1
|
Wu HH, Leng S, Eisenstat DD, Sergi C, Leng R. Targeting p53 for immune modulation: Exploring its functions in tumor immunity and inflammation. Cancer Lett 2025; 617:217614. [PMID: 40054656 DOI: 10.1016/j.canlet.2025.217614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
p53, often referred to as the "guardian of the genome," is a critical regulator of cellular responses to stress. p53 plays a dual role in tumor suppression and immune regulation. In addition to its well-known functions of maintaining genomic stability and inducing apoptosis, p53 orchestrates a complex interaction between innate and adaptive immune responses. This involvement contributes to pathogen clearance, immune surveillance, and immunogenic cell death (ICD). This review explores the influence of p53 on immune dynamics, detailing its effects on macrophages, dendritic cells, natural killer cells (NK), T cells, and B cells. This review explains how mutations in p53 disrupt immune responses, promoting tumor immune evasion, and highlights its regulation of inflammatory cytokines and pattern recognition receptors. Furthermore, p53's role in ICD marks it as a key player in antitumor immunity, which has significant implications for cancer immunotherapy. The review also discusses the role of p53 in inflammation, autoimmune diseases, and chronic infections, revealing its dual function in promoting and suppressing inflammation through interactions with NF-κB signaling. Therapeutically, approaches that target p53, including wild-type p53 reactivation and combination therapies with immune checkpoint inhibitors, show considerable promise. Advances in high-throughput technologies, such as single-cell RNA sequencing and CRISPR screens, provide new insights into the immunological functions of p53, including its role in microbiome-immune interactions and immune senescence. This comprehensive review highlights the importance of incorporating immunological insights from p53 into innovative therapeutic strategies, addressing existing knowledge gaps, and paving the way for personalized medicine.
Collapse
Affiliation(s)
- H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | - Sarah Leng
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - David D Eisenstat
- Department of Oncology, Cross Cancer Institute, 11560 University Ave., University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada; Department of Pediatrics, University of Alberta, 11405 - 87 Ave., Edmonton, Alberta, T6G 1C9, Canada; Department of Medical Genetics, University of Alberta, 8613 114 Street, Edmonton, Alberta, T6G 2H7, Canada; Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB, T6G 2B7, Canada; Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road Ottawa, ON, K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
2
|
Shao J, Liu S, Chen C, Chen W, Zhu Z, Li L. Aging Impairs Implant Osseointegration Through a Novel Reactive Oxygen Species-Hypoxia-Inducible Factor 1α/p53 Axis. Tissue Eng Part A 2025. [PMID: 40171686 DOI: 10.1089/ten.tea.2024.0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
Enhancing bone-vessel coupling to form high-quality vascular-rich peri-implant bone is crucial for improving implant prognosis in elder patients. Notably, hypoxia-inducible factor 1α (HIF1α) is known to promote osteogenesis-angiogenesis coupling; however, this effect remains to be investigated in aged bone owing to the dual effect of HIF1α in different aged organs. In this study, HIF1α inhibitor or activator was applied to aged mice and their bone mesenchymal stem cells (BMSCs) to investigate the effects and inner mechanism of HIF1α on the peri-implant osteogenesis and angiogenesis in senescent status. Cell senescence, along with osteogenic and angiogenic abilities of aged BMSCs, was detected, respectively. Meanwhile, a femur implant implantation model was constructed on aged mice, and the bone-vessel coupling of peri-implant bone was observed. Mandibular bone morphology was also detected to further provide evidence for clinical oral implantation. Furthermore, p53 expression was examined in vivo and in vitro following HIF1α intervention. A reactive oxygen species (ROS) scavenger was also adopted to further investigate the roles of ROS in the HIF1α-p53 axis. Results showed that the suppression of HIF1α alleviated senescence and osteogenesis-angiogenesis coupling of aged BMSCs, while its activation aggravated these effects. The mandible phenotype and bone-vessel coupling in aged peri-implant bone also changed accordingly upon regulation of HIF1α. Mechanistically, p53 changed in the same direction as HIF1α in vivo and in vitro. Moreover, the ROS scavenger reversed the HIF1α-p53 relationship and weakened the effect of HIF1α inhibitor on peri-implant bone improvement. In conclusion, in aged mice, highly expressed HIF1α impaired peri-implant bone-vessel coupling and implant osseointegration through p53, and accumulated ROS was a prerequisite for HIF1α to positively regulate p53. These findings provide new insights into the role of HIF1α and the ROS-HIF1α/p53 signaling axis, offering potential therapeutic targets to improve implant outcomes in elderly patients.
Collapse
Affiliation(s)
- Jingjing Shao
- State Key Laboratory of Oral Diseases &National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases &National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chenfeng Chen
- State Key Laboratory of Oral Diseases &National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases &National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases &National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lei Li
- State Key Laboratory of Oral Diseases &National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Nadeem J, Sultana R, Parveen A, Kim SY. Recent Advances in Anti-Aging Therapeutic Strategies Targeting DNA Damage Response and Senescence-Associated Secretory Phenotype-Linked Signaling Cascade. Cell Biochem Funct 2025; 43:e70046. [PMID: 40008426 DOI: 10.1002/cbf.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 02/27/2025]
Abstract
Aging is considered the contributory accumulation of abruptions occurring through cell signaling cascades, which ultimately cause changes in physical functions, cell fate, and damage across all organ systems. DNA damage response (DDR) also occurs through telomere shortening, tumor formation, mitochondrial dysfunction, and so forth. Cellular aging occurs through cell cycle arrest, which is the result of extended DDR cascade signaling networks via MDC1, 53BP1, H2AX, ATM, ARF, P53, P13-Akt, BRAF, Sirtuins, NAD + , and so forth. These persistent cell cycle arrests initiated by DDR and other associated stress-induced signals promote a permanent state of cell cycle arrest called senescence-associated secretory phenotype (SASP). However, cellular aging gets accelerated with faulty DNA repair systems, and the produced senescent cells further generate various promoting contributors to age-related dysfunctional diseases including SASP. Any changes to these factors contribute to age-related disease development. Therefore, this review explores anti-aging factors targeting DDR and SASP regulation and their detailed signaling networks. In addition, it allows researchers to identify anti-aging targets and anti-aging therapeutic strategies based on identified and nonidentified targets.
Collapse
Affiliation(s)
- Jawad Nadeem
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| | - Razia Sultana
- Department of Pharmacy, Jagannath University, Dhaka, Bangladesh
| | - Amna Parveen
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| |
Collapse
|
4
|
Qiu Y, Zhang S, Man C, Gong D, Xu Y, Fan Y, Wang X, Zhang W. Advances on Senescence-associated secretory phenotype regulated by circular RNAs in tumors. Ageing Res Rev 2024; 97:102287. [PMID: 38570142 DOI: 10.1016/j.arr.2024.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The components that comprise the senescence-associated secretory phenotype (SASP) include growth factors, proteases, chemokines, cytokines, and bioactive lipids. It drives secondary aging and disrupts tissue homeostasis, ultimately leading to tissue repair and regeneration loss. It has a two-way regulatory effect on tumor cells, resisting cancer occurrence and promoting its progression. A category of single-stranded circular non-coding RNA molecules known as circular RNAs (circRNAs) carries out a series of cellular activities, including sequestering miRNAs and modulating gene editing and expression. Research has demonstrated that a large number of circRNAs exhibit aberrant expression in pathological settings, and play a part in the onset and progress of cancer via modulating SASP factors. However, the research related to SASP and circRNAs in tumors is still in its infancy at this stage. This review centers on the bidirectional modulation of SASP and the role of circRNAs in regulating SASP factors across different types of tumors. The aim is to present novel perspectives for the diagnosis and therapeutic management of malignancies.
