1
|
Li R, Ma L, Geng Y, Chen X, Zhu J, Zhu H, Wang D. Uteroplacental microvascular remodeling in health and disease. Acta Physiol (Oxf) 2025; 241:e70035. [PMID: 40156319 DOI: 10.1111/apha.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/10/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
The microvascular system is essential for delivering oxygen and nutrients to tissues while removing metabolic waste. During pregnancy, the uteroplacental microvascular system undergoes extensive remodeling to meet the increased demands of the fetus. Key adaptations include vessel dilation and increases in vascular volume, density, and permeability, all of which ensure adequate placental perfusion while maintaining stable maternal blood pressure. Structural and functional abnormalities in the uteroplacental microvasculature are associated with various gestational complications, posing both immediate and long-term risks to the health of both mother and infant. In this review, we describe the changes in uteroplacental microvessels during pregnancy, discuss the pathogenic mechanisms underlying diseases such as preeclampsia, fetal growth restriction, and gestational diabetes, and summarize current clinical and research approaches for monitoring microvascular health. We also provide an update on research models for gestational microvascular complications and explore solutions to several unresolved challenges. With advancements in research techniques, we anticipate significant progress in understanding and managing these diseases, ultimately leading to new therapeutic strategies to improve maternal and fetal health.
Collapse
Affiliation(s)
- Ruizhi Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Ma
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yingchun Geng
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaoxue Chen
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiaxi Zhu
- Life Sciences, Faculty of Arts & Science, University of Toronto - St. George Campus, Toronto, Ontario, Canada
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Dong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Jaswal P, Bansal S, Chaudhary R, Basu J, Bansal N, Kumar S. Nitric oxide: Potential therapeutic target in Heat Stress-induced Multiple Organ Dysfunction. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2535-2546. [PMID: 39466442 DOI: 10.1007/s00210-024-03556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024]
Abstract
As climate change intensifies, urgent action is needed to address global warming and its associated health risks, particularly in vulnerable regions. Rising global temperature and increasing frequency of heatwaves present a hidden health risk, disrupting the body's temperature regulation and leading to severe consequences such as heat stress-induced multiple organ dysfunction (HS-MOD). Multiple organ injury triggered by heat stress involves complex molecular pathways such as nitric oxide dysregulation, inflammation, oxidative stress, mitochondrial dysfunction, calcium homeostasis disruption, and autophagy impairment that contribute to cellular damage. Understanding these molecular pathways is crucial for developing targeted therapeutic interventions to alleviate the impact of heat stress (HS). As we explore numerous therapeutic strategies, a remarkable molecule captures our attention: nitric oxide (NO). This colorless gas, mainly produced by nitric oxide synthase (NOS) enzymes, plays crucial roles in various body functions. From promoting vasodilation and neurotransmission to regulating the immune response, platelet function, cell signaling, and reproductive health, NO stands out for its versatility. Exploring it as a promising treatment for heat stress-induced multiple organ injury highlights its distinctive features in the journey towards effective therapeutic interventions. This involves exploring both pharmacological avenues, considering the use of NO donors and antioxidants, and non-pharmacological strategies, such as adopting nitrate-rich diets and engaging in exercise regimens. This review highlights the concept of heat stress, the molecular framework of the disease, and treatment options based upon some new interventions.
Collapse
Affiliation(s)
- Priya Jaswal
- Department of Pharmacology, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Seema Bansal
- Department of Pharmacology, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| | - Rishabh Chaudhary
- Department of Pharmacology, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Jhilli Basu
- Department of Pharmacology, Institute of Medical Sciences Krishnanagar, Naida, West Bengal, India
| | - Nitin Bansal
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, India
| | - Subodh Kumar
- Experimental Medicine & Biotechnology, Post Graduate Institute of Medical Sciences and Research (PGIMER), Chandigarh, India
| |
Collapse
|
3
|
Zhu C, Zhu B, Xu S, Li L, Song Y, Tang C. ARID1A: Multiple functions in human pregnancy. J Reprod Immunol 2025; 168:104448. [PMID: 39908786 DOI: 10.1016/j.jri.2025.104448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/05/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
AT-rich interacting domain containing respectively protein 1 A (ARID1A), a key member of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex, has been shown to play an important role in various physiological processes and diseases including female reproductive tumors, such as ovarian cancer and breast cancer. In addition to the studies regarding ARID1A expression and function in cancer, recent findings elucidate its important role in maintaining normal tissue homeostasis and cell differentiation by controlling chromatin remodeling and transcription factors recruitment. In the context of human pregnancy, ARID1A has been implicated in several pregnancy-related complications, including gestational diabetes, preeclampsia, and intrauterine growth restriction. This review examines the current research on the role of ARID1A in pregnancy, highlighting its potential as a biomarker and therapeutic target for these complications. Understanding the involvement of ARID1A in placental function and pregnancy-related disorders may provide valuable insights for the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Chongying Zhu
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; The Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Bingquan Zhu
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Shouying Xu
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Lin Li
- Department of Urology, Third Affiliated Hospital, Naval Medical University, Shanghai, 201805, China
| | - Yanhua Song
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Chao Tang
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| |
Collapse
|
4
|
Xu X, Yu Y, Fan J, Shen S, Zhao Z, Ding S, Zhang J, Xu Z, Wang Y, Han L, Tang Y. Chronobiological Patterns and Risk of Acute Aortic Dissection: A Clinical Retrospective and Two-Sample Mendelian Randomisation Study. Heart Lung Circ 2024:S1443-9506(24)01869-9. [PMID: 39709285 DOI: 10.1016/j.hlc.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 12/23/2024]
Abstract
AIM Acute aortic dissection (AAD) represents a cardiovascular ailment characterised by a notable mortality rate. Chronobiological patterns can offer a predictive framework for anticipating the onset of AAD. METHOD Data were gathered from 1,151 patients diagnosed with AAD at Changhai Hospital in Shanghai, China, spanning 2000-2023. The χ2 test was used to assess whether specific periods exhibited significantly different seasonal/weekly distributions compared with others. Fourier models were utilised for the analysis of rhythmicity in monthly/circadian distribution. Publicly available genome-wide association studies datasets were used to establish the causal relationship between chronotype and AAD. Two sets of genetics instruments were used for analysis, derived from publicly available genetic summary data: 75 single-nucleotide polymorphisms (SNPs) significantly associated with chronotype; and SNPs associated with AAD in the FinnGen consortium. RESULTS The mean age was 51.5±13.8 years, with 665 patients (57.8%) aged <55 years. Among the 1,151 patients, 80.9% were male. The distribution of DeBakey types was 73.2% (843) for DeBakey I, 21% (242) for DeBakey II, and 5.7% (66) for DeBakey III. Comorbidities included hypertension in 58.5% (673 cases) and diabetes in 7.8% (90 cases). A peak occurred during colder periods (winter/December), and a trough was noted in warmer periods (summer/June). Weekly distribution exhibited no significant variation. Fourier analysis revealed a statistically significant circadian variation (p<0.0001) with a trough between 23:00 and 00:00, a prominent peak from 07:00 to 08:00, and a minor peak between 20:00 and 21:00. Subgroup analyses identified circadian rhythmicity in all subgroups, except for the DeBakey III group and the female group. Using the 75 chronotype-related SNPs, evidence was found of a potential causal effect of chronotype on the risk of AAD, as the inverse-variance weighting analysis showed that self-report chronotype of morningness was associated with a decreased risk of AAD. CONCLUSION The findings substantiate that the initiation of AAD displays noteworthy seasonal, monthly, and circadian patterns. The Mendelian randomisation analysis also indicated that the onset of acute aortic dissection is related to circadian rhythm. These findings offer a fresh perspective, facilitating the identification of triggering factors for AAD and bolstering preventive measures for this catastrophic event.
