in resisting salt stress, which suggested potential value for the genetic improvement of abiotic resistant crops.
Collapse
Affiliation(s)
- Shuai Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zengyuan Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuqi Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Feng C, Gao H, Zhou Y, Jing Y, Li S, Yan Z, Xu K, Zhou F, Zhang W, Yang X, Hussain MA, Li H. Unfolding molecular switches for salt stress resilience in soybean: recent advances and prospects for salt-tolerant smart plant production. FRONTIERS IN PLANT SCIENCE 2023; 14:1162014. [PMID: 37152141 PMCID: PMC10154572 DOI: 10.3389/fpls.2023.1162014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
The increasing sodium salts (NaCl, NaHCO3, NaSO4 etc.) in agricultural soil is a serious global concern for sustainable agricultural production and food security. Soybean is an important food crop, and their cultivation is severely challenged by high salt concentration in soils. Classical transgenic and innovative breeding technologies are immediately needed to engineer salt tolerant soybean plants. Additionally, unfolding the molecular switches and the key components of the soybean salt tolerance network are crucial for soybean salt tolerance improvement. Here we review our understandings of the core salt stress response mechanism in soybean. Recent findings described that salt stress sensing, signalling, ionic homeostasis (Na+/K+) and osmotic stress adjustment might be important in regulating the soybean salinity stress response. We also evaluated the importance of antiporters and transporters such as Arabidopsis K+ Transporter 1 (AKT1) potassium channel and the impact of epigenetic modification on soybean salt tolerance. We also review key phytohormones, and osmo-protectants and their role in salt tolerance in soybean. In addition, we discuss the progress of omics technologies for identifying salt stress responsive molecular switches and their targeted engineering for salt tolerance in soybean. This review summarizes recent progress in soybean salt stress functional genomics and way forward for molecular breeding for developing salt-tolerant soybean plant.
Collapse
Affiliation(s)
- Chen Feng
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Hongtao Gao
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yonggang Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yan Jing
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Senquan Li
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zhao Yan
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Keheng Xu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Fangxue Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Wenping Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Xinquan Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Muhammad Azhar Hussain
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Muhammad Azhar Hussain, ; Haiyan Li,
| | - Haiyan Li
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Muhammad Azhar Hussain, ; Haiyan Li,
| |
Collapse
|
12
|
Calcium decoders and their targets: The holy alliance that regulate cellular responses in stress signaling. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:371-439. [PMID: 36858741 DOI: 10.1016/bs.apcsb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Calcium (Ca2+) signaling is versatile communication network in the cell. Stimuli perceived by cells are transposed through Ca2+-signature, and are decoded by plethora of Ca2+ sensors present in the cell. Calmodulin, calmodulin-like proteins, Ca2+-dependent protein kinases and calcineurin B-like proteins are major classes of proteins that decode the Ca2+ signature and serve in the propagation of signals to different parts of cells by targeting downstream proteins. These decoders and their targets work together to elicit responses against diverse stress stimuli. Over a period of time, significant attempts have been made to characterize as well as summarize elements of this signaling machinery. We begin with a structural overview and amalgamate the newly identified Ca2+ sensor protein in plants. Their ability to bind Ca2+, undergo conformational changes, and how it facilitates binding to a wide variety of targets is further embedded. Subsequently, we summarize the recent progress made on the functional characterization of Ca2+ sensing machinery and in particular their target proteins in stress signaling. We have focused on the physiological role of Ca2+, the Ca2+ sensing machinery, and the mode of regulation on their target proteins during plant stress adaptation. Additionally, we also discuss the role of these decoders and their mode of regulation on the target proteins during abiotic, hormone signaling and biotic stress responses in plants. Finally, here, we have enumerated the limitations and challenges in the Ca2+ signaling. This article will greatly enable in understanding the current picture of plant response and adaptation during diverse stimuli through the lens of Ca2+ signaling.