Collapse
Affiliation(s)
- Yue Qiu
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Shiqi Zhang
- Department of Gastroenterology, Affiliated Suqian First People's Hospital of Nanjing Medical University, No 120, Suzhi Road, Suqian, Jiangsu 223812, People's Republic of China
| | - Changfeng Man
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Dandan Gong
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Ying Xu
- Laboratory Center, Jiangsu University Affiliated People's Hospital, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Fan
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China.
| | - Xiaoyan Wang
- Department of Gastroenterology, Affiliated Suqian First People's Hospital of Nanjing Medical University, No 120, Suzhi Road, Suqian, Jiangsu 223812, People's Republic of China.
| | - Wenbo Zhang
- General Surgery Department, Jiangsu University Affiliated People's Hospital, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Afsar A, Zhang L. Putative Molecular Mechanisms Underpinning the Inverse Roles of Mitochondrial Respiration and Heme Function in Lung Cancer and Alzheimer's Disease. BIOLOGY 2024; 13:185. [PMID: 38534454 DOI: 10.3390/biology13030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mitochondria are the powerhouse of the cell. Mitochondria serve as the major source of oxidative stress. Impaired mitochondria produce less adenosine triphosphate (ATP) but generate more reactive oxygen species (ROS), which could be a major factor in the oxidative imbalance observed in Alzheimer's disease (AD). Well-balanced mitochondrial respiration is important for the proper functioning of cells and human health. Indeed, recent research has shown that elevated mitochondrial respiration underlies the development and therapy resistance of many types of cancer, whereas diminished mitochondrial respiration is linked to the pathogenesis of AD. Mitochondria govern several activities that are known to be changed in lung cancer, the largest cause of cancer-related mortality worldwide. Because of the significant dependence of lung cancer cells on mitochondrial respiration, numerous studies demonstrated that blocking mitochondrial activity is a potent strategy to treat lung cancer. Heme is a central factor in mitochondrial respiration/oxidative phosphorylation (OXPHOS), and its association with cancer is the subject of increased research in recent years. In neural cells, heme is a key component in mitochondrial respiration and the production of ATP. Here, we review the role of impaired heme metabolism in the etiology of AD. We discuss the numerous mitochondrial effects that may contribute to AD and cancer. In addition to emphasizing the significance of heme in the development of both AD and cancer, this review also identifies some possible biological connections between the development of the two diseases. This review explores shared biological mechanisms (Pin1, Wnt, and p53 signaling) in cancer and AD. In cancer, these mechanisms drive cell proliferation and tumorigenic functions, while in AD, they lead to cell death. Understanding these mechanisms may help advance treatments for both conditions. This review discusses precise information regarding common risk factors, such as aging, obesity, diabetes, and tobacco usage.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
6
|
Liang R, Qi X, Cai Q, Niu L, Huang X, Zhang D, Ling J, Wu Y, Chen Y, Yang P, Liu J, Zhang J, Yu P. The role of NLRP3 inflammasome in aging and age-related diseases. Immun Ageing 2024; 21:14. [PMID: 38317229 PMCID: PMC10840156 DOI: 10.1186/s12979-023-00395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/15/2023] [Indexed: 02/07/2024]
Abstract
The gradual aging of the global population has led to a surge in age-related diseases, which seriously threaten human health. Researchers are dedicated to understanding and coping with the complexities of aging, constantly uncovering the substances and mechanism related to aging like chronic low-grade inflammation. The NOD-like receptor protein 3 (NLRP3), a key regulator of the innate immune response, recognizes molecular patterns associated with pathogens and injury, initiating an intrinsic inflammatory immune response. Dysfunctional NLRP3 is linked to the onset of related diseases, particularly in the context of aging. Therefore, a profound comprehension of the regulatory mechanisms of the NLRP3 inflammasome in aging-related diseases holds the potential to enhance treatment strategies for these conditions. In this article, we review the significance of the NLRP3 inflammasome in the initiation and progression of diverse aging-related diseases. Furthermore, we explore preventive and therapeutic strategies for aging and related diseases by manipulating the NLRP3 inflammasome, along with its upstream and downstream mechanisms.
Collapse
Affiliation(s)
- Ruikai Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Xinrui Qi
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Qi Cai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Liyan Niu
- Huan Kui College of Nanchang University, Nanchang, China
| | - Xi Huang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China.
| |
Collapse
|
7
|
Wang Y, Hu S, Zhang W, Zhang B, Yang Z. Emerging role and therapeutic implications of p53 in intervertebral disc degeneration. Cell Death Discov 2023; 9:433. [PMID: 38040675 PMCID: PMC10692240 DOI: 10.1038/s41420-023-01730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
Lower back pain (LBP) is a common degenerative musculoskeletal disease that imposes a huge economic burden on both individuals and society. With the aggravation of social aging, the incidence of LBP has increased globally. Intervertebral disc degeneration (IDD) is the primary cause of LBP. Currently, IDD treatment strategies include physiotherapy, medication, and surgery; however, none can address the root cause by ending the degeneration of intervertebral discs (IVDs). However, in recent years, targeted therapy based on specific molecules has brought hope for treating IDD. The tumor suppressor gene p53 produces a transcription factor that regulates cell metabolism and survival. Recently, p53 was shown to play an important role in maintaining IVD microenvironment homeostasis by regulating IVD cell senescence, apoptosis, and metabolism by activating downstream target genes. This study reviews research progress regarding the potential role of p53 in IDD and discusses the challenges of targeting p53 in the treatment of IDD. This review will help to elucidate the pathogenesis of IDD and provide insights for the future development of precision treatments.
Collapse
Affiliation(s)
- Yidian Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Shouye Hu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weisong Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Binfei Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhi Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Ge T, Shao Y, Bao X, Xu W, Lu C. Cellular senescence in liver diseases: From mechanisms to therapies. Int Immunopharmacol 2023; 121:110522. [PMID: 37385123 DOI: 10.1016/j.intimp.2023.110522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Cellular senescence is an irreversible state of cell cycle arrest, characterized by a gradual decline in cell proliferation, differentiation, and biological functions. Cellular senescence is double-edged for that it can provoke organ repair and regeneration in physiological conditions but contribute to organ and tissue dysfunction and prime multiple chronic diseases in pathological conditions. The liver has a strong regenerative capacity, where cellular senescence and regeneration are closely involved. Herein, this review firstly introduces the morphological manifestations of senescent cells, the major regulators (p53, p21, and p16), and the core pathophysiologic mechanisms underlying senescence process, and then specifically generalizes the role and interventions of cellular senescence in multiple liver diseases, including alcoholic liver disease, nonalcoholic fatty liver disease, liver fibrosis, and hepatocellular carcinoma. In conclusion, this review focuses on interpreting the importance of cellular senescence in liver diseases and summarizes potential senescence-related regulatory targets, aiming to provide new insights for further researches on cellular senescence regulation and therapeutic developments for liver diseases.
Collapse
Affiliation(s)
- Ting Ge
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yunyun Shao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Wenxuan Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
9
|
Wiles AK, Mehta S, Millier M, Woolley AG, Li K, Parker K, Kazantseva M, Wilson M, Young K, Bowie S, Ray S, Slatter TL, Stamp LK, Hessian PA, Braithwaite AW. Activated CD90/Thy-1 fibroblasts co-express the Δ133p53β isoform and are associated with highly inflamed rheumatoid arthritis. Arthritis Res Ther 2023; 25:62. [PMID: 37060003 PMCID: PMC10105423 DOI: 10.1186/s13075-023-03040-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/29/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND The p53 isoform Δ133p53β is known to be associated with cancers driven by inflammation. Many of the features associated with the development of inflammation in rheumatoid arthritis (RA) parallel those evident in cancer progression. However, the role of this isoform in RA has not yet been explored. The aim of this study was to determine whether Δ133p53β is driving aggressive disease in RA. METHODS Using RA patient synovia, we carried out RT-qPCR and RNAScope-ISH to determine both protein and mRNA levels of Δ133p53 and p53. We also used IHC to determine the location and type of cells with elevated levels of Δ133p53β. Plasma cytokines were also measured using a BioPlex cytokine panel and data analysed by the Milliplex Analyst software. RESULTS Elevated levels of pro-inflammatory plasma cytokines were associated with synovia from RA patients displaying extensive tissue inflammation, increased immune cell infiltration and the highest levels of Δ133TP53 and TP53β mRNA. Located in perivascular regions of synovial sub-lining and surrounding ectopic lymphoid structures (ELS) were a subset of cells with high levels of CD90, a marker of 'activated fibroblasts' together with elevated levels of Δ133p53β. CONCLUSIONS Induction of Δ133p53β in CD90+ synovial fibroblasts leads to an increase in cytokine and chemokine expression and the recruitment of proinflammatory cells into the synovial joint, creating a persistently inflamed environment. Our results show that dysregulated expression of Δ133p53β could represent one of the early triggers in the immunopathogenesis of RA and actively perpetuates chronic synovial inflammation. Therefore, Δ133p53β could be used as a biomarker to identify RA patients more likely to develop aggressive disease who might benefit from targeted therapy to cytokines such as IL-6.