Collapse
Affiliation(s)
- Xiangyang Xu
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Yizhi Yu
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Jiefu Fan
- Naval Medical Center of PLA, Shanghai, China
| | | | - Zhimin Zhao
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Sufan Ding
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Jiajun Zhang
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Zhiyun Xu
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | | | - Lin Han
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Yangfeng Tang
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai, China.
| |
Collapse
|
5
|
van Poppel MNM, Kruse A, Carter AM. Maternal physical activity in healthy pregnancy: Effect on fetal oxygen supply. Acta Physiol (Oxf) 2024; 240:e14229. [PMID: 39262271 DOI: 10.1111/apha.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
AIM We review evidence for effects of physical activity before and during gestation on the course of pregnancy and ask if there are circumstances where physical activity can stress the fetus due to competition for oxygen and energy substrates. RESULTS We first summarize physiological responses to exercise in nonpregnant people and known physiological adaptations to pregnancy. Comparing the two, we conclude that physical activity prior to and continuing during gestation is beneficial to pregnancy outcome. The effect of starting an exercise regimen during pregnancy is less easy to assess as few studies have been undertaken. Results from animal models suggest that the effects of maternal exercise on the fetus are transient; the fetus can readily compensate for a short-term reduction in oxygen supply. CONCLUSION In general, we conclude that physical activity before and during pregnancy is beneficial, and exercise started during pregnancy is unlikely to affect fetal development. We caution, however, that there are circumstances where this may not apply. They include the intensive exercise regimens of elite athletes and pregnancies at high altitudes where hypoxia occurs even in the resting state.
Collapse
Affiliation(s)
| | - Annika Kruse
- Department of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Anthony M Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
de Alencar AKN, Swan KF, Mahapatra S, Lindsey SH, Pridjian GC, Bayer CL. GPER Stimulation Attenuates Cardiac Dysfunction in a Rat Model of Preeclampsia. Hypertension 2024; 81:e161-e172. [PMID: 39224973 PMCID: PMC11483207 DOI: 10.1161/hypertensionaha.123.22303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Preeclampsia poses a substantial clinical challenge, characterized by maternal hypertension, cardiac dysfunction, and persistent cardiovascular risks for both the mother and offspring. Despite the known roles of the estrogen receptor (GPER [G protein-coupled estrogen receptor]) in placental development, its impact on cardiovascular aspects within a preeclampsia animal model remains unexplored. We propose that G-1, a GPER agonist, could have the potential to regulate not only hypertension but also cardiac dysfunction in rats with preeclampsia. METHODS To explore the influence of G-1 on preeclampsia, we used the reduced uterine perfusion pressure (RUPP) model. RUPP rats were administered either G-1 (100 µg/kg per day) or hydralazine (25 mg/kg per day). We conducted echocardiography to probe the intricate cardiac effects of G-1. RESULTS The RUPP rat model revealed signs of hypertension and cardiac dysfunction and alterations in gene and protein expression within placental and heart tissues. G-1 treatment reduced blood pressure and reversed cardiac dysfunction in rats with preeclampsia. In contrast, administration of the vasodilator hydralazine reduced blood pressure without an improvement in cardiac function. In addition, while G-1 treatment restored the levels of sFLT-1 (soluble fms-like tyrosine kinase-1) in RUPP rats, hydralazine did not normalize this antiangiogenic factor. CONCLUSIONS The therapeutic intervention of G-1 significantly mitigated the cardiovascular dysfunction observed in the RUPP rat model of preeclampsia. This discovery underscores the broader significance of understanding GPER's role in the context of preeclampsia-related cardiovascular complications.
Collapse
Affiliation(s)
| | - Kenneth F. Swan
- Department of Obstetrics & Gynecology, Tulane University, New Orleans, LA, 70112, USA
| | - Smruti Mahapatra
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Sarah H. Lindsey
- Department of Pharmacology, Tulane University, New Orleans, LA, 70112, USA
| | - Gabriella C. Pridjian
- Department of Obstetrics & Gynecology, Tulane University, New Orleans, LA, 70112, USA
| | - Carolyn L. Bayer
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
- Department of Obstetrics & Gynecology, Tulane University, New Orleans, LA, 70112, USA
| |
Collapse
|
7
|
Donno V, Prats P, Rodriguez I, Polyzos NP. First-trimester uterine artery pulsatility index and preeclampsia risk in pregnancies after artificial frozen embryo transfer: analysis of over 27,000 pregnancies. Am J Obstet Gynecol 2024:S0002-9378(24)01105-0. [PMID: 39477051 DOI: 10.1016/j.ajog.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Accumulating evidence indicates that pregnancies after artificial cycle frozen embryo transfer are associated with an increased risk of preeclampsia. Uterine artery Doppler, along with maternal factors and serum biomarkers, is a crucial biomarker for first-trimester preeclampsia screening, aiding in identifying "high-risk" patients. Guidelines strongly recommend administering aspirin (150 mg/d) in these women, owing to robust evidence demonstrating a 62% reduction in the incidence of preeclampsia. Although previous studies suggested lower uterine artery pulsatility index after frozen embryo transfer, no previous studies explored the impact of the type of endometrial preparation in Uterine Artery Doppler or its influence on estimating first-trimester preeclampsia risk. OBJECTIVE The study aims to evaluate the possible impact of endometrial preparation for frozen embryo transfer on the uterine artery pulsatility index during the first-trimester preeclampsia screening. STUDY DESIGN This is a retrospective single-center study including 27,289 singleton pregnancies (naturally conceived or after assisted reproductive treatment) who underwent the first-trimester ultrasound screening at our University Hospital between January 2010 and May 2023. Overall, 27,289 pregnancies were included: 23,410 naturally conceived and 3879 following assisted reproductive technologies including 391 after ovulation induction and intrauterine insemination, 888 in vitro fertilization and fresh embryo transfer, and 2600 natural or artificial frozen embryo transfer cycles. An analysis of covariance was conducted to assess if there is an association between the uterine artery pulsatility index value and the mode of conception, adjusting for confounding factors (age, weight, smoking, and oocyte donation). RESULTS Overall, pregnancies after artificial frozen embryo transfer demonstrated significantly lower first-trimester uterine artery pulsatility index as compared with all other modes of conception in a multivariable regression analysis adjusted for age, weight, smoking, and oocyte donation. The percent difference was 22.6 [confidence interval, CI 95%: 20.6; 24.5] compared to naturally conceived pregnancy, 24.5 [CI 95%: 20.7; 28.1] to ovulation induction or intrauterine insemination, 24.8 [CI 95%: 22.9; 27.6] to fresh embryo transfer and 21.7 [CI 95%: 17.6; 25.5] compared to natural cycle frozen embryo transfer. When calculating the risk for initiating preventive aspirin administration, the number of patients with increased risk (>1/100) who initiated prophylactic aspirin was significantly lower in the artificial cycle frozen embryo transfer group (7.8% vs 16.0% in natural cycle P<.001 vs 11.0% in Fresh embryo transfer P=.01 vs 10.5% in ovulation induction or intrauterine insemination P=.14 vs 9.3% in naturally conceived pregnancy P=.03). Surprisingly although significantly fewer patients were considered at high risk for preeclampsia in the artificial cycle frozen embryo transfer group, analysis of the actual incidence of preeclampsia demonstrated 3 times higher preeclampsia incidence in artificial cycle group 5.3% (122/2284) as compared with naturally conceived 1.4% (321/23,410), ovulation induction and intrauterine insemination 1.3% (5/391) or natural cycle pregnancies 1.6% (5/316) and more than 2 times higher when compared to fresh embryo transfer pregnancies 2.3% (20/888), P<.001. CONCLUSION Pregnancies following frozen embryo transfer in artificial cycle are associated with significantly lower uterine artery pulsatility index during first-trimester preeclampsia screening. This results in a significantly lower number of patients being classified as high-risk for developing preeclampsia, despite accumulating evidence that artificial cycles are linked to an increased risk of preeclampsia. Therefore, the first-trimester preeclampsia risk algorithm should be adjusted to accurately assess risk for those patients undergoing artificial cycle frozen embryo transfer, to prevent the undertreatment of patients who are at very high risk of developing preeclampsia and may benefit from prophylactic aspirin.
