1
|
Vecchio E, Marino R, Mimmi S, Canale C, Caiazza C, Arcucci A, Ruocco MR, Schiavone M, Santamaria G, Palmieri C, Iaccino E, Mallardo M, Quinto I, Fiume G. Enhanced pro-apoptotic activity of rituximab through IBTK silencing in non-Hodgkin lymphoma B-cells. Front Oncol 2024; 14:1339584. [PMID: 38371626 PMCID: PMC10869532 DOI: 10.3389/fonc.2024.1339584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Rituximab is a commonly used chemotherapeutic drug for patients with aggressive lymphomas, such as non-Hodgkin's lymphoma (NHL). Currently, the combination of Rituximab and chemotherapy (R-CHOP) stands as the most prevalent first-line therapy for NHL. Nevertheless, the development of new therapeutic approaches remains imperative. An increasing body of evidence highlights a novel role for IBTK in tumorigenesis and cancer growth. In this study, we aim to broaden our understanding of IBTK's function in B-lymphoma, with a particular focus on its impact on the expression of the oncogene MYC. Here, we assessed the effects of combining Rituximab with IBTK silencing on cell viability through cell cycle analysis and Annexin V assays in vitro. Furthermore, we leveraged the transplantability of Eμ-myc lymphomas to investigate whether the inhibition of IBTK could elicit anti-tumor effects in the treatment of lymphomas in vivo. Our data suggests that IBTK silencing may serve as an effective anti-tumor agent for aggressive B-Lymphomas, underscoring its role in promoting apoptosis when used in combination with Rituximab, both in in vitro and in vivo settings.
Collapse
Affiliation(s)
- Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Rossana Marino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Camilla Canale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Naples “Federico II”, Naples, Italy
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Marco Schiavone
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
2
|
Scicchitano S, Vecchio E, Battaglia AM, Oliverio M, Nardi M, Procopio A, Costanzo F, Biamonte F, Faniello MC. The Double-Edged Sword of Oleuropein in Ovarian Cancer Cells: From Antioxidant Functions to Cytotoxic Effects. Int J Mol Sci 2023; 24:ijms24010842. [PMID: 36614279 PMCID: PMC9821453 DOI: 10.3390/ijms24010842] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Oleuropein plays a key role as a pro-oxidant as well as an antioxidant in cancer. In this study, the activity of oleuropein, in an in vitro model of ovarian (OCCs) and breast cancer cells (BCCs) was investigated. Cell viability and cell death were analyzed. Oxidative stress was measured by CM-H2DCFDA flow cytometry assay. Mitochondrial dysfunction was evaluated based on mitochondrial reactive oxygen species (ROS) and GPX4 protein levels. Further, the effects on iron metabolism were analyzed by measuring the intracellular labile iron pool (LIP). We confirmed that high doses of oleuropein show anti-proliferative and pro-apoptotic activity on HEY and MCF-7 cells. Moreover, our results indicate that low doses of oleuropein impair cell viability without affecting the mortality of cells, and also decrease the LIP and ROS levels, keeping them unchanged in MCF-7 cells. For the first time, our data show that low doses of oleuropein reduce erastin-mediated cell death. Interestingly, oleuropein decreases the levels of intracellular ROS and LIP in OCCs treated with erastin. Noteworthily, we observed an increased amount of ROS scavenging enzyme GPX4 together with a consistent reduction in mitochondrial ROS, confirming a reduction in oxidative stress in this model.
Collapse
Affiliation(s)
- Stefania Scicchitano
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Eleonora Vecchio
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Centre of Services, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Martina Battaglia
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Manuela Oliverio
- Department of Health Science, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Monica Nardi
- Department of Health Science, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Procopio
- Department of Health Science, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| | - Francesco Costanzo
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Centre of Services, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Flavia Biamonte
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Centre of Services, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Concetta Faniello
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Zhao Y, Huang Z, Peng H. Molecular Mechanisms of Ferroptosis and Its Roles in Hematologic Malignancies. Front Oncol 2021; 11:743006. [PMID: 34778060 PMCID: PMC8582018 DOI: 10.3389/fonc.2021.743006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
Cell death is essential for the normal metabolism of human organisms. Ferroptosis is a unique regulated cell death (RCD) mode characterized by excess accumulation of iron-dependent lipid peroxide and reactive oxygen species (ROS) compared with other well-known programmed cell death modes. It has been currently recognized that ferroptosis plays a rather important role in the occurrence, development, and treatment of traumatic brain injury, stroke, acute kidney injury, liver damage, ischemia-reperfusion injury, tumor, etc. Of note, ferroptosis may be explained by the expression of various molecules and signaling components, among which iron, lipid, and amino acid metabolism are the key regulatory mechanisms of ferroptosis. Meanwhile, tumor cells of hematological malignancies, such as leukemia, lymphoma, and multiple myeloma (MM), are identified to be sensitive to ferroptosis. Targeting potential regulatory factors in the ferroptosis pathway may promote or inhibit the disease progression of these malignancies. In this review, a systematic summary was conducted on the key molecular mechanisms of ferroptosis and the current potential relationships of ferroptosis with leukemia, lymphoma, and MM. It is expected to provide novel potential therapeutic approaches and targets for hematological malignancies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
- Institute of Hematology, Central South University, Changsha, China
| | - Zineng Huang
- Department of Hematology, The Second Xiangya Hospital, Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
- Institute of Hematology, Central South University, Changsha, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
- Institute of Hematology, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, China
| |
Collapse
|
4
|
Nisticò N, Maisano D, Iaccino E, Vecchio E, Fiume G, Rotundo S, Quinto I, Mimmi S. Role of Chronic Lymphocytic Leukemia (CLL)-Derived Exosomes in Tumor Progression and Survival. Pharmaceuticals (Basel) 2020; 13:E244. [PMID: 32937811 PMCID: PMC7557731 DOI: 10.3390/ph13090244] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B-lymphoproliferative disease, which consists of the abnormal proliferation of CD19/CD5/CD20/CD23 positive lymphocytes in blood and lymphoid organs, such as bone marrow, lymph nodes and spleen. The neoplastic transformation and expansion of tumor B cells are commonly recognized as antigen-driven processes, mediated by the interaction of antigens with the B cell receptor (BCR) expressed on the surface of B-lymphocytes. The survival and progression of CLL cells largely depend on the direct interaction of CLL cells with receptors of accessory cells of tumor microenvironment. Recently, much interest has been focused on the role of tumor release of small extracellular vesicles (EVs), named exosomes, which incorporate a wide range of biologically active molecules, particularly microRNAs and proteins, which sustain the tumor growth. Here, we will review the role of CLL-derived exosomes as diagnostic and prognostic biomarkers of the disease.