Collapse
Affiliation(s)
- Anna K Wiles
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Sunali Mehta
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Melanie Millier
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Adele G Woolley
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Kunyu Li
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
| | - Kim Parker
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
| | - Marina Kazantseva
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Michelle Wilson
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
| | - Katie Young
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
| | - Sarah Bowie
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
| | - Sankalita Ray
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
| | - Tania L Slatter
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Paul A Hessian
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Antony W Braithwaite
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand.
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand.
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, New Zealand.
| |
Collapse
|
10
|
Jagram N, Dasgupta I. Principles and practice of virus induced gene silencing for functional genomics in plants. Virus Genes 2023; 59:173-187. [PMID: 36266497 DOI: 10.1007/s11262-022-01941-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/05/2022] [Indexed: 10/24/2022]
Abstract
Virus induced gene silencing (VIGS) has, of late, emerged as an important tool for transient silencing of genes in plants. This is now being increasingly used to determine functions of novel genes in a wide variety of plants, many of which are important crops yielding food and fiber or are sources of products having pharmaceutical uses. The technology for VIGS comprises the development of vectors derived from viruses, choosing the optimal orientation and size of the gene to be targeted and adopting the most suitable method of inoculation. This review gives a brief overview of the main aspects of VIGS technology as is being practiced. It also discusses the challenges the technology faces and the possible way ahead to improve its robustness, so that the technology finds wider applications.
Collapse
Affiliation(s)
- Neelam Jagram
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
11
|
Sattari M, Masoudnia M, Mashayekhi K, Hashemi SM, Khannazer N, Sattari S, Mohammadian Haftcheshmeh S, Momtazi-Borojeni AA. Evaluating the effect of LPS from periodontal pathogenic bacteria on the expression of senescence-related genes in human dental pulp stem cells. J Cell Mol Med 2022; 26:5647-5656. [PMID: 36259309 PMCID: PMC9667521 DOI: 10.1111/jcmm.17594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
The human dental pulp stem cells (hDPSCs) are one of the readily available sources of multipotent mesenchymal stem cells (MSCs) and can be considered as a type of tool cells for cell‐based therapies. However, the main limitation in the clinical use of these cells is DPSC senescence, which can be induced by lipopolysaccharide (LPS) of oral pathogenic bacteria. Up to now, far little attention has been paid to exploring the molecular mechanisms of senescence in DPSCs. So, the current study aimed to investigate the underlying molecular mechanism of senescence in hDPSCs stimulated with Porphyromonas gingivalis (P. gingivalis) and Escherichia coli (E. coli)‐derived LPSs, by evaluating both mRNA and protein expression of four important senescence‐related genes, including TP53, CDKN1A, CDKN2A and SIRT1. To this purpose, hDPSCs were stimulated with different LPSs for 6, 24 and 48 h and then the gene expression was evaluated using quantitative real‐time polymerase chain reaction (qPCR) and western blotting. Following stimulation with P. gingivalis and E. coli‐derived LPSs, the relative mRNA and protein expression of all genes were significantly up‐regulated in a time‐dependent manner, as compared with unstimulated hDPSCs. Moreover, the hDPSCs stimulated with P. gingivalis LPS for 6 and 24 h had the highest mRNA expression of CDKN1A and SIRT1, respectively (p < 0.0001), whereas the highest mRNA expression of CDKN2A and TP53 was seen in hDPSCs stimulated with E. coli LPS for 48 h (p < 0.0001). In summary, because DPSCs have been reported to have therapeutic potential for several cell‐based therapies, targeting molecular mechanisms aiming at preventing DPSC senescence could be considered a valuable strategy.
Collapse
Affiliation(s)
- Mandana Sattari
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Masoudnia
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Mashayekhi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Khannazer
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepanta Sattari
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
12
|
Li J, Guo M, Chen L, Chen Z, Fu Y, Chen Y. p53 amyloid aggregation in cancer: function, mechanism, and therapy. Exp Hematol Oncol 2022; 11:66. [PMID: 36171607 PMCID: PMC9520902 DOI: 10.1186/s40164-022-00317-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Similar to neurodegenerative diseases, the concept that tumors are prion like diseases has been proposed in recent years. p53, the most well-known tumor suppressor, has been extensively studied for its expression, mutation, and function in various tumors. Currently, an interesting phenomenon of p53 prion-like aggregation has been found in several tumors, and studies have found that its pathological aggregation may lead to functional alterations and ultimately affect tumor progression. It has been demonstrated that the mechanism of p53 aggregation involves its mutation, domains, isoform, etc. In addition to p53 itself, some other factors, including Zn2+ concentration, pH, temperature and chaperone abnormalities, can also contribute to p53 aggregation. Although there are some studies about the mechanism and role of p53 aggregation and amyloidosis in tumors, there still exist some controversies. In this paper, we review the mechanism of p53 amyloid fibril structure and discuss the characteristics and effects of p53 amyloid aggregation, as well as the pathogenic mechanism leading to the occurrence of aggregation in tumors. Finally, we summarize the various inhibitors targeting p53 aggregation and prion-like behavior. In conclusion, a comprehensive understanding of p53 aggregation can expand our understanding of the causes leading its loss of physiological function and that targeting p53 aggregation might be a promising therapeutic strategy for tumor therapy.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lin Chen
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
13
|
Padariya M, Jooste ML, Hupp T, Fåhraeus R, Vojtesek B, Vollrath F, Kalathiya U, Karakostis K. The Elephant evolved p53 isoforms that escape mdm2-mediated repression and cancer. Mol Biol Evol 2022; 39:6632613. [PMID: 35792674 PMCID: PMC9279639 DOI: 10.1093/molbev/msac149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The p53 tumor suppressor is a transcription factor with roles in cell development, apoptosis, oncogenesis, aging, and homeostasis in response to stresses and infections. p53 is tightly regulated by the MDM2 E3 ubiquitin ligase. The p53–MDM2 pathway has coevolved, with MDM2 remaining largely conserved, whereas the TP53 gene morphed into various isoforms. Studies on prevertebrate ancestral homologs revealed the transition from an environmentally induced mechanism activating p53 to a tightly regulated system involving cell signaling. The evolution of this mechanism depends on structural changes in the interacting protein motifs. Elephants such as Loxodonta africana constitute ideal models to investigate this coevolution as they are large and long-living as well as having 20 copies of TP53 isoformic sequences expressing a variety of BOX-I MDM2-binding motifs. Collectively, these isoforms would enhance sensitivity to cellular stresses, such as DNA damage, presumably accounting for strong cancer defenses and other adaptations favoring healthy aging. Here we investigate the molecular evolution of the p53–MDM2 system by combining in silico modeling and in vitro assays to explore structural and functional aspects of p53 isoforms retaining the MDM2 interaction, whereas forming distinct pools of cell signaling. The methodology used demonstrates, for the first time that in silico docking simulations can be used to explore functional aspects of elephant p53 isoforms. Our observations elucidate structural and mechanistic aspects of p53 regulation, facilitate understanding of complex cell signaling, and suggest testable hypotheses of p53 evolution referencing Peto’s Paradox.