Collapse
|
13
|
Liu H, Wang Q, Wang J, Liu Y, Renzeng W, Zhao G, Niu K. Key factors for differential drought tolerance in two contrasting wild materials of Artemisia wellbyi identified using comparative transcriptomics. BMC PLANT BIOLOGY 2022; 22:445. [PMID: 36114467 PMCID: PMC9482295 DOI: 10.1186/s12870-022-03830-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Drought is a significant condition that restricts vegetation growth on the Tibetan Plateau. Artemisia wellbyi is a unique semi-shrub-like herb in the family Compositae, which distributed in northern and northwest of Tibetan Plateau. It is a dominant species in the community that can well adapt to virous environment stress, such as drought and low temperature. Therefore, A. wellbyi. has a potential ecological value for soil and water conservation of drought areas. Understanding the molecular mechanisms of A. wellbyi. that defense drought stress can acquire the key genes for drought resistance breeding of A. wellbyi. and provide a theoretical basis for vegetation restoration of desertification area. However, they remain unclear. Thus, our study compared the transcriptomic characteristics of drought-tolerant "11" and drought-sensitive "6" material of A. wellbyi under drought stress. RESULTS A total of 4875 upregulated and 4381 downregulated differentially expressed genes (DEGs) were induced by drought in the tolerant material; however, only 1931 upregulated and 4174 downregulated DEGs were induced by drought in the sensitive material. The photosynthesis and transcriptional regulation differed significantly with respect to the DEGs number and expression level. We found that CDPKs (calmodulin-like domain protein kinases), SOS3 (salt overly sensitive3), MAPKs (mitogen-activated protein kinase cascades), RLKs (receptor like kinase), and LRR-RLKs (repeat leucine-rich receptor kinase) were firstly involved in response to drought stress in drought tolerant A. wellbyi. Positive regulation of genes associated with the metabolism of ABA (abscisic acid), ET (ethylene), and IAA (indole acetic acid) could play a crucial role in the interaction with other transcriptional regulatory factors, such as MYBs (v-myb avian myeloblastosis viral oncogene homolog), AP2/EREBPs (APETALA2/ethylene-responsive element binding protein family), WRKYs, and bHLHs (basic helix-loop-helix family members) and receptor kinases, and regulate downstream genes for defense against drought stress. In addition, HSP70 (heat shock protein70) and MYB73 were considered as the hub genes because of their strong association with other DEGs. CONCLUSIONS Positive transcriptional regulation and negative regulation of photosynthesis could be associated with better growth performance under drought stress in the drought-tolerant material. In addition, the degradation of sucrose and starch in the tolerant A. wellbyi to alleviate osmotic stress and balance excess ROS. These results highlight the candidate genes that are involved in enhancing the performance of drought-tolerant A. wellbyi and provide a theoretical basis for improving the performance of drought-resistant A. wellbyi.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Ministry of Education, Gansu Agricultural University, Lanzhou, 730070 China
| | - Qiyu Wang
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Ministry of Education, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jinglong Wang
- Tibet Grassland Science Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000 China
| | - Yunfei Liu
- Tibet Grassland Science Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000 China
| | - Wangdui Renzeng
- Tibet Grassland Science Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000 China
| | - Guiqin Zhao
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Ministry of Education, Gansu Agricultural University, Lanzhou, 730070 China
| | - Kuiju Niu
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Ministry of Education, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
14
|
Hu J, Zhuang Y, Li X, Li X, Sun C, Ding Z, Xu R, Zhang D. Time-series transcriptome comparison reveals the gene regulation network under salt stress in soybean (Glycine max) roots. BMC PLANT BIOLOGY 2022; 22:157. [PMID: 35361109 PMCID: PMC8969339 DOI: 10.1186/s12870-022-03541-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/14/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Soil salinity is a primary factor limiting soybean (Glycine max) productivity. Breeding soybean for tolerance to high salt conditions is therefore critical for increasing yield. To explore the molecular mechanism of soybean responses to salt stress, we performed a comparative transcriptome time-series analysis of root samples collected from two soybean cultivars with contrasting salt sensitivity. RESULTS The salt-tolerant cultivar 'Qi Huang No.34' (QH34) showed more differential expression of genes than the salt-sensitive cultivar 'Dong Nong No.50' (DN50). We identified 17,477 genes responsive to salt stress, of which 6644 exhibited distinct expression differences between the two soybean cultivars. We constructed the corresponding co-expression network and performed Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. The results suggested that phytohormone signaling, oxidoreduction, phenylpropanoid biosynthesis, the mitogen-activated protein kinase pathway and ribosome metabolism may play crucial roles in response to salt stress. CONCLUSIONS Our comparative analysis offers a comprehensive understanding of the genes involved in responding to salt stress and maintaining cell homeostasis in soybean. The regulatory gene networks constructed here also provide valuable molecular resources for future functional studies and breeding of soybean with improved tolerance to salinity.