Collapse
Affiliation(s)
- Valeria Donno
- Dexeus Fertility, Department of Obstetric Gynecology and Reproductive Medicine, Hospital Universitari Dexeus, Barcelona, Spain
| | - Pilar Prats
- Dexeus Mujer, Department of Obstetric Gynecology and Reproductive Medicine, Hospital Universitari Dexeus, Barcelona, Spain
| | - Ignacio Rodriguez
- Dexeus Fertility, Department of Obstetric Gynecology and Reproductive Medicine, Hospital Universitari Dexeus, Barcelona, Spain
| | - Nikolaos P Polyzos
- Dexeus Fertility, Department of Obstetric Gynecology and Reproductive Medicine, Hospital Universitari Dexeus, Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Ghent (UZ Gent), Gent, Belgium.
| |
Collapse
|
8
|
Tong J, Li H, Zhang L, Zhang C. The landscape of N1-methyladenosine (m 1A) modification in mRNA of the decidua in severe preeclampsia. BIOMOLECULES & BIOMEDICINE 2024; 24:1827-1847. [PMID: 38958464 PMCID: PMC11496874 DOI: 10.17305/bb.2024.10532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Recent discoveries in mRNA modification have highlighted N1-methyladenosine (m1A), but its role in preeclampsia (PE) pathogenesis remains unclear. In this study, we utilized methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) to identify m1A peaks and the expression profile of mRNA in the decidua of humans with early-onset PE (EPE), late-onset PE (LPE), and normal pregnancy (NP). We assessed the m1A modification patterns in preeclamptic decidua using 10 m1A modulators. Our bioinformatic analysis focused on differentially methylated mRNAs (DMGs) and differentially expressed mRNAs (DEGs) in pairwise comparisons of EPE vs. NP, LPE vs. NP, and EPE vs. LPE, as well as m1A-related DEGs. The comparisons of EPE vs. NP, LPE vs. NP, and EPE vs. LPE identified 3110, 2801, and 2818 DMGs, respectively. We discerned three different m1A modification patterns from this data. Further analysis revealed that key PE-related DMGs and m1A-related DEGs predominantly influence signaling pathways critical for decidualization, including cAMP, MAPK, PI3K-Akt, Notch, and TGF-β pathways. Additionally, these modifications impact pathways related to vascular smooth muscle contraction, estrogen signaling, and relaxin signaling, contributing to vascular dysfunction. Our findings demonstrate that preeclamptic decidua exhibits unique mRNA m1A modification patterns and gene expression profiles that significantly alter signaling pathways essential for both decidualization and vascular dysfunction. These differences in m1A modification patterns provide valuable insights into the molecular mechanisms influencing the decidualization process and vascular function in the pathogenesis of PE. These m1A modification regulators could potentially serve as potent biomarkers or therapeutic targets for PE, warranting further investigation.
Collapse
Affiliation(s)
- Jing Tong
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Hua Li
- Jinan Maternal and Child Health Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Liang Zhang
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Cong Zhang
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
| |
Collapse
|
9
|
Gupta SN, Madke B, Ganjre S, Jawade S, Kondalkar A. Cutaneous Changes During Pregnancy: A Comprehensive Review. Cureus 2024; 16:e69986. [PMID: 39445254 PMCID: PMC11497768 DOI: 10.7759/cureus.69986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Pregnancy induces various physiological changes in a woman's body that significantly impact the skin involving the face and trunk. This comprehensive review explores the cutaneous changes in these regions, driven by hormonal, mechanical, and immunological factors. Physiological changes such as hyperpigmentation, striae gravidarum, and vascular alterations are discussed in addition to pathological conditions like acrochordon (skin tags), pemphigoid gestationis, impetigo herpetiformis, and intrahepatic cholestasis of pregnancy. Understanding these changes is essential for healthcare providers to offer appropriate reassurance and management to expectant mothers. This review provides insights into dermatological changes on the face and trunk during pregnancy to contribute to better clinical care and support future research.
Collapse
Affiliation(s)
- Shreya N Gupta
- Dermatology, Venereology and Leprosy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Bhushan Madke
- Dermatology, Venereology and Leprosy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Samyak Ganjre
- Dermatology, Venereology and Leprosy, Shri Shankaracharya Institute of Medical Sciences, Durg, IND
| | - Sugat Jawade
- Dermatology, Venereology and Leprosy, Datta Meghe Medical College, Nagpur, IND
| | - Ambika Kondalkar
- Dermatology, Venereology and Leprosy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
10
|
Heinosalo T, Saarinen N, Biehl A, Rytkönen KT, Villa PM, Juhila J, Koskimies P, Laiho A, Hämäläinen E, Kajantie E, Räikkönen K, Elo LL, Laivuori H, Poutanen M. Serum hydroxysteroid (17beta) dehydrogenase 1 concentration in pregnant women correlates with pregnancy-associated plasma protein A but does not serve as an independent marker for preeclampsia†. Biol Reprod 2024; 111:436-447. [PMID: 38780059 DOI: 10.1093/biolre/ioae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/28/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
Hydroxysteroid (17beta) dehydrogenase 1 (HSD17B1) is a steroid synthetic enzyme expressed in ovarian granulosa cells and placental syncytiotrophoblasts. Here, HSD17B1 serum concentration was measured with a validated immunoassay during pregnancy at three time points (12-14, 18-20 and 26-28 weeks of gestation). The concentration increased 2.5-fold (P < 0.0001) and 1.7-fold (P = 0.0019) during the follow-up period for control women and women who later developed preeclampsia (PE), respectively, and a significant difference was observed at weeks 26-28 (P = 0.0266). HSD17B1 concentration at all the three time points positively correlated with serum PAPPA measured at the first time point (first time point r = 0.38, P = 1.1 × 10-10; second time point r = 0.27, P = 5.9 × 10-6 and third timepoint r = 0.26, P = 2.3 × 10-5). No correlation was observed between HSD17B1 and placental growth factor (PLGF). Serum HSD17B1 negatively correlated with the mother's weight and body mass index (BMI), mirroring the pattern observed for PAPPA. The univariable logistic regression identified a weak association between HSD17B1 at 26-28 weeks and later development of PE (P = 0.04). The best multivariable model obtained using penalized logistic regression with stable iterative variable selection at 26-28 weeks included HSD17B1, together with PLGF, PAPPA and mother's BMI. While the area under the receiver operating characteristic curve of the model was higher than that of the adjusted PLGF, the difference was not statistically significant. In summary, the serum concentration of HSD17B1 correlated with PAPPA, another protein expressed in syncytiotrophoblasts, and with mother's weight and BMI but could not be considered as an independent marker for PE.
Collapse
Affiliation(s)
- Taija Heinosalo
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Niina Saarinen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Forendo Pharma, Turku, Finland
| | - Alexander Biehl
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kalle T Rytkönen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Pia M Villa
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | | | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Esa Hämäläinen
- Department of Clinical Chemistry, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Eero Kajantie
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Finland
- Clinical Medicine Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Katri Räikkönen
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Hannele Laivuori
- Department of Obstetrics and Gynecology, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Center for Child, Adolescence and Maternal Health, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
11
|
Su L, Luo H, Yan Y, Yang Z, Lu J, Xu D, Du L, Liu J, Yang G, Chi H. Exploiting gender-based biomarkers and drug targets: advancing personalized therapeutic strategies in hepatocellular carcinoma. Front Pharmacol 2024; 15:1433540. [PMID: 38966543 PMCID: PMC11222576 DOI: 10.3389/fphar.2024.1433540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
This review systematically examines gender differences in hepatocellular carcinoma (HCC), identifying the influence of sex hormones, genetic variance, and environmental factors on the disease's epidemiology and treatment outcomes. Recognizing the liver as a sexually dimorphic organ, we highlight how gender-specific risk factors, such as alcohol consumption and obesity, contribute differently to hepatocarcinogenesis in men and women. We explore molecular mechanisms, including the differential expression of androgen and estrogen receptors, which mediate diverse pathways in tumor biology such as cell proliferation, apoptosis, and DNA repair. Our analysis underscores the critical need for gender-specific research in liver cancer, from molecular studies to clinical trials, to improve diagnostic accuracy and therapeutic effectiveness. By incorporating a gender perspective into all facets of liver cancer research, we advocate for a more precise and personalized approach to cancer treatment that acknowledges gender as a significant factor in both the progression of HCC and its response to treatment. This review aims to foster a deeper understanding of the biological and molecular bases of gender differences in HCC and to promote the development of tailored interventions that enhance outcomes for all patients.