Collapse
Affiliation(s)
- Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk , ul. Kładki 24, 80-822 Gdansk , Poland
| | - Mia-Lyn Jooste
- Institute of Genetics and Cancer, University of Edinburgh , Edinburgh EH4 2XR, UK
| | - Ted Hupp
- Institute of Genetics and Cancer, University of Edinburgh , Edinburgh EH4 2XR, UK
| | - Robin Fåhraeus
- International Centre for Cancer Vaccine Science, University of Gdansk , ul. Kładki 24, 80-822 Gdansk , Poland
- Inserm UMRS1131, Institut de Génétique Moléculaire , Université Paris 7, Hôpital St. Louis, F-75010 Paris , France
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute , 65653 Brno , Czech Republic
- Department of Medical Biosciences, Umeå University , 90185 Umeå , Sweden
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute , 65653 Brno , Czech Republic
| | - Fritz Vollrath
- Department of Zoology, Zoology Research and Administration Building, University of Oxford , Oxford, UK
- Save the Elephants Marula Manor , Marula Lane, Karen P.O. Box 54667. Nairobi 00200. Kenya Office: +254 720 441 178
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk , ul. Kładki 24, 80-822 Gdansk , Poland
| | - Konstantinos Karakostis
- Inserm UMRS1131, Institut de Génétique Moléculaire , Université Paris 7, Hôpital St. Louis, F-75010 Paris , France
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , 08193 Bellaterra (Barcelona) , Spain
| |
Collapse
|
14
|
p53 Isoforms as Cancer Biomarkers and Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14133145. [PMID: 35804915 PMCID: PMC9264937 DOI: 10.3390/cancers14133145] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The well-known tumor suppressor protein p53 plays important roles in tumor prevention through transcriptional regulation of its target genes. Reactivation of p53 activity has been a potent strategy for cancer treatment. Accumulating evidences indicate that p53 isoforms truncated/modified in the N- or C-terminus can modulate the p53 pathway in a p53-dependent or p53-independent manner. It is thus imperative to characterize the roles of the p53 isoforms in cancer development. This review illustrates how p53 isoforms participate in tumor development and/or suppression. It also summarizes the knowledge about the p53 isoforms as promising cancer biomarkers and therapeutic targets. Abstract This review aims to summarize the implications of the major isoforms of the tumor suppressor protein p53 in aggressive cancer development. The current knowledge of p53 isoforms, their involvement in cell-signaling pathways, and their interactions with other cellular proteins or factors suggests the existence of an intricate molecular network that regulates their oncogenic function. Moreover, existing literature about the involvement of the p53 isoforms in various cancers leads to the proposition of therapeutic solutions by altering the cellular levels of the p53 isoforms. This review thus summarizes how the major p53 isoforms Δ40p53α/β/γ, Δ133p53α/β/γ, and Δ160p53α/β/γ might have clinical relevance in the diagnosis and effective treatments of cancer.
Collapse
|
15
|
Han X, Lei Q, Xie J, Liu H, Sun H, Jing L, Zhang X, Zhang T, Gou X. Potential regulators of the senescence-associated secretory phenotype during senescence and ageing. J Gerontol A Biol Sci Med Sci 2022; 77:2207-2218. [PMID: 35524726 DOI: 10.1093/gerona/glac097] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Indexed: 11/14/2022] Open
Abstract
Senescent cells express and secrete a variety of extracellular modulators that include cytokines, chemokines, proteases, growth factors and some enzymes associated with ECM remodeling, defined as the senescence-associated secretory phenotype (SASP). SASP reinforces senescent cell cycle arrest, stimulates and recruits immune cells for immune-mediated clearance of potentially tumorigenic cells, limits or induces fibrosis and promotes wound healing and tissue regeneration. On the other hand, SASP mediates chronic inflammation leading to destruction of tissue structure and function and stimulating the growth and survival of tumour cells. SASP is highly heterogeneous and the role of SASP depends on the context. The regulation of SASP occurs at multiple levels including chromatin remodelling, transcription, mRNA translation, intracellular trafficking and secretion. Several SASP modulators have already been identified setting the stage for future research on their clinical applications. In this review, we summarize in detail the potential signalling pathways that trigger and regulate SASP production during ageing and senescence.
Collapse
Affiliation(s)
- Xiaojuan Han
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Qing Lei
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Jiamei Xie
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Huanhuan Liu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Haoran Sun
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Li Jing
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xiaohua Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Tianying Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
16
|
Kim MJ, Kawk HW, Kim SH, Lee HJ, Seo JW, Lee CY, Kim YM. The p53-Driven Anticancer Effect of Ribes fasciculatum Extract on AGS Gastric Cancer Cells. Life (Basel) 2022; 12:life12020303. [PMID: 35207590 PMCID: PMC8876336 DOI: 10.3390/life12020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer metastasis is directly related to the survival rate of cancer patients. Although cancer metastasis proceeds by the movement of cancer cells, it is fundamentally caused by its resistance to anoikis, a mechanism of apoptosis caused by the loss of adhesion of cancer cells. Therefore, it was found that inhibiting cancer migration and reducing anoikis resistance are important for cancer suppression, and natural compounds can effectively control it. Among them, Ribes fasciculatum, which has been used as a medicinal plant, was confirmed to have anticancer potential, and experiments were conducted to prove various anticancer effects by extracting Ribes fasciculatum (RFE). Through various experiments, it was observed that RFE induces apoptosis of AGS gastric cancer cells, arrests the cell cycle, induces oxidative stress, and reduces mobility. It was also demonstrated that anoikis resistance was attenuated through the downregulation of proteins, such as epidermal growth factor receptor (EGFR). Moreover, the anticancer effect of RFE depends upon the increase in p53 expression, suggesting that RFE is suitable for the development of p53-targeted anticancer materials. Moreover, through xenotransplantation, it was found that the anticancer effect of RFE confirmed in vitro was continued in vivo.
Collapse
|
17
|
Shao J, Liu S, Zhang M, Chen S, Gan S, Chen C, Chen W, Li L, Zhu Z. A dual role of HIF1α in regulating osteogenesis–angiogenesis coupling. Stem Cell Res Ther 2022; 13:59. [PMID: 35123567 PMCID: PMC8818171 DOI: 10.1186/s13287-022-02742-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/17/2022] [Indexed: 01/01/2023] Open
Abstract
Objectives The hypoxia-inducible factor 1-α (HIF1α), a key molecule in mediating bone-vessel crosstalk, has been considered a promising target for treating osteoporosis caused by gonadal hormones. However, senile osteoporosis, with accumulated senescent cells in aged bone, has a distinct pathogenesis. The study aimed at revealing the unknown role of HIF1α in aged bone, thus broadening its practical application in senile osteoporosis. Materials and methods Femurs and tibias were collected from untreated mice of various ages (2 months old, 10 months old, 18 months old) and treated mice (2 months old, 18 months old) underwent 4-w gavage of 2-methoxyestradiol (a kind of HIF1α inhibitor). Bone-vessel phenotypes were observed by microfil infusion, micro-CT and HE staining. Markers of senescence, osteogenesis, angiogenesis, oxidative stress and expression of HIF1α were detected by senescence β-galactosidase staining, qRT-PCR, western blot and immunostaining, respectively. Furthermore, bone mesenchymal stem cells from young mice (YBMSCs) and aged mice (ABMSCs) were transfected by knockout siRNA and overexpression plasmid of HIF1α. Senescence β-galactosidase staining, Cell Counting Kit-8, transwell assay, alkaline phosphatase staining, alizarin red-S staining and angiogenesis tests were utilized to assess the biological properties of two cell types. Then, Pifithrin-α and Nutlin-3a were adopted to intervene p53 of the two cells. Finally, H2O2 on YBMSCs and NAC on ABMSCs were exploited to change their status of oxidative stress to do a deeper detection. Results Senescent phenotypes, impaired osteogenesis–angiogenesis coupling and increased HIF1α were observed in aged bone and ABMSCs. However, 2-methoxyestradiol improved bone-vessel metabolism of aged mice while damaged that of young mice. Mechanically, HIF1α showed opposed effects in regulating the cell migration and osteogenesis–angiogenesis coupling of YBMSCs and ABMSCs, but no remarked effect on the proliferation of either cell type. Pifithrin-α upregulated the osteogenic and angiogenic markers of HIF1α-siRNA-transfected YBMSCs, and Nutlin-3a alleviated those of HIF1α-siRNA-transfected ABMSCs. The HIF1α-p53 relationship was negative in YBMSCs and NAC-treated ABMSCs, but positive in ABMSCs and H2O2-treated YBMSCs. Conclusion The dual role of HIF1α in osteogenesis–angiogenesis coupling may depend on the ROS-mediated HIF1α-p53 relationship. New awareness about HIF1α will be conducive to its future application in senile osteoporosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02742-1.