Collapse
Affiliation(s)
- Junmei Hu
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Yongbin Zhuang
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Xianchong Li
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Xiaoming Li
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Chanchan Sun
- College of Life Sciences, Yantai University, Yan’tai, 264005 Shandong China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qing’dao, 266237 Shandong China
| | - Ran Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan, 250131 Shandong China
| | - Dajian Zhang
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271018 Shandong China
| |
Collapse
|
15
|
Liu YL, Zheng L, Jin LG, Liu YX, Kong YN, Wang YX, Yu TF, Chen J, Zhou YB, Chen M, Wang FZ, Ma YZ, Xu ZS, Lan JH. Genome-Wide Analysis of the Soybean TIFY Family and Identification of GmTIFY10e and GmTIFY10g Response to Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:845314. [PMID: 35401633 PMCID: PMC8984480 DOI: 10.3389/fpls.2022.845314] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/23/2022] [Indexed: 05/24/2023]
Abstract
TIFY proteins play crucial roles in plant abiotic and biotic stress responses. Our transcriptome data revealed several TIFY family genes with significantly upregulated expression under drought, salt, and ABA treatments. However, the functions of the GmTIFY family genes are still unknown in abiotic stresses. We identified 38 GmTIFY genes and found that TIFY10 homologous genes have the most duplication events, higher selection pressure, and more obvious response to abiotic stresses compared with other homologous genes. Expression pattern analysis showed that GmTIFY10e and GmTIFY10g genes were significantly induced by salt stress. Under salt stress, GmTIFY10e and GmTIFY10g transgenic Arabidopsis plants showed higher root lengths and fresh weights and had significantly better growth than the wild type (WT). In addition, overexpression of GmTIFY10e and GmTIFY10g genes in soybean improved salt tolerance by increasing the PRO, POD, and CAT contents and decreasing the MDA content; on the contrary, RNA interference plants showed sensitivity to salt stress. Overexpression of GmTIFY10e and GmTIFY10g in Arabidopsis and soybean could improve the salt tolerance of plants, while the RNAi of GmTIFY10e and GmTIFY10g significantly increased sensitivity to salt stress in soybean. Further analysis demonstrated that GmTIFY10e and GmTIFY10g genes changed the expression levels of genes related to the ABA signal pathway, including GmSnRK2, GmPP2C, GmMYC2, GmCAT1, and GmPOD. This study provides a basis for comprehensive analysis of the role of soybean TIFY genes in stress response in the future.
Collapse
Affiliation(s)
- Ya-Li Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Lei Zheng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Long-Guo Jin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yuan-Xia Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Ya-Nan Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yi-Xuan Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Feng-Zhi Wang
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement/Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jin-Hao Lan
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
16
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
17
|
Exploitation of Drought Tolerance-Related Genes for Crop Improvement. Int J Mol Sci 2021; 22:ijms221910265. [PMID: 34638606 PMCID: PMC8508643 DOI: 10.3390/ijms221910265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/03/2022] Open
Abstract
Drought has become a major threat to food security, because it affects crop growth and development. Drought tolerance is an important quantitative trait, which is regulated by hundreds of genes in crop plants. In recent decades, scientists have made considerable progress to uncover the genetic and molecular mechanisms of drought tolerance, especially in model plants. This review summarizes the evaluation criteria for drought tolerance, methods for gene mining, characterization of genes related to drought tolerance, and explores the approaches to enhance crop drought tolerance. Collectively, this review illustrates the application prospect of these genes in improving the drought tolerance breeding of crop plants.