Collapse
Affiliation(s)
- Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Huanyu Luo
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yalan Yan
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Zhongqiu Yang
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Jiaan Lu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Danqi Xu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Linjuan Du
- Department of Oncology, Dazhou Central Hospital, Dazhou, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| |
Collapse
|
12
|
Shaw LJ, Patel K, Lala-Trindade A, Feltovich H, Vieira L, Kontorovich A, Ananth C, Taqueti VR, Mitrani L, Stern T, DeBolt C, Kase N, Smith RT, Narula J, Mehran R, Bianco A, Bhatt DL, Stone JL. Pathophysiology of Preeclampsia-Induced Vascular Dysfunction and Implications for Subclinical Myocardial Damage and Heart Failure. JACC. ADVANCES 2024; 3:100980. [PMID: 38938863 PMCID: PMC11198310 DOI: 10.1016/j.jacadv.2024.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/04/2024] [Accepted: 02/28/2024] [Indexed: 06/29/2024]
Abstract
Tragically, preeclampsia is a leading cause of pregnancy-related complications and is linked to a heightened risk for morbid and fatal cardiovascular disease (CVD) outcomes. Although the mechanism connecting preeclampsia to CVD risk has yet to be fully elucidated, evidence suggests distinct pathways of early and late preeclampsia with shared CV risk factors but with profound differences in perinatal and postpartum risk to the mother and infant. In early preeclampsia, <34 weeks of gestation, systemic vascular dysfunction contributes to near-term subclinical myocardial damage. Hypertrophy and diastolic abnormalities persist postpartum and contribute to early onset heart failure (HF). This HF risk remains elevated decades later and contributes to premature death. Black women are at the highest risk of preeclampsia and HF. These findings support closer monitoring of women postpartum, especially for those with early and severe preeclampsia to control chronic hypertension and reduce the potentially preventable sequelae of heightened CVD and HF risk.
Collapse
Affiliation(s)
- Leslee J. Shaw
- Blavatnik Family Women’s Health Research Institute, New York, New York, USA
- Women’s Heart and Vascular Center at Mount Sinai Heart, New York, New York, USA
- The Lauder Family Cardiovascular Center of Mount Sinai Heart, Samuel Bronfman Department of Medicine (Cardiology), New York, New York, USA
- Department of Population Health Science and Policy, New York, New York, USA
- Raquel and Jaime Gilinski Department of Obstetrics, Gynecology, and Reproductive Science, New York, New York, USA
| | - Krishna Patel
- Blavatnik Family Women’s Health Research Institute, New York, New York, USA
- Women’s Heart and Vascular Center at Mount Sinai Heart, New York, New York, USA
- The Lauder Family Cardiovascular Center of Mount Sinai Heart, Samuel Bronfman Department of Medicine (Cardiology), New York, New York, USA
- Department of Population Health Science and Policy, New York, New York, USA
| | - Anuradha Lala-Trindade
- The Lauder Family Cardiovascular Center of Mount Sinai Heart, Samuel Bronfman Department of Medicine (Cardiology), New York, New York, USA
| | - Helen Feltovich
- Blavatnik Family Women’s Health Research Institute, New York, New York, USA
- Raquel and Jaime Gilinski Department of Obstetrics, Gynecology, and Reproductive Science, New York, New York, USA
| | - Luciana Vieira
- Blavatnik Family Women’s Health Research Institute, New York, New York, USA
- Raquel and Jaime Gilinski Department of Obstetrics, Gynecology, and Reproductive Science, New York, New York, USA
| | - Amy Kontorovich
- The Lauder Family Cardiovascular Center of Mount Sinai Heart, Samuel Bronfman Department of Medicine (Cardiology), New York, New York, USA
| | - Cande Ananth
- Division of Epidemiology and Biostatistics, Department of Obstetrics, Gynecology, and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Viviany R. Taqueti
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lindsey Mitrani
- The Lauder Family Cardiovascular Center of Mount Sinai Heart, Samuel Bronfman Department of Medicine (Cardiology), New York, New York, USA
| | - Toni Stern
- Raquel and Jaime Gilinski Department of Obstetrics, Gynecology, and Reproductive Science, New York, New York, USA
| | - Chelsea DeBolt
- Raquel and Jaime Gilinski Department of Obstetrics, Gynecology, and Reproductive Science, New York, New York, USA
| | - Nathan Kase
- Raquel and Jaime Gilinski Department of Obstetrics, Gynecology, and Reproductive Science, New York, New York, USA
| | - R. Theodore Smith
- Department of Opthamology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jagat Narula
- UT Health Houston, McGovern Medical School, Houston, Texas, USA
| | - Roxana Mehran
- Women’s Heart and Vascular Center at Mount Sinai Heart, New York, New York, USA
- The Lauder Family Cardiovascular Center of Mount Sinai Heart, Samuel Bronfman Department of Medicine (Cardiology), New York, New York, USA
| | - Angela Bianco
- Raquel and Jaime Gilinski Department of Obstetrics, Gynecology, and Reproductive Science, New York, New York, USA
| | - Deepak L. Bhatt
- The Lauder Family Cardiovascular Center of Mount Sinai Heart, Samuel Bronfman Department of Medicine (Cardiology), New York, New York, USA
| | - Joanne L. Stone
- Raquel and Jaime Gilinski Department of Obstetrics, Gynecology, and Reproductive Science, New York, New York, USA
| |
Collapse
|
13
|
Van Schoor K, Bruet E, Jones EAV, Migeotte I. Origin and flow-mediated remodeling of the murine and human extraembryonic circulation systems. Front Physiol 2024; 15:1395006. [PMID: 38818524 PMCID: PMC11137303 DOI: 10.3389/fphys.2024.1395006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024] Open
Abstract
The transduction of mechanical stimuli produced by blood flow is an important regulator of vascular development. The vitelline and umbilico-placental circulations are extraembryonic vascular systems that are required for proper embryonic development in mammalian embryos. The morphogenesis of the extraembryonic vasculature and the cardiovascular system of the embryo are hemodynamically and molecularly connected. Here we provide an overview of the establishment of the murine and human vitelline and umbilico-placental vascular systems and how blood flow influences various steps in their development. A deeper comprehension of extraembryonic vessel development may aid the establishment of stem-cell based embryo models and provide novel insights to understanding pregnancy complications related to the umbilical cord and placenta.
Collapse
Affiliation(s)
- Kristof Van Schoor
- Institut de Recherche Interdisciplinaire Jacques E. Dumont, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Emmanuel Bruet
- Institut de Recherche Interdisciplinaire Jacques E. Dumont, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Elizabeth Anne Vincent Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
- Department of Cardiology CARIM School for Cardiovascular Diseases Maastricht University, Maastricht, Netherlands
| | - Isabelle Migeotte
- Institut de Recherche Interdisciplinaire Jacques E. Dumont, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
14
|
Parisi F, Fenizia C, Introini A, Zavatta A, Scaccabarozzi C, Biasin M, Savasi V. The pathophysiological role of estrogens in the initial stages of pregnancy: molecular mechanisms and clinical implications for pregnancy outcome from the periconceptional period to end of the first trimester. Hum Reprod Update 2023; 29:699-720. [PMID: 37353909 PMCID: PMC10628507 DOI: 10.1093/humupd/dmad016] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/12/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Estrogens regulate disparate female physiological processes, thus ensuring reproduction. Altered estrogen levels and signaling have been associated with increased risks of pregnancy failure and complications, including hypertensive disorders and low birthweight babies. However, the role of estrogens in the periconceptional period and early pregnancy is still understudied. OBJECTIVE AND RATIONALE This review aims to summarize the current evidence on the role of maternal estrogens during the periconceptional period and the first trimester of pregnancies conceived naturally and following ART. Detailed molecular mechanisms and related clinical impacts are extensively described. SEARCH METHODS Data for this narrative review were independently identified by seven researchers on Pubmed and Embase databases. The following keywords were selected: 'estrogens' OR 'estrogen level(s)' OR 'serum estradiol' OR 'estradiol/estrogen concentration', AND 'early pregnancy' OR 'first trimester of pregnancy' OR 'preconceptional period' OR 'ART' OR 'In Vitro Fertilization (IVF)' OR 'Embryo Transfer' OR 'Frozen Embryo Transfer' OR 'oocyte donation' OR 'egg donation' OR 'miscarriage' OR 'pregnancy outcome' OR 'endometrium'. OUTCOMES During the periconceptional period (defined here as the critical time window starting 1 month before conception), estrogens play a crucial role in endometrial receptivity, through the activation of paracrine/autocrine signaling. A derailed estrogenic milieu within this period seems to be detrimental both in natural and ART-conceived pregnancies. Low estrogen levels are associated with non-conception cycles in natural pregnancies. On the other hand, excessive supraphysiologic estrogen concentrations at time of the LH peak correlate with lower live birth rates and higher risks of pregnancy complications. In early pregnancy, estrogen plays a massive role in placentation mainly by modulating angiogenic factor expression-and in the development of an immune-tolerant uterine micro-environment by remodeling the function of uterine natural killer and T-helper cells. Lower estrogen levels are thought to trigger abnormal placentation in naturally conceived pregnancies, whereas an estrogen excess seems to worsen pregnancy development and outcomes. WIDER IMPLICATIONS Most current evidence available endorses a relation between periconceptional and first trimester estrogen levels and pregnancy outcomes, further depicting an optimal concentration range to optimize pregnancy success. However, how estrogens co-operate with other factors in order to maintain a fine balance between local tolerance towards the developing fetus and immune responses to pathogens remains elusive. Further studies are highly warranted, also aiming to identify the determinants of estrogen response and biomarkers for personalized estrogen administration regimens in ART.