Collapse
|
18
|
Chakravarti A, Thirimanne HN, Brown S, Calvi BR. Drosophila p53 isoforms have overlapping and distinct functions in germline genome integrity and oocyte quality control. eLife 2022; 11:61389. [PMID: 35023826 PMCID: PMC8758136 DOI: 10.7554/elife.61389] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
p53 gene family members in humans and other organisms encode a large number of protein isoforms whose functions are largely undefined. Using Drosophila as a model, we find that a p53B isoform is expressed predominantly in the germline where it colocalizes with p53A into subnuclear bodies. It is only p53A, however, that mediates the apoptotic response to ionizing radiation in the germline and soma. In contrast, p53A and p53B are both required for the normal repair of meiotic DNA breaks, an activity that is more crucial when meiotic recombination is defective. We find that in oocytes with persistent DNA breaks p53A is also required to activate a meiotic pachytene checkpoint. Our findings indicate that Drosophila p53 isoforms have DNA lesion and cell type-specific functions, with parallels to the functions of mammalian p53 family members in the genotoxic stress response and oocyte quality control.
Collapse
Affiliation(s)
| | | | - Savanna Brown
- Department of Biology, Indiana University, Bloomington, United States
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, United States
| |
Collapse
|
19
|
Rozenberg JM, Zvereva S, Dalina A, Blatov I, Zubarev I, Luppov D, Bessmertnyi A, Romanishin A, Alsoulaiman L, Kumeiko V, Kagansky A, Melino G, Ganini C, Barlev NA. The p53 family member p73 in the regulation of cell stress response. Biol Direct 2021; 16:23. [PMID: 34749806 PMCID: PMC8577020 DOI: 10.1186/s13062-021-00307-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
During oncogenesis, cells become unrestrictedly proliferative thereby altering the tissue homeostasis and resulting in subsequent hyperplasia. This process is paralleled by resumption of cell cycle, aberrant DNA repair and blunting the apoptotic program in response to DNA damage. In most human cancers these processes are associated with malfunctioning of tumor suppressor p53. Intriguingly, in some cases two other members of the p53 family of proteins, transcription factors p63 and p73, can compensate for loss of p53. Although both p63 and p73 can bind the same DNA sequences as p53 and their transcriptionally active isoforms are able to regulate the expression of p53-dependent genes, the strongest overlap with p53 functions was detected for p73. Surprisingly, unlike p53, the p73 is rarely lost or mutated in cancers. On the contrary, its inactive isoforms are often overexpressed in cancer. In this review, we discuss several lines of evidence that cancer cells develop various mechanisms to repress p73-mediated cell death. Moreover, p73 isoforms may promote cancer growth by enhancing an anti-oxidative response, the Warburg effect and by repressing senescence. Thus, we speculate that the role of p73 in tumorigenesis can be ambivalent and hence, requires new therapeutic strategies that would specifically repress the oncogenic functions of p73, while keeping its tumor suppressive properties intact.
Collapse
Affiliation(s)
- Julian M Rozenberg
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Svetlana Zvereva
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksandra Dalina
- The Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, Russia
| | - Igor Blatov
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ilya Zubarev
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daniil Luppov
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Alexander Romanishin
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.,School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Lamak Alsoulaiman
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vadim Kumeiko
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Alexander Kagansky
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Gerry Melino
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Ganini
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nikolai A Barlev
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia. .,Institute of Cytology, Russian Academy of Science, Saint-Petersburg, Russia.
| |
Collapse
|
20
|
Barthel L, Hadamitzky M, Dammann P, Schedlowski M, Sure U, Thakur BK, Hetze S. Glioma: molecular signature and crossroads with tumor microenvironment. Cancer Metastasis Rev 2021; 41:53-75. [PMID: 34687436 PMCID: PMC8924130 DOI: 10.1007/s10555-021-09997-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022]
Abstract
In patients with glioblastoma, the average survival time with current treatments is short, mainly due to recurrences and resistance to therapy. This insufficient treatment success is, in large parts, due to the tremendous molecular heterogeneity of gliomas, which affects the overall prognosis and response to therapies and plays a vital role in gliomas’ grading. In addition, the tumor microenvironment is a major player for glioma development and resistance to therapy. Active communication between glioma cells and local or neighboring healthy cells and the immune environment promotes the cancerogenic processes and contributes to establishing glioma stem cells, which drives therapy resistance. Besides genetic alterations in the primary tumor, tumor-released factors, cytokines, proteins, extracellular vesicles, and environmental influences like hypoxia provide tumor cells the ability to evade host tumor surveillance machinery and promote disease progression. Moreover, there is increasing evidence that these players affect the molecular biological properties of gliomas and enable inter-cell communication that supports pro-cancerogenic cell properties. Identifying and characterizing these complex mechanisms are inevitably necessary to adapt therapeutic strategies and to develop novel measures. Here we provide an update about these junctions where constant traffic of biomolecules adds complexity in the management of glioblastoma.
Collapse
Affiliation(s)
- Lennart Barthel
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany. .,Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany.
| | - Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany.,Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Basant Kumar Thakur
- Cancer Exosome Research Lab, Department of Pediatric Hematology and Oncology, University Hospital Essen, 45147, Essen, Germany
| | - Susann Hetze
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.,Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| |
Collapse
|
21
|
Żydowicz-Machtel P, Dutkiewicz M, Swiatkowska A, Gurda-Woźna D, Ciesiołka J. Translation of human Δ133p53 mRNA and its targeting by antisense oligonucleotides complementary to the 5'-terminal region of this mRNA. PLoS One 2021; 16:e0256938. [PMID: 34492050 PMCID: PMC8423303 DOI: 10.1371/journal.pone.0256938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/18/2021] [Indexed: 11/18/2022] Open
Abstract
The p53 protein is expressed as at least twelve protein isoforms. Within intron 4 of the human TP53 gene, a P2 transcription initiation site is located and this transcript encodes two p53 isoforms: Δ133p53 and Δ160p53. Here, the secondary structure of the 5'-terminal region of P2-initiated mRNA was characterized by means of the SHAPE and Pb2+-induced cleavage methods and for the first time, a secondary structure model of this region was proposed. Surprisingly, only Δ133p53 isoform was synthetized in vitro from the P2-initiated p53 mRNA while translation from both initiation codons occurred after the transfection of vector-encoded model mRNA to HCT116 cells. Interestingly, translation performed in the presence of the cap analogue suggested that the cap-independent process contributes to the translation of P2-initiated p53 mRNA. Subsequently, several antisense oligonucleotides targeting the 5'-terminal region of P2-initiated p53 mRNA were designed. The selected oligomers were applied in in vitro translation assays as well as in cell lines and their impact on the Δ133p53 synthesis and on cell viability was investigated. The results show that these oligomers are attractive tools in the modulation of the translation of P2-initiated p53 mRNA through attacking the 5' terminus of the transcript. Since cell proliferation is also reduced by antisense oligomers that lower the level of Δ133p53, this demonstrates an involvement of this isoform in tumorigenesis.