Collapse
|
18
|
Zhou H, Liang X, Feng N, Zheng D, Qi D. Effect of uniconazole to soybean seed priming treatment under drought stress at VC stage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112619. [PMID: 34403945 DOI: 10.1016/j.ecoenv.2021.112619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Studying the mechanism of drought stress in soybean root at vegetative cotyledon (VC) stage by soaking seeds with uniconazole revealed new insights into soybean stress physiology. Therefore, a completely random pot experiments with different time gradients for water cut-off (24, 48, 72, 96 and 120 h, respectively) were carried out with uniconazole (0.4 mgL-1) with respect to morphological, microscopic, ultramicroscopic, physiological, and molecular studies on varieties Hefeng55 (H50, drought tolerant variety) and Kenfeng16 (K16, drought susceptible variety). Results revealed that uniconazole effectively alleviated the inhibition on root growth caused by drought stress, increased the number of root tips, significantly reduced lignification of vessels, alleviated the damage of mitochondria and nucleus caused by drought stress, further strengthened osmotic adjustment system and antioxidant system, especially when the soil moisture content was less than 14%, broke expression restriction of IAA due to drought stress, and inhibited GA3 generation; finally, we found that high-intensity drought stress significantly increased the expression levels of GmNAC003, GmNAC004, GmNAC015, GmNAC020, GmHK07, GmRR01, GmRR02 and GmRR16 genes relating to drought tolerance, while uniconazole had a significant inhibitory effect on GmNAC003, GmNAC004, GmNAC015, GmNAC020, GmRR01, GmRR02 and GmRR16 genes. Our results provided a reference for the mechanism of drought resistance in legume and the effect of uniconazole on alleviating drought stress.
Collapse
Affiliation(s)
- Hang Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524000, China; Shenzhen Reseach Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Xiaoyan Liang
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524000, China; Shenzhen Reseach Institute of Guangdong Ocean University, Shenzhen 518108, China.
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524000, China; Shenzhen Reseach Institute of Guangdong Ocean University, Shenzhen 518108, China.
| | - Deqiang Qi
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| |
Collapse
|
19
|
Leng ZX, Liu Y, Chen ZY, Guo J, Chen J, Zhou YB, Chen M, Ma YZ, Xu ZS, Cui XY. Genome-Wide Analysis of the DUF4228 Family in Soybean and Functional Identification of GmDUF4228 -70 in Response to Drought and Salt Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:628299. [PMID: 34079564 PMCID: PMC8166234 DOI: 10.3389/fpls.2021.628299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/26/2021] [Indexed: 05/24/2023]
Abstract
Domain of unknown function 4228 (DUF4228) proteins are a class of proteins widely found in plants, playing an important role in response to abiotic stresses. However, studies on the DUF4228 family in soybean (Glycine max L.) are sparse. In this study, we identified a total of 81 DUF4228 genes in soybean genome, named systematically based on their chromosome distributions. Results showed that these genes were unevenly distributed on the 20 chromosomes of soybean. The predicted soybean DUF4228 proteins were identified in three groups (Groups I-III) based on a maximum likelihood phylogenetic tree. Genetic structure analysis showed that most of the GmDUF4228 genes contained no introns. Expression profiling showed that GmDUF4228 genes were widely expressed in different organs and tissues in soybean. RNA-seq data were used to characterize the expression profiles of GmDUF4228 genes under the treatments of drought and salt stresses, with nine genes showing significant up-regulation under both drought and salt stress further functionally verified by promoter (cis-acting elements) analysis and quantitative real-time PCR (qRT-PCR). Due to its upregulation under drought and salt stresses based on both RNA-seq and qRT-PCR analyses, GmDUF4228-70 was selected for further functional analysis in transgenic plants. Under drought stress, the degree of leaf curling and wilting of the GmDUF4228-70-overexpressing (GmDUF4228-70-OE) line was lower than that of the empty vector (EV) line. GmDUF4228-70-OE lines also showed increased proline content, relative water content (RWC), and chlorophyll content, and decreased contents of malondialdehyde (MDA), H2O2, and O2-. Under salt stress, the changes in phenotypic and physiological indicators of transgenic plants were the same as those under drought stress. In addition, overexpression of the GmDUF4228-70 gene promoted the expression of marker genes under both drought and salt stresses. Taken together, the results indicated that GmDUF4228 genes play important roles in response to abiotic stresses in soybean.