Collapse
Affiliation(s)
- F Parisi
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, Milan, via L. Castelvetro 32, Milan, Italy
| | - C Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, via F. Sforza 35, Milan 20122, Italy
- Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, University of Milan, Milan, via G.B. Grassi 74, Milan 20157, Italy
| | - A Introini
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Nobels väg 5, Stockholm, Sweden
| | - A Zavatta
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, Milan, via L. Castelvetro 32, Milan, Italy
| | - C Scaccabarozzi
- Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, University of Milan, Milan, via G.B. Grassi 74, Milan 20157, Italy
| | - M Biasin
- Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, University of Milan, Milan, via G.B. Grassi 74, Milan 20157, Italy
| | - V Savasi
- Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, University of Milan, Milan, via G.B. Grassi 74, Milan 20157, Italy
| |
Collapse
|
15
|
Alencar AKN, Swan KF, Pridjian G, Lindsey SH, Bayer CL. Connecting G protein-coupled estrogen receptor biomolecular mechanisms with the pathophysiology of preeclampsia: a review. Reprod Biol Endocrinol 2023; 21:60. [PMID: 37393260 DOI: 10.1186/s12958-023-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Throughout the course of pregnancy, small maternal spiral arteries that are in contact with fetal tissue undergo structural remodeling, lose smooth muscle cells, and become less responsive to vasoconstrictors. Additionally, placental extravillous trophoblasts invade the maternal decidua to establish an interaction between the fetal placental villi with the maternal blood supply. When successful, this process enables the transport of oxygen, nutrients, and signaling molecules but an insufficiency leads to placental ischemia. In response, the placenta releases vasoactive factors that enter the maternal circulation and promote maternal cardiorenal dysfunction, a hallmark of preeclampsia (PE), the leading cause of maternal and fetal death. An underexplored mechanism in the development of PE is the impact of membrane-initiated estrogen signaling via the G protein-coupled estrogen receptor (GPER). Recent evidence indicates that GPER activation is associated with normal trophoblast invasion, placental angiogenesis/hypoxia, and regulation of uteroplacental vasodilation, and these mechanisms could explain part of the estrogen-induced control of uterine remodeling and placental development in pregnancy. CONCLUSION Although the relevance of GPER in PE remains speculative, this review provides a summary of our current understanding on how GPER stimulation regulates some of the features of normal pregnancy and a potential link between its signaling network and uteroplacental dysfunction in PE. Synthesis of this information will facilitate the development of innovative treatment options.
Collapse
Affiliation(s)
| | - Kenneth F Swan
- Department of Obstetrics & Gynecology, Tulane University, New Orleans, LA, 70112, USA
| | - Gabriella Pridjian
- Department of Obstetrics & Gynecology, Tulane University, New Orleans, LA, 70112, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University, New Orleans, LA, 70112, USA
| | - Carolyn L Bayer
- Department of Biomedical Engineering, Tulane University, 500 Lindy Boggs Center, New Orleans, LA, 70118, USA.
| |
Collapse
|
16
|
Kuate Defo A, Daskalopoulou SS. Alterations in Vessel Hemodynamics Across Uncomplicated Pregnancy. Am J Hypertens 2023; 36:183-191. [PMID: 36638267 DOI: 10.1093/ajh/hpac132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/03/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Pregnancy is marked by the onset of rapid hemodynamic alterations in order to accommodate the needs of the developing fetus. Arterial stiffness is an independent predictor of cardiovascular events and mortality, and its measurement in clinical practice has been recommended. It follows a U-shaped curve in uncomplicated pregnancy, decreasing to a nadir in mid-pregnancy and rising at term. Systemic vasodilation occurs due to elevated nitric oxide, prostacyclin, endothelium-derived hyperpolarizing factor, estrogen, progesterone, and relaxin. Vascular resistance decreases to a nadir in mid-pregnancy, while endothelial function is enhanced starting in the first trimester. Plasma volume increases by about 50%, and total red blood cell mass increases by up to 40%. Cardiac output increases by up to 45%, at first due primarily to elevated stroke volume, then mainly due to increased heart rate. Along with echocardiography, cardiac magnetic resonance imaging is safe for use in pregnancy. It may assess cardiac function more accurately than echocardiography, and may be indicated in specific clinical cases. Moreover, blood pressure decreases to a nadir in mid-pregnancy and rises to near preconception values postpartum. An appreciation of the vascular changes occurring in healthy pregnancy can aid in the prediction and diagnosis of pregnancy complications, such as preeclampsia and other hypertensive disorders of pregnancy, and inform treatment. In particular, noninvasive arterial stiffness/hemodynamics assessment provides unique clinical information beyond blood pressure and traditional maternal characteristics, and can signal a need for further testing, or be used in combination with other tests to predict or diagnose complications of pregnancy.
Collapse
Affiliation(s)
- Alvin Kuate Defo
- Vascular Health Unit, Research Institute of the McGill University Health Centre, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Stella S Daskalopoulou
- Vascular Health Unit, Research Institute of the McGill University Health Centre, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Division of Internal Medicine, Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Yagel S, Cohen SM, Goldman-Wohl D, Beharier O. Redefining pre-eclampsia as Type I or II: implementing an integrated model of the maternal-cardiovascular-placental-fetal array. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 61:293-301. [PMID: 36378064 DOI: 10.1002/uog.26121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Affiliation(s)
- S Yagel
- Division of Obstetrics and Gynecology, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - S M Cohen
- Division of Obstetrics and Gynecology, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - D Goldman-Wohl
- Division of Obstetrics and Gynecology, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - O Beharier
- Division of Obstetrics and Gynecology, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
18
|
Rusidzé M, Gargaros A, Fébrissy C, Dubucs C, Weyl A, Ousselin J, Aziza J, Arnal JF, Lenfant F. Estrogen Actions in Placental Vascular Morphogenesis and Spiral Artery Remodeling: A Comparative View between Humans and Mice. Cells 2023; 12:cells12040620. [PMID: 36831287 PMCID: PMC9954071 DOI: 10.3390/cells12040620] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Estrogens, mainly 17β-estradiol (E2), play a critical role in reproductive organogenesis, ovulation, and fertility via estrogen receptors. E2 is also a well-known regulator of utero-placental vascular development and blood-flow dynamics throughout gestation. Mouse and human placentas possess strikingly different morphological configurations that confer important reproductive advantages. However, the functional interplay between fetal and maternal vasculature remains similar in both species. In this review, we briefly describe the structural and functional characteristics, as well as the development, of mouse and human placentas. In addition, we summarize the current knowledge regarding estrogen actions during utero-placental vascular morphogenesis, which includes uterine angiogenesis, the control of trophoblast behavior, spiral artery remodeling, and hemodynamic adaptation throughout pregnancy, in both mice and humans. Finally, the estrogens that are present in abnormal placentation are also mentioned. Overall, this review highlights the importance of the actions of estrogens in the physiology and pathophysiology of placental vascular development.