Collapse
Affiliation(s)
- Nancy Nisticò
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Domenico Maisano
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Salvatore Rotundo
- Department of Health Sciences–University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| |
Collapse
|
5
|
Ferrad M, Ghazzaui N, Issaoui H, Cook-Moreau J, Denizot Y. Mouse Models of c-myc Deregulation Driven by IgH Locus Enhancers as Models of B-Cell Lymphomagenesis. Front Immunol 2020; 11:1564. [PMID: 32793219 PMCID: PMC7390917 DOI: 10.3389/fimmu.2020.01564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/15/2020] [Indexed: 01/18/2023] Open
Abstract
Chromosomal translocations linking various oncogenes to transcriptional enhancers of the immunoglobulin heavy chain (IgH) locus are often implicated as the cause of B-cell malignancies. Two major IgH transcriptional enhancers have been reported so far. The Eμ enhancer located upstream of the Cμ gene controls early events in B-cell maturation such as VDJ recombination. The 3' regulatory region (3'RR) located downstream from the Cα gene controls late events in B-cell maturation such as IgH transcription, somatic hypermutation, and class switch recombination. Convincing demonstrations of the essential contributions of both Eμ and 3'RR in B-cell lymphomagenesis have been provided by transgenic and knock-in animal models which bring the oncogene c-myc under Eμ/3'RR transcriptional control. This short review summarizes the different mouse models so far available and their interests/limitations for progress in our understanding of human c-myc-induced B-cell lymphomagenesis.
Collapse
Affiliation(s)
- Melissa Ferrad
- Inserm U1262, UMR CNRS 7276, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| | - Nour Ghazzaui
- Inserm U1262, UMR CNRS 7276, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| | - Hussein Issaoui
- Inserm U1262, UMR CNRS 7276, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| | - Jeanne Cook-Moreau
- Inserm U1262, UMR CNRS 7276, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| | - Yves Denizot
- Inserm U1262, UMR CNRS 7276, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| |
Collapse
|
6
|
Vecchio E, Fiume G, Correnti S, Romano S, Iaccino E, Mimmi S, Maisano D, Nisticò N, Quinto I. Insights about MYC and Apoptosis in B-Lymphomagenesis: An Update from Murine Models. Int J Mol Sci 2020; 21:E4265. [PMID: 32549409 PMCID: PMC7352788 DOI: 10.3390/ijms21124265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/18/2023] Open
Abstract
The balance between cell survival and cell death represents an essential part of human tissue homeostasis, while altered apoptosis contributes to several pathologies and can affect the treatment efficacy. Impaired apoptosis is one of the main cancer hallmarks and some types of lymphomas harbor mutations that directly affect key regulators of cell death (such as BCL-2 family members). The development of novel techniques in the field of immunology and new animal models has greatly accelerated our understanding of oncogenic mechanisms in MYC-associated lymphomas. Mouse models are a powerful tool to reveal multiple genes implicated in the genesis of lymphoma and are extensively used to clarify the molecular mechanism of lymphoma, validating the gene function. Key features of MYC-induced apoptosis will be discussed here along with more recent studies on MYC direct and indirect interactors, including their cooperative action in lymphomagenesis. We review our current knowledge about the role of MYC-induced apoptosis in B-cell malignancies, discussing the transcriptional regulation network of MYC and regulatory feedback action of miRs during MYC-driven lymphomagenesis. More importantly, the finding of new modulators of apoptosis now enabling researchers to translate the discoveries that have been made in the laboratory into clinical practice to positively impact human health.
Collapse
Affiliation(s)
- Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (S.C.); (S.R.); (E.I.); (S.M.); (D.M.); (N.N.)
| | | | | | | | | | | | | | | | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (S.C.); (S.R.); (E.I.); (S.M.); (D.M.); (N.N.)
| |
Collapse
|