Collapse
Affiliation(s)
| | - Mariola Dutkiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Agata Swiatkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Dorota Gurda-Woźna
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Jerzy Ciesiołka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- * E-mail:
| |
Collapse
|
22
|
Higgins CE, Tang J, Higgins SP, Gifford CC, Mian BM, Jones DM, Zhang W, Costello A, Conti DJ, Samarakoon R, Higgins PJ. The Genomic Response to TGF-β1 Dictates Failed Repair and Progression of Fibrotic Disease in the Obstructed Kidney. Front Cell Dev Biol 2021; 9:678524. [PMID: 34277620 PMCID: PMC8284093 DOI: 10.3389/fcell.2021.678524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Tubulointerstitial fibrosis is a common and diagnostic hallmark of a spectrum of chronic renal disorders. While the etiology varies as to the causative nature of the underlying pathology, persistent TGF-β1 signaling drives the relentless progression of renal fibrotic disease. TGF-β1 orchestrates the multifaceted program of kidney fibrogenesis involving proximal tubular dysfunction, failed epithelial recovery or re-differentiation, capillary collapse and subsequent interstitial fibrosis eventually leading to chronic and ultimately end-stage disease. An increasing complement of non-canonical elements function as co-factors in TGF-β1 signaling. p53 is a particularly prominent transcriptional co-regulator of several TGF-β1 fibrotic-response genes by complexing with TGF-β1 receptor-activated SMADs. This cooperative p53/TGF-β1 genomic cluster includes genes involved in cellular proliferative control, survival, apoptosis, senescence, and ECM remodeling. While the molecular basis for this co-dependency remains to be determined, a subset of TGF-β1-regulated genes possess both p53- and SMAD-binding motifs. Increases in p53 expression and phosphorylation, moreover, are evident in various forms of renal injury as well as kidney allograft rejection. Targeted reduction of p53 levels by pharmacologic and genetic approaches attenuates expression of the involved genes and mitigates the fibrotic response confirming a key role for p53 in renal disorders. This review focuses on mechanisms underlying TGF-β1-induced renal fibrosis largely in the context of ureteral obstruction, which mimics the pathophysiology of pediatric unilateral ureteropelvic junction obstruction, and the role of p53 as a transcriptional regulator within the TGF-β1 repertoire of fibrosis-promoting genes.
Collapse
Affiliation(s)
- Craig E. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Jiaqi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Stephen P. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Cody C. Gifford
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Badar M. Mian
- The Urological Institute of Northeastern New York, Albany, NY, United States
- Division of Urology, Department of Surgery, Albany Medical College, Albany, NY, United States
| | - David M. Jones
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY, United States
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Angelica Costello
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - David J. Conti
- Division of Transplantation Surgery, Department of Surgery, Albany Medical College, Albany, NY, United States
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
- The Urological Institute of Northeastern New York, Albany, NY, United States
- Division of Urology, Department of Surgery, Albany Medical College, Albany, NY, United States
| |
Collapse
|
23
|
p53/p73 Protein Network in Colorectal Cancer and Other Human Malignancies. Cancers (Basel) 2021; 13:cancers13122885. [PMID: 34207603 PMCID: PMC8227208 DOI: 10.3390/cancers13122885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The p53 family of proteins comprises p53, p63, and p73, which share high structural and functional similarity. The two distinct promoters of each locus, the alternative splicing, and the alternative translation initiation sites enable the generation of numerous isoforms with different protein-interacting domains and distinct activities. The co-expressed p53/p73 isoforms have significant but distinct roles in carcinogenesis. Their activity is frequently impaired in human tumors including colorectal carcinoma due to dysregulated expression and a dominant-negative effect accomplished by some isoforms and p53 mutants. The interactions between isoforms are particularly important to understand the onset of tumor formation, progression, and therapeutic response. The understanding of the p53/p73 network can contribute to the development of new targeted therapies. Abstract The p53 tumor suppressor protein is crucial for cell growth control and the maintenance of genomic stability. Later discovered, p63 and p73 share structural and functional similarity with p53. To understand the p53 pathways more profoundly, all family members should be considered. Each family member possesses two promoters and alternative translation initiation sites, and they undergo alternative splicing, generating multiple isoforms. The resulting isoforms have important roles in carcinogenesis, while their expression is dysregulated in several human tumors including colorectal carcinoma, which makes them potential targets in cancer treatment. Their activities arise, at least in part, from the ability to form tetramers that bind to specific DNA sequences and activate the transcription of target genes. In this review, we summarize the current understanding of the biological activities and regulation of the p53/p73 isoforms, highlighting their role in colorectal tumorigenesis. The analysis of the expression patterns of the p53/p73 isoforms in human cancers provides an important step in the improvement of cancer therapy. Furthermore, the interactions among the p53 family members which could modulate normal functions of the canonical p53 in tumor tissue are described. Lastly, we emphasize the importance of clinical studies to assess the significance of combining the deregulation of different members of the p53 family to define the outcome of the disease.
Collapse
|
24
|
Yan C, Xu Z, Huang W. Cellular Senescence Affects Cardiac Regeneration and Repair in Ischemic Heart Disease. Aging Dis 2021; 12:552-569. [PMID: 33815882 PMCID: PMC7990367 DOI: 10.14336/ad.2020.0811] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/11/2020] [Indexed: 01/10/2023] Open
Abstract
Ischemic heart disease (IHD) is defined as a syndrome of ischemic cardiomyopathy. Myogenesis and angiogenesis in the ischemic myocardium are important for cardiomyocyte (CM) survival, improving cardiac function and decreasing the progression of heart failure after IHD. Cellular senescence is a state of permanent irreversible cell cycle arrest caused by stress that results in a decline in cellular functions, such as proliferation, migration, homing, and differentiation. In addition, senescent cells produce the senescence-associated secretory phenotype (SASP), which affects the tissue microenvironment and surrounding cells by secreting proinflammatory cytokines, chemokines, growth factors, and extracellular matrix degradation proteins. The accumulation of cardiovascular-related senescent cells, including vascular endothelial cells (VECs), vascular smooth muscle cells (VSMCs), CMs and progenitor cells, is an important risk factor of cardiovascular diseases, such as vascular aging, atherosclerotic plaque formation, myocardial infarction (MI) and ventricular remodeling. This review summarizes the processes of angiogenesis, myogenesis and cellular senescence after IHD. In addition, this review focuses on the relationship between cellular senescence and cardiovascular disease and the mechanism of cellular senescence. Finally, we discuss a potential therapeutic strategy for MI targeting senescent cells.
Collapse
Affiliation(s)
- Chi Yan
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi, China.
- Department of Cardiology, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Guangxi, China.
| | - Zhimeng Xu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China.
| | - Weiqiang Huang
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi, China.
- Department of Cardiology, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Guangxi, China.
| |
Collapse
|
25
|
Soond SM, Savvateeva LV, Makarov VA, Gorokhovets NV, Townsend PA, Zamyatnin AA. Making Connections: p53 and the Cathepsin Proteases as Co-Regulators of Cancer and Apoptosis. Cancers (Basel) 2020; 12:cancers12113476. [PMID: 33266503 PMCID: PMC7700648 DOI: 10.3390/cancers12113476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This article describes an emerging area of significant interest in cancer and cell death and the relationships shared by these through the p53 and cathepsin proteins. While it has been demonstrated that the p53 protein can directly induce the leakage of cathepsin proteases from the lysosome, directly triggering cell death, little is known about what factors set the threshold at which the lysosome can become permeabilized. It appears that the expression levels of cathepsin proteases may be central to this process, with some of them being transcriptionally regulated by p53. The consequences of such a mechanism have serious implications for lysosomal-mediated apoptosis and have significant input into the design of therapeutics and their strategic use. In this review, we highlight the importance of extending such findings to other cathepsin family members and the need to assess the roles of p53 isoforms and mutants in furthering this mechanism. Abstract While viewed as the “guardian of the genome”, the importance of the tumor suppressor p53 protein has increasingly gained ever more recognition in modulating additional modes of action related to cell death. Slowly but surely, its importance has evolved from a mutated genetic locus heavily implicated in a wide array of cancer types to modulating lysosomal-mediated cell death either directly or indirectly through the transcriptional regulation of the key signal transduction pathway intermediates involved in this. As an important step in determining the fate of cells in response to cytotoxicity or during stress response, lysosomal-mediated cell death has also become strongly interwoven with the key components that give the lysosome functionality in the form of the cathepsin proteases. While a number of articles have been published highlighting the independent input of p53 or cathepsins to cellular homeostasis and disease progression, one key area that warrants further focus is the regulatory relationship that p53 and its isoforms share with such proteases in regulating lysosomal-mediated cell death. Herein, we review recent developments that have shaped this relationship and highlight key areas that need further exploration to aid novel therapeutic design and intervention strategies.