Collapse
Affiliation(s)
- Mariam Rusidzé
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Adrien Gargaros
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
| | - Chanaëlle Fébrissy
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
| | - Charlotte Dubucs
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Ariane Weyl
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Jessie Ousselin
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Jacqueline Aziza
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Jean-François Arnal
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
| | - Françoise Lenfant
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
- Correspondence:
| |
Collapse
|
19
|
Deng Y, She L, Li X, Lai W, Yu L, Zhang W, Nie Y, Xiao S, Liu H, Zhou Y, Luo T, Deng W, Liu J, Zhou X, Wen Y, Zhong Y, Xiao L, Ding Y, Peng M. Monitoring hypertensive disorders in pregnancy to prevent preeclampsia in pregnant women of advanced maternal age: Trial mimicking with retrospective data. Open Med (Wars) 2022; 17:1840-1848. [DOI: 10.1515/med-2022-0560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Abstract
This study investigated the implication of monitoring hypertensive disorders in pregnancy (HDP) to prevent preeclampsia (PE) in pregnant women of advanced maternal age. Between January 2016 and April 2021, 262 consecutive pregnant women aged ≥40 years were recruited. Extensive monitoring of hypertensive disorders in pregnancy, including blood hypercoagulability screening and subsequent interventions, was performed in 129 pregnant women in our university hospital. The remaining 133 patients from other centres, who did not receive antenatal maternal pregnancy screening and preventive intervention during the same period, constituted the non-intervention group enabling comparison to mimic a trial. The incidences of hypertensive disorders, mild and severe PE, eclampsia, and chronic hypertension complicated by PE in the intervention group were significantly lower than in the non-intervention group (10.08 versus 20.30%, 8.52 versus 18.80%, 7.75 versus 21.05%, 0 versus 3.01%, and 3.86 versus 15.04%, respectively; P < 0.05). Premature birth, low birth weight, and foetal loss were significantly rarer in the intervention group than in the non-intervention group (6.98 versus 24.81%, 7.75 versus 21.80%, and 0.78 versus 14.29% respectively; P < 0.001). The comparison of MP with routine blood coagulation biochemical examination found that the MP detection system of Beijing Yes Medical Devices Co., Ltd., had similar sensitivity as thromboelastogram. Still, it was significantly better than the routine biochemical indicators (P < 0.01). Based on MP parameters, early anticoagulant treatment with low-molecular-weight heparin or low-dose aspirin in pregnant women with hypercoagulability can effectively prevent the occurrence of PE and significantly improve the prognosis of both mothers and infants.
Collapse
Affiliation(s)
- Yali Deng
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University , Changsha 410011 , P.R. China
| | - Lifei She
- Department of Pharmacy, The Maternal and Child Health Hospital of Hunan Province , Changsha 410000 , P.R. China
| | - Xiaoye Li
- Department of Gynaecology and Obstetrics, Sanya Central Hospital (Hainan Third People’s Hospital) , Sanya 572000 , P.R. China
| | - Weisi Lai
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University , Changsha 410011 , P.R. China
| | - Ling Yu
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University , Changsha 410011 , P.R. China
| | - Wen Zhang
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University , Changsha 410011 , P.R. China
| | - Yanting Nie
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University , Changsha 410011 , P.R. China
| | - Songyuan Xiao
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University , Changsha 410011 , P.R. China
| | - Hongyu Liu
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University , Changsha 410011 , P.R. China
| | - Yang Zhou
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University , Changsha 410011 , P.R. China
| | - Ting Luo
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University , Changsha 410011 , P.R. China
| | - Wen Deng
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University , Changsha 410011 , P.R. China
| | - Jinyu Liu
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University , Changsha 410011 , P.R. China
| | - Xihong Zhou
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University , Changsha 410011 , P.R. China
| | - Ying Wen
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University , Changsha 410011 , P.R. China
| | - Yanhong Zhong
- Department of Gynaecology and Obstetrics, Maternal and Child Health Hospital in Yuanjiang City , Yuanjiang 413111 , P.R. China
| | - Lingyi Xiao
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Xiangnan University , Chenzhou 423000 , P.R. China
| | - Yiling Ding
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University , Changsha 410011 , P.R. China
| | - Mei Peng
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University , No. 139 People’s Middle Road , Changsha 410011 , P.R. China
| |
Collapse
|
20
|
Rusidzé M, Faure MC, Sicard P, Raymond-Letron I, Giton F, Vessieres E, Prevot V, Henrion D, Arnal JF, Cornil CA, Lenfant F. Loss of function of the maternal membrane oestrogen receptor ERα alters expansion of trophoblast cells and impacts mouse fertility. Development 2022; 149:dev200683. [PMID: 36239412 PMCID: PMC9720743 DOI: 10.1242/dev.200683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/31/2022] [Indexed: 03/31/2024]
Abstract
The binding of 17β-oestradiol to oestrogen receptor alpha (ERα) plays a crucial role in the control of reproduction, acting through both nuclear and membrane-initiated signalling. To study the physiological role of membrane ERα in the reproductive system, we used the C451A-ERα mouse model with selective loss of function of membrane ERα. Despite C451A-ERα mice being described as sterile, daily weighing and ultrasound imaging revealed that homozygous females do become pregnant, allowing the investigation of the role of ERα during pregnancy for the first time. All neonatal deaths of the mutant offspring mice resulted from delayed parturition associated with failure in pre-term progesterone withdrawal. Moreover, pregnant C451A-ERα females exhibited partial intrauterine embryo arrest at about E9.5. The observed embryonic lethality resulted from altered expansion of Tpbpa-positive spiral artery-associated trophoblast giant cells into the utero-placental unit, which is associated with an imbalance in expression of angiogenic factors. Together, these processes control the trophoblast-mediated spiral arterial remodelling. Hence, loss of membrane ERα within maternal tissues clearly alters the activity of invasive trophoblast cells during placentogenesis. This previously unreported function of membrane ERα could open new avenues towards a better understanding of human pregnancy-associated pathologies.
Collapse
Affiliation(s)
- Mariam Rusidzé
- Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297-UPS, CHU, Toulouse 31432, France
| | | | - Pierre Sicard
- IPAM, BioCampus Montpellier, CNRS, INSERM, University of Montpellier, Montpellier 34295, France
| | - Isabelle Raymond-Letron
- Institut Restore, Université de Toulouse, CNRS U-5070, EFS, ENVT, Inserm U1031, Toulouse 31076, France
| | - Frank Giton
- APHP H.Mondor - IMRB - INSERM U955, Créteil 94010, France
| | - Emilie Vessieres
- Angers University, MITOVASC, CarMe team, CNRS UMR 6015, INSERM U1083, Angers 49055, France
| | - Vincent Prevot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, FHU 1000 Days for Health, Lille 59000, France
| | - Daniel Henrion
- Angers University, MITOVASC, CarMe team, CNRS UMR 6015, INSERM U1083, Angers 49055, France
| | | | | | - Françoise Lenfant
- Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297-UPS, CHU, Toulouse 31432, France
| |
Collapse
|
21
|
G-Protein-Coupled Estrogen Receptor Expression in Rat Uterine Artery Is Increased by Pregnancy and Induces Dilation in a Ca2+ and ERK1/2 Dependent Manner. Int J Mol Sci 2022; 23:ijms23115996. [PMID: 35682675 PMCID: PMC9180712 DOI: 10.3390/ijms23115996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing levels of estrogens across gestation are partly responsible for the physiological adaptations of the maternal vasculature to pregnancy. The G protein-coupled estrogen receptor (GPER) mediates acute vasorelaxing effects in the uterine vasculature, which may contribute to the regulation of uteroplacental blood flow. The aim of this study was to investigate whether GPER expression and vasorelaxation may occur following pregnancy. Elucidation of the functional signalling involved was also investigated. Radial uterine and third-order mesenteric arteries were isolated from non-pregnant (NP) and pregnant rats (P). GPER mRNA levels were determined and—concentration–response curve to the GPER-specific agonist, G1 (10−10–10−6 M), was assessed in arteries pre-constricted with phenylephrine. In uterine arteries, GPER mRNA expression was significantly increased and vasorelaxation to G1 was significantly enhanced in P compared with NP rats. Meanwhile, in mesenteric arteries, there was a similar order of magnitude in NP and P rats. Inhibition of L-type calcium channels and extracellular signal-regulated kinases 1/2 significantly reduced vasorelaxation triggered by G1 in uterine arteries. Increased GPER expression and GPER-mediated vasorelaxation are associated with the advancement of gestation in uterine arteries. The modulation of GPER is exclusive to uterine arteries, thus suggesting a physiological contribution of GPER toward the regulation of uteroplacental blood flow during pregnancy.