Collapse
Affiliation(s)
- Zhi-Xin Leng
- College of Life Sciences/College of Agronomy, Jilin Agricultural University, Changchun, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ying Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhan-Yu Chen
- College of Life Sciences/College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jun Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yong-Bin Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ming Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - You-Zhi Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhao-Shi Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xi-Yan Cui
- College of Life Sciences/College of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
20
|
Li B, Feng Y, Zong Y, Zhang D, Hao X, Li P. Elevated CO 2-induced changes in photosynthesis, antioxidant enzymes and signal transduction enzyme of soybean under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:105-114. [PMID: 32535322 DOI: 10.1016/j.plaphy.2020.05.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Rising atmospheric [CO2] influences plant growth, development, productivity and stress responses. Soybean is a major oil crop. At present, it is unclear how elevated [CO2] affects the physiological and biochemical pathways of soybean under drought stress. In this study, changes in the photosynthetic capacity, photosynthetic pigment and antioxidant level were evaluated in soybean at flowering stages under different [CO2] (400 μmol mol-1 and 600 μmol mol-1) and water level (the relative water content of the soil was 75-85% soil capacity, and the relative water content of the soil was 35-45% soil capacity under drought stress). Changes in levels of osmolytes, hormones and signal transduction enzymes were also determined. The results showed that under drought stress, increasing [CO2] significantly reduced leaf transpiration rate (E), net photosynthetic rate (PN) and chlorophyll b content. Elevated [CO2] significantly decreased the content of malondialdehyde (MDA) and proline (PRO), while significantly increased superoxide dismutase (SOD) and abscisic acid (ABA) under drought stress. Elevated [CO2] significantly increased the transcript and protein levels of calcium-dependent protein kinase (CDPK), and Glutathione S- transferase (GST). The content of HSP-70 and the corresponding gene expression level were significantly reduced by elevated [CO2], irrespective of water treatments. Taken together, these results suggest that elevated [CO2] does not alleviate the negative impacts of drought stress on photosynthesis. ABA, CDPK and GST may play an important role in elevated CO2-induced drought stress responses.
Collapse
Affiliation(s)
- Bingyan Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yanan Feng
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yuzheng Zong
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Dongsheng Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xingyu Hao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Ping Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
21
|
Chromosomal Distribution of Genes Conferring Tolerance to Abiotic Stresses Versus That of Genes Controlling Resistance to Biotic Stresses in Plants. Int J Mol Sci 2020; 21:ijms21051820. [PMID: 32155784 PMCID: PMC7084258 DOI: 10.3390/ijms21051820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022] Open
|
22
|
Zhao SP, Song XY, Guo LL, Zhang XZ, Zheng WJ. Genome-Wide Analysis of the Shi-Related Sequence Family and Functional Identification of GmSRS18 Involving in Drought and Salt Stresses in Soybean. Int J Mol Sci 2020; 21:E1810. [PMID: 32155727 PMCID: PMC7084930 DOI: 10.3390/ijms21051810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 11/25/2022] Open
Abstract
The plant-special SHI-RELATED SEQUENCE (SRS) family plays vital roles in various biological processes. However, the genome-wide analysis and abiotic stress-related functions of this family were less reported in soybean. In this work, 21 members of soybean SRS family were identified, which were divided into three groups (Group I, II, and III). The chromosome location and gene structure were analyzed, which indicated that the members in the same group may have similar functions. The analysis of stress-related cis-elements showed that the SRS family may be involved in abiotic stress signaling pathway. The analysis of expression patterns in various tissues demonstrated that SRS family may play crucial roles in special tissue-dependent regulatory networks. The data based on soybean RNA sequencing (RNA-seq) and quantitative Real-Time PCR (qRT-PCR) proved that SRS genes were induced by drought, NaCl, and exogenous abscisic acid (ABA). GmSRS18 significantly induced by drought and NaCl was selected for further functional verification. GmSRS18, encoding a cell nuclear protein, could negatively regulate drought and salt resistance in transgenic Arabidopsis. It can affect stress-related physiological index, including chlorophyll, proline, and relative electrolyte leakage. Additionally, it inhibited the expression levels of stress-related marker genes. Taken together, these results provide valuable information for understanding the classification of soybean SRS transcription factors and indicates that SRS plays important roles in abiotic stress responses.
Collapse
Affiliation(s)
- Shu-Ping Zhao
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China; (S.-P.Z.); (X.-Z.Z.)
| | - Xin-Yuan Song
- Agro-biotechnology Research Institute, Jilin Academy of Agriculture Sciences, Changchun 130033, China;
| | - Lin-Lin Guo
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China; (S.-P.Z.); (X.-Z.Z.)
| | - Xiang-Zhan Zhang
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China; (S.-P.Z.); (X.-Z.Z.)
| | - Wei-Jun Zheng
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China; (S.-P.Z.); (X.-Z.Z.)
| |
Collapse
|