Collapse
Affiliation(s)
- Surinder M. Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
- Correspondence: (S.M.S.); (A.A.Z.J.)
| | - Lyudmila V. Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Vladimir A. Makarov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Neonila V. Gorokhovets
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Paul A. Townsend
- Division of Cancer Sciences and Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, and the NIHR Manchester Biomedical Research Centre, Manchester M13 9PL, UK;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Correspondence: (S.M.S.); (A.A.Z.J.)
| |
Collapse
|
26
|
Single-Cell RNA Sequencing Unravels Heterogeneity of the Stromal Niche in Cutaneous Melanoma Heterogeneous Spheroids. Cancers (Basel) 2020; 12:cancers12113324. [PMID: 33182777 PMCID: PMC7697260 DOI: 10.3390/cancers12113324] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/21/2022] Open
Abstract
Heterogeneous spheroids have recently acquired a prominent position in melanoma research because they incorporate microenvironmental cues relevant for melanoma. In this study, we focused on the analysis of microenvironmental factors introduced in melanoma heterogeneous spheroids by different dermal fibroblasts. We aimed to map the fibroblast diversity resulting from previously acquired damage caused by exposure to extrinsic and intrinsic stimuli. To construct heterogeneous melanoma spheroids, we used normal dermal fibroblasts from the sun-protected skin of a juvenile donor. We compared them to the fibroblasts from the sun-exposed photodamaged skin of an adult donor. Further, we analysed the spheroids by single-cell RNA sequencing. To validate transcriptional data, we also compared the immunohistochemical analysis of heterogeneous spheroids to melanoma biopsies. We have distinguished three functional clusters in primary human fibroblasts from melanoma spheroids. These clusters differed in the expression of (a) extracellular matrix-related genes, (b) pro-inflammatory factors, and (c) TGFβ signalling superfamily. We observed a broader deregulation of gene transcription in previously photodamaged cells. We have confirmed that pro-inflammatory cytokine IL-6 significantly enhances melanoma invasion to the extracellular matrix in our model. This supports the opinion that the aspects of ageing are essential for reliable melanoma 3D modelling in vitro.
Collapse
|
27
|
Jiang D, Liu C, Chen Y, Xing X, Zheng D, Guo Z, Lin S. Metabolomics Study of Whole-body Vibration on Lipid Metabolism of Skeletal Muscle in Aging Mice. Int J Sports Med 2020; 42:464-477. [PMID: 33124015 DOI: 10.1055/a-1268-8458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ageing increases the occurrence and development of many diseases. Exercise is believed to be an effective way to improve ageing and skeletal muscle atrophy. However, many elderly people are unable to engage in active exercise. Whole-body vibration is a passive way of moving that is especially suitable for the elderly and people who find it inconvenient to exercise. Metabolomics is the systematic study of metabolic changes in small molecules. In this study, metabolomics studies were performed to investigate the regulatory effect of whole-body vibration on the skeletal muscles of ageing mice. After 12 weeks, we found that whole-body vibration had the most obvious effect on lipid metabolism pathways (such as linoleic acid, α-linolenic acid metabolism, glycerophospholipid metabolism pathways) in skeletal muscle of ageing mice. Through further research we found that whole-body vibration decreased the levels of triglycerides, total cholesterol, low-density lipoprotein cholesterol and very low-density lipoprotein in blood; decreased the lipid deposition in skeletal muscle; decreased the protein expression of monocyte chemoattractant protein-1 and interleukin-6; improved the protein levels of phosphorylated insulin receptor substrate-1, phosphate phosphoinositide 3-kinase and p-AKT; improved the protein levels of klotho; and decreased the protein expression of p53. These findings reveal that whole-body vibration might postpone senility by attenuating lipid deposition and reducing chronic inflammation and the insulin resistance of skeletal muscle.
Collapse
Affiliation(s)
- Dingwen Jiang
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou.,Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou
| | - Chang Liu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou
| | - Ye Chen
- College of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou
| | - Xuejiao Xing
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou
| | - Danmeng Zheng
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou
| | - Zhanpeng Guo
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou
| | - Sen Lin
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou
| |
Collapse
|
28
|
Dhalla PS, Kaul A, Garcia J, Bapatla A, Khalid R, Armenta-Quiroga AS, Khan S. Comparing the Role of the p53 Gene and Telomerase Enzyme in 'Accelerated Aging Due to Cancer': A Literature Review. Cureus 2020; 12:e10794. [PMID: 33163298 PMCID: PMC7641464 DOI: 10.7759/cureus.10794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/04/2020] [Indexed: 11/05/2022] Open
Abstract
Aging is defined as progressive physiological alterations in an organism that lead to senescence. In response to stress, when proliferative-competent cells undergo permanent, irreversible growth arrest (like replicative dividing limit, oncogene activation, oxidative stress, or deoxyribonucleic acid (DNA) damage), it is termed as cellular senescence. Biomarkers p53, telomerase, and other inflammatory cytokines have a vital link with senescence, and directed use of these markers might be useful in manipulating cancer and the aging process. We included studies related to topics ' accelerated aging due to cancer', telomerase's relation to Aging and Cancer, p53's relation to Aging and Cancer, Atherosclerosis and Cancer from Search databases like PubMed and Google Scholar. We relied on peer-reviewed articles and included literature from the last 10 years written in the English language. Degenerative diseases in humans are usually linked to atherosclerosis, and atherosclerosis is associated with short leukocyte telomere length. Cancer itself and its treatment are linked with accelerated aging by causing progressive shortening of telomeres during cell replication, resulting in cell death. Gene p53 is known to have a dual effect that works as a tumor suppressor and has pro-aging side effects. In experimental studies, when p53 overcomes multiple regulatory mechanisms controlling its activity, then only the pro-aging side effects of p53 manifested. This might be a potential key for treating cancer without causing the side-effects of aging. In this review, we aim to explain and summarize the interdependent nature of p53, telomeres, and other conventional mechanisms of aging and cancer like inflammation, oxidative stress, uncontrolled proliferation, angiogenesis, micro ribonucleic acids (RNAs), and apoptosis, with a more synergistic approach that can help in developing new therapeutics and play a potential role in shaping modern human lifespan and revolutionize cancer treatment.