Collapse
|
22
|
Farahbod F, Talebi-Boroujeni P, Sherwin CMT, Heidari-Soureshjani S. Effectiveness of phosphodiesterase type 5 inhibitors on the treatment of thin endometrium and pregnancy outcomes: An systematic review. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2022. [DOI: 10.1177/22840265221094405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphodiesterase type 5 (PDE5) inhibitors are thought to play a role in increasing endometrial thickness and increasing the success rate of pregnancy outcomes. This study was done to investigate the effects of PDE5 inhibitors on infertile women with thin endometrium and pregnancy outcomes. In this systematic review, all randomized controlled trials (RCTs) and observational studies were retrieved from databases including Institute for Scientific Information (ISI), PubMed, and Scopus by interesting keywords. A checklist was designed to collect necessary data and pregnancy outcomes, and the required items were recorded. PDE5 inhibitors through various mechanisms such as induction of vasodilatory effect through the effect on NO/cGMP signaling on vascular smooth muscle, through regulating cells proliferation and induction angiogenesis by increasing the expression of tumor suppressor factor (p53), and vascular endothelial growth factor A (VEGF-A) and downregulating inflammation by downregulating proinflammatory cytokines, affect endometrial thickness that eventually increases and pregnancy outcomes. Although PDE5s inhibitors increase endometrial thickness by different mechanisms, especially in women with thin endometrial, this does not necessarily mean that they induce a positive effect in all situations. However, their positive effects on pregnancy outcome may be affected by the time of administration, type of infertility treatment, underlying diseases such as pelvic disorders and inflammation. So in this regard, there are still ambiguous aspects that required further RCTs study in this area.
Collapse
Affiliation(s)
| | | | - Catherine MT Sherwin
- Pediatric Clinical Pharmacology, Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton Children’s Hospital, One Children’s Plaza, Dayton, OH, USA
| | - Saeid Heidari-Soureshjani
- Department of Research and Technology, Modeling in Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
23
|
Ilgisonis EV, Shalina R, Kasum-Zade N, Burkova KG, Trifonova OP, Maslov DL, Kaysheva AL, Markin SS. Metabolomic Markers for Predicting Preeclampsia in the First Trimester of Pregnancy: A Retrospective Study. Molecules 2022; 27:molecules27082475. [PMID: 35458675 PMCID: PMC9025490 DOI: 10.3390/molecules27082475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022] Open
Abstract
We sought to identify the characteristic metabolite profile of blood plasma samples obtained from patients with preeclampsia. Direct high-resolution mass spectrometry was used to analyze samples from 79 pregnant women, 34 of whom had preeclampsia. We performed a comparative analysis of the metabolite profiles and found that they differed between pregnant women with and without preeclampsia. Lipids and sugars were identified as components of the metabolite profile that are likely to be associated with the development of preeclampsia. While PE was established only in the third trimester, a set of metabolites specific for the third trimester, including 2-(acetylamino)-1,5-anhydro-2-deoxy-4-O-b-D-galactopyranosyl-D-arabino-Hex-1-enitol, N-Acetyl-D-glucosaminyldiphosphodolichol, Cer(d18:0/20:0), and allolithocholic acid, was already traced in the first trimester. These components are also likely involved in lipid metabolism disorders and the development of oxidative stress.
Collapse
Affiliation(s)
- Ekaterina V. Ilgisonis
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (E.V.I.); (O.P.T.); (D.L.M.); (S.S.M.)
| | - Raisa Shalina
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia; (R.S.); (N.K.-Z.); (K.G.B.)
| | - Nigyar Kasum-Zade
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia; (R.S.); (N.K.-Z.); (K.G.B.)
| | - Kristina G. Burkova
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia; (R.S.); (N.K.-Z.); (K.G.B.)
| | - Oxana P. Trifonova
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (E.V.I.); (O.P.T.); (D.L.M.); (S.S.M.)
| | - Dmitry L. Maslov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (E.V.I.); (O.P.T.); (D.L.M.); (S.S.M.)
| | - Anna L. Kaysheva
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (E.V.I.); (O.P.T.); (D.L.M.); (S.S.M.)
- Correspondence: ; Tel.: +7-499-764-98-78
| | - Sergey S. Markin
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (E.V.I.); (O.P.T.); (D.L.M.); (S.S.M.)
| |
Collapse
|
24
|
Yagel S, Cohen SM, Goldman-Wohl D. An integrated model of preeclampsia: a multifaceted syndrome of the maternal cardiovascular-placental-fetal array. Am J Obstet Gynecol 2022; 226:S963-S972. [PMID: 33712272 DOI: 10.1016/j.ajog.2020.10.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/13/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022]
Abstract
Maternal tolerance of the semiallogenic fetus necessitates conciliation of competing interests. Viviparity evolved with a placenta to mediate the needs of the fetus and maternal adaptation to the demands of pregnancy and to ensure optimal survival for both entities. The maternal-fetal interface is imagined as a 2-dimensional porous barrier between the mother and fetus, when in fact it is an intricate multidimensional array of tissues and resident and circulating factors at play, encompassing the developing fetus, the growing placenta, the changing decidua, and the dynamic maternal cardiovascular system. Pregnancy triggers dramatic changes to maternal hemodynamics to meet the growing demands of the developing fetus. Nearly a century of extensive research into the development and function of the placenta has revealed the role of placental dysfunction in the great obstetrical syndromes, among them preeclampsia. Recently, a debate has arisen questioning the primacy of the placenta in the etiology of preeclampsia, asserting that the maternal cardiovascular system is the instigator of the disorder. It was the clinical observation of the high rate of preeclampsia in hydatidiform mole that initiated the focus on the placenta in the etiology of the disease. Over many years of research, shallow trophoblast invasion with deficient remodeling of the maternal spiral arteries into vessels of higher capacitance and lower resistance has been recognized as hallmarks of the preeclamptic milieu. The lack of the normal decrease in uterine artery resistance is likewise predictive of preeclampsia. In abdominal pregnancies, however, an extrauterine pregnancy develops without remodeling of the spiral arteries, yet there is reduced resistance in the uterine arteries and distant vessels, such as the maternal ophthalmic arteries. Proponents of the maternal cardiovascular model of preeclampsia point to the observed maternal hemodynamic adaptations to pregnancy and maladaptation in gestational hypertension and preeclampsia and how the latter resembles the changes associated with cardiac disease states. Recognition of the importance of the angiogenic-antiangiogenic balance between placental-derived growth factor and its receptor soluble fms-like tyrosine kinase-1 and disturbance in this balance by an excess of a circulating isoform, soluble fms-like tyrosine kinase-1, which competes for and disrupts the proangiogenic receptor binding of the vascular endothelial growth factor and placental-derived growth factor, opened new avenues of research into the pathways to normal adaptation of the maternal cardiovascular and other systems to pregnancy and maladaptation in preeclampsia. The significance of the "placenta vs heart" debate goes beyond the academic: understanding the mutuality of placental and maternal cardiac etiologies of preeclampsia has far-reaching clinical implications for designing prevention strategies, such as aspirin therapy, prediction and surveillance through maternal hemodynamic studies or serum placental-derived growth factor and soluble fms-like tyrosine kinase-1 testing, and possible treatments to attenuate the effects of insipient preeclampsia on women and their fetuses, such as RNAi therapy to counteract excess soluble fms-like tyrosine kinase-1 produced by the placenta. In this review, we will present an integrated model of the maternal-placental-fetal array that delineates the commensality among the constituent parts, showing how a disruption in any component or nexus may lead to the multifaceted syndrome of preeclampsia.
Collapse
Affiliation(s)
- Simcha Yagel
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Sarah M Cohen
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Debra Goldman-Wohl
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
25
|
Yu M, Tang J, Huang Y, Guo C, Du P, Li N, Quan Q. HOXA10 Regulates the Synthesis of Cholesterol in Endometrial Stromal Cells. Front Endocrinol (Lausanne) 2022; 13:852671. [PMID: 35546998 PMCID: PMC9084188 DOI: 10.3389/fendo.2022.852671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The expression of homeobox A10 (HOXA10) in endometrial stromal cells is regulated by steroid hormones, especially by estrogen. As a precursor molecule of estrogen, abnormal cholesterol metabolism is significantly positively correlated with endometriosis. The purpose of this study was to explore the regulation of HOXA10 on cholesterol synthesis in endometrial stromal cells. METHOD mRNA expression data of eutopic endometrial stromal cell (ESC) and ovarian endometriotic cysts stromal cell (OESC) were download from the Gene Expression Omnibus (GEO) databases. Overexpression and silence of HOXA10 were conducted in cultured ESC and subjected to mRNA sequencing. The differentially expressed genes (DEGs) were selected by analyzing the sequencing data. Weighted gene co-expression network analysis (WGCNA) was applied to identify the key genes associated with HOXA10. The methylation rate of HOXA10 CpGs and the correlation between HOXA10 expression and the methylation in eutopic endometrial tissue (EU) and ovarian cyst (OC) were analyzed. RESULTS HOXA10 in ESC was significantly higher expressed than that in OESC. Six key genes (HMGCR, MSMO1, ACAT2, HMGCS1, EBP, and SQLE), which were regulated by HOXA10, were identified from the salmon4 module by WGCNA. All these key genes were enriched in cholesterol synthesis. Moreover, the expression of HOXA10 was negatively related to its CpGs methylation rate. CONCLUSION In this study, six key genes that were regulated by HOXA10 were selected, and all of them were enriched in cholesterol synthesis. This finding provided a new insight into the metabolic mechanism of cholesterol in ESC. It also provided a potential treatment strategy for cholesterol metabolism maladjustment in patients with ovarian endometriosis.