Collapse
Affiliation(s)
| | - Arunima Kaul
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jian Garcia
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Anusha Bapatla
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Raheela Khalid
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ana S Armenta-Quiroga
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
29
|
El-Far AH, Lebda MA, Noreldin AE, Atta MS, Elewa YHA, Elfeky M, Mousa SA. Quercetin Attenuates Pancreatic and Renal D-Galactose-Induced Aging-Related Oxidative Alterations in Rats. Int J Mol Sci 2020; 21:E4348. [PMID: 32570962 PMCID: PMC7352460 DOI: 10.3390/ijms21124348] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Aging is an oxidative stress-associated process that progresses with age. Our aim is to delay or attenuate these oxidative alterations and to keep individuals healthy as they age using natural compounds supplementation. Therefore, we conducted the present study to investigate the protective potentials of quercetin against D-galactose (D-gal)-associated oxidative alterations that were induced experimentally in male Wistar rats. Forty-five rats were randomly allocated into five groups of nine rats each. The groups were a control group that was reared on a basal diet and injected subcutaneously with 120 mg D-gal dissolved in physiological saline solution (0.9% NaCl) per kg body weight daily and quercetin-treated groups that received the same basal diet and subcutaneous daily D-gal injections were supplemented orally with 25, 50, and 100 mg of quercetin per kg body weight for 42 days. Pancreatic and renal samples were subjected to histopathological, immunohistochemical, and relative mRNA expression assessments. Aging (p53, p21, IL-6, and IL-8), apoptotic (Bax, CASP-3, and caspase-3 protein), proliferative (Ki67 protein), antiapoptotic (Bcl2 and Bcl2 protein), inflammatory (NF-κB, IL-1β, and TNF-α), antioxidant (SOD1), and functional markers (GCLC and GCLM genes and insulin, glucagon, and podocin proteins) were determined to evaluate the oxidative alterations induced by D-gal and the protective role of quercetin. D-gal caused oxidative alterations of the pancreas and kidneys observed via upregulations of aging, apoptotic, and inflammatory markers and downregulated the antiapoptotic, proliferative, antioxidant, and functional markers. Quercetin potentially attenuated these aging-related oxidative alterations in a dose-dependent manner. Finally, we can conclude that quercetin supplementation is considered as a promising natural protective compound that could be used to delay the aging process and to maintain human health.
Collapse
Affiliation(s)
- Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Mohamed A. Lebda
- Biochemistry Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt; (M.A.L.); (M.E.)
| | - Ahmed E. Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Mustafa S. Atta
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Yaser H. A. Elewa
- Histology and Cytology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Basic Veterinary Sciences, Hokkaido University, Sapporo 060-0818, Japan
| | - Mohamed Elfeky
- Biochemistry Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt; (M.A.L.); (M.E.)
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| |
Collapse
|
30
|
Agupitan AD, Neeson P, Williams S, Howitt J, Haupt S, Haupt Y. P53: A Guardian of Immunity Becomes Its Saboteur through Mutation. Int J Mol Sci 2020; 21:E3452. [PMID: 32414156 PMCID: PMC7278985 DOI: 10.3390/ijms21103452] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Awareness of the importance of immunity in controlling cancer development triggered research into the impact of its key oncogenic drivers on the immune response, as well as their value as targets for immunotherapy. At the heart of tumour suppression is p53, which was discovered in the context of viral infection and now emerges as a significant player in normal and cancer immunity. Wild-type p53 (wt p53) plays fundamental roles in cancer immunity and inflammation. Mutations in p53 not only cripple wt p53 immune functions but also sinisterly subvert the immune function through its neomorphic gain-of-functions (GOFs). The prevalence of mutant p53 across different types of human cancers, which are associated with inflammatory and immune dysfunction, further implicates mutant p53 in modulating cancer immunity, thereby promoting tumorigenesis, metastasis and invasion. In this review, we discuss several mutant p53 immune GOFs in the context of the established roles of wt p53 in regulating and responding to tumour-associated inflammation, and regulating innate and adaptive immunity. We discuss the capacity of mutant p53 to alter the tumour milieu to support immune dysfunction, modulate toll-like receptor (TLR) signalling pathways to disrupt innate immunity and subvert cell-mediated immunity in favour of immune privilege and survival. Furthermore, we expose the potential and challenges associated with mutant p53 as a cancer immunotherapy target and underscore existing therapies that may benefit from inquiry into cancer p53 status.
Collapse
Affiliation(s)
- Arjelle Decasa Agupitan
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
| | - Paul Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia
| | - Scott Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia;
| | - Jason Howitt
- School of Health Sciences, Swinburne University, Melbourne 3122, Victoria, Australia;
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Department of Clinical Pathology, University of Melbourne, Parkville 3010, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
31
|
Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A. Role of p53 in the Regulation of Cellular Senescence. Biomolecules 2020; 10:biom10030420. [PMID: 32182711 PMCID: PMC7175209 DOI: 10.3390/biom10030420] [Citation(s) in RCA: 352] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The p53 transcription factor plays a critical role in cellular responses to stress. Its activation in response to DNA damage leads to cell growth arrest, allowing for DNA repair, or directs cellular senescence or apoptosis, thereby maintaining genome integrity. Senescence is a permanent cell-cycle arrest that has a crucial role in aging, and it also represents a robust physiological antitumor response, which counteracts oncogenic insults. In addition, senescent cells can also negatively impact the surrounding tissue microenvironment and the neighboring cells by secreting pro-inflammatory cytokines, ultimately triggering tissue dysfunction and/or unfavorable outcomes. This review focuses on the characteristics of senescence and on the recent advances in the contribution of p53 to cellular senescence. Moreover, we also discuss the p53-mediated regulation of several pathophysiological microenvironments that could be associated with senescence and its development.
Collapse
Affiliation(s)
- Mahmut Mijit
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Biotechnologies, University of Siena, 67100 Siena, Italy
| | - Valentina Caracciolo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Antonio Melillo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Fernanda Amicarelli
- Department of Medical Biotechnologies, University of Siena, 67100 Siena, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 53100 L’Aquila, Italy
- Correspondence:
| |
Collapse
|
32
|
Berlanga-Acosta JA, Guillén-Nieto GE, Rodríguez-Rodríguez N, Mendoza-Mari Y, Bringas-Vega ML, Berlanga-Saez JO, García del Barco Herrera D, Martinez-Jimenez I, Hernandez-Gutierrez S, Valdés-Sosa PA. Cellular Senescence as the Pathogenic Hub of Diabetes-Related Wound Chronicity. Front Endocrinol (Lausanne) 2020; 11:573032. [PMID: 33042026 PMCID: PMC7525211 DOI: 10.3389/fendo.2020.573032] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/13/2020] [Indexed: 01/10/2023] Open
Abstract
Diabetes is constantly increasing at a rate that outpaces genetic variation and approaches to pandemic magnitude. Skin cells physiology and the cutaneous healing response are progressively undermined in diabetes which predisposes to lower limb ulceration, recidivism, and subsequent lower extremities amputation as a frightened complication. The molecular operators whereby diabetes reduces tissues resilience and hampers the repair mechanisms remain elusive. We have accrued the notion that diabetic environment embraces preconditioning factors that definitively propel premature cellular senescence, and that ulcer cells senescence impair the healing response. Hyperglycemia/oxidative stress/mitochondrial and DNA damage may act as major drivers sculpturing the senescent phenotype. We review here historical and recent evidences that substantiate the hypothesis that diabetic foot ulcers healing trajectory, is definitively impinged by a self-expanding and self-perpetuative senescent cells society that drives wound chronicity. This society may be fostered by a diabetic archetypal secretome that induces replicative senescence in dermal fibroblasts, endothelial cells, and keratinocytes. Mesenchymal stem cells are also susceptible to major diabetic senescence drivers, which accounts for the inability of these cells to appropriately assist in diabetics wound healing. Thus, the use of autologous stem cells has not translated in significant clinical outcomes. Novel and multifaceted therapeutic approaches are required to pharmacologically mitigate the diabetic cellular senescence operators and reduce the secondary multi-organs complications. The senescent cells society and its adjunctive secretome could be an ideal local target to manipulate diabetic ulcers and prevent wound chronification and acute recidivism. This futuristic goal demands harnessing the diabetic wound chronicity epigenomic signature.
Collapse
Affiliation(s)
- Jorge A. Berlanga-Acosta
- The Clinical Hospital Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, China
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | - Gerardo E. Guillén-Nieto
- The Clinical Hospital Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, China
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | - Nadia Rodríguez-Rodríguez
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | - Yssel Mendoza-Mari
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | - Maria Luisa Bringas-Vega
- The Clinical Hospital Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Playa, Cuba
| | - Jorge O. Berlanga-Saez
- Applied Mathematics Department, Institute of Mathematics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diana García del Barco Herrera
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | - Indira Martinez-Jimenez
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | | | - Pedro A. Valdés-Sosa
- The Clinical Hospital Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Playa, Cuba
- *Correspondence: Pedro A. Valdés-Sosa
| |
Collapse
|