Collapse
Affiliation(s)
- Meixing Yu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jia Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Yanqing Huang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chenbing Guo
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peng Du
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ning Li
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qingli Quan
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
- *Correspondence: Qingli Quan,
| |
Collapse
|
26
|
James JL, Boss AL, Sun C, Allerkamp HH, Clark AR. From stem cells to spiral arteries: A journey through early placental development. Placenta 2021; 125:68-77. [PMID: 34819240 DOI: 10.1016/j.placenta.2021.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 12/19/2022]
Abstract
Early placental development lays the foundation of a healthy pregnancy, and numerous tightly regulated processes must occur for the placenta to meet the increasing nutrient and oxygen exchange requirements of the growing fetus later in gestation. Inadequacies in early placental development can result in disorders such as fetal growth restriction that do not present clinically until the second half of gestation. Indeed, growth restricted placentae exhibit impaired placental development and function, including reduced overall placental size, decreased branching of villi and the blood vessels within them, altered trophoblast function, and impaired uterine vascular remodelling, which together combine to reduce placental exchange capacity. This review explores the importance of early placental development across multiple anatomical aspects of placentation, from the stem cells and lineage hierarchies from which villous core cells and trophoblasts arise, through extravillous trophoblast invasion and spiral artery remodelling, and finally remodelling of the larger uterine vessels.
Collapse
Affiliation(s)
- Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - Anna L Boss
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Cherry Sun
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Hanna H Allerkamp
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand; Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Alys R Clark
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| |
Collapse
|
27
|
Yu P, Chen Y, Ge C, Wang H. Sexual dimorphism in placental development and its contribution to health and diseases. Crit Rev Toxicol 2021; 51:555-570. [PMID: 34666604 DOI: 10.1080/10408444.2021.1977237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
According to the Developmental Origin of Health and Disease (DOHaD), intrauterine exposure to adverse environments can affect fetus and birth outcomes and lead to long-term disease susceptibility. Evidence has shown that neonatal outcomes and the timing and severity of adult diseases are sexually dimorphic. As the link between mother and fetus, the placenta is an essential regulator of fetal development programming. It is found that the physiological development trajectory of the placenta has sexual dimorphism. Furthermore, under pathological conditions, the placental function undergoes sex-specific adaptation to ensure fetal survival. Therefore, the placenta may be an important mediator of sexual dimorphism in neonatal outcomes and adult disease susceptibility. Few systematic reviews have been conducted on sexual dimorphism in placental development and its underlying mechanisms. In this review, sex chromosomes and sex hormones, as the main reasons for sexual differentiation of the placenta, will be discussed. Besides, in the etiology of fetal-originated adult diseases, overexposure to glucocorticoids is closely related to adverse neonatal outcomes and long-term disease susceptibility. Studies have found that prenatal glucocorticoid overexposure leads to sexually dimorphic expression of placental glucocorticoid receptor isoforms, resulting in different sensitivity of the placenta to glucocorticoids, and may further affect fetal development. The present review examines what is currently known about sex differences in placental development and the underlying regulatory mechanisms of this sex bias. This review highlights the importance of placental contributions to the origins of sexual dimorphism in health and diseases. It may help develop personalized diagnosis and treatment strategies for fetal development in pathological pregnancies.
Collapse
Affiliation(s)
- Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Yawen Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China.,Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
28
|
Hu X, Zhang L. Uteroplacental Circulation in Normal Pregnancy and Preeclampsia: Functional Adaptation and Maladaptation. Int J Mol Sci 2021; 22:8622. [PMID: 34445328 PMCID: PMC8395300 DOI: 10.3390/ijms22168622] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Uteroplacental blood flow increases as pregnancy advances. Adequate supply of nutrients and oxygen carried by uteroplacental blood flow is essential for the well-being of the mother and growth/development of the fetus. The uteroplacental hemodynamic change is accomplished primarily through uterine vascular adaptation, involving hormonal regulation of myogenic tone, vasoreactivity, release of vasoactive factors and others, in addition to the remodeling of spiral arteries. In preeclampsia, hormonal and angiogenic imbalance, proinflammatory cytokines and autoantibodies cause dysfunction of both endothelium and vascular smooth muscle cells of the uteroplacental vasculature. Consequently, the vascular dysfunction leads to increased vascular resistance and reduced blood flow in the uteroplacental circulation. In this article, the (mal)adaptation of uteroplacental vascular function in normal pregnancy and preeclampsia and underlying mechanisms are reviewed.
Collapse
Affiliation(s)
- Xiangqun Hu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
29
|
Barberio L, Paulesu L, Canesi L, Grasselli E, Mandalà M. Bisphenol a Interferes with Uterine Artery Features and Impairs Rat Feto-Placental Growth. Int J Mol Sci 2021; 22:ijms22136912. [PMID: 34199136 PMCID: PMC8268965 DOI: 10.3390/ijms22136912] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
Bisphenol A (BPA) is a widespread environmental contaminant, found in human fluids and tissues. Maternal BPA exposure is associated with alterations in pregnancy outcomes. Because maternal uterine circulation plays a crucial role in normal placenta and fetal growth, we hypothesized that BPA compromises the function of uterine arteries (UAs) and fetoplacental development. Female rats were orally administered with BPA (2.5, 25 and 250 µg/kg/day) or with its vehicle (ethanol) for 30 days before pregnancy and during the first 20 days of pregnancy. To compare the effect of BPA in the reproductive vs. systemic circulation, it was tested on UAs and mesenteric arteries (MAs). Arteries were isolated and examined by pressure myography. Moreover, fetuses and placentas were weighed to provide an index of reproductive performance. In UAs of BPA-treated rats, lumen diameter, acetylcholine-relaxation and expressions of endothelial nitric oxide synthase 3 (NOS3), estrogen receptor α (ERα) and peroxisome proliferator-activated receptor ɣ (PPARɣ) were reduced. Conversely, no changes were observed in MAs. BPA treatment also reduced placental weights, while fetal weights were increased. For the first time, our results indicate that UAs represent a specific target of BPA during pregnancy and provide insight into the molecular mechanisms that underlie its negative effects on pregnancy outcomes.
Collapse
Affiliation(s)
- Laura Barberio
- Department of Biology, Ecology & Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Luana Paulesu
- Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (L.C.); (E.G.)
| | - Elena Grasselli
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (L.C.); (E.G.)
| | - Maurizio Mandalà
- Department of Biology, Ecology & Earth Sciences, University of Calabria, 87036 Rende, Italy;
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Burlington, VT 05405, USA
- Correspondence:
| |
Collapse
|
30
|
Shu C, Han S, Xu P, Wang Y, Cheng T, Hu C. Estrogen and Preeclampsia: Potential of Estrogens as Therapeutic Agents in Preeclampsia. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2543-2550. [PMID: 34163140 PMCID: PMC8214522 DOI: 10.2147/dddt.s304316] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
There is a significant decline in the estrogen levels in preeclampsia, and exogenous administration of estradiol normalizes blood pressure and other associated symptoms of preeclampsia. The decrease in estrogen levels may be due to changes in enzyme activities of hydroxysteroid (17-β) dehydrogenase 1, aromatase, and COMT. There is also a decrease in the novel, estrogenic G-protein-coupled receptor 30 (GPR30) in the placental trophoblast cells in preeclampsia. The activation of GPR30 protects the placenta from hypoxia-reoxygenation injury, decreases apoptosis and increases proliferation through eNOS and PI3K-Akt signaling pathways. Estrogens may also increase Ca2+-activated K+ channel function, decrease the release of inflammatory cytokines, and oxidative stress to improve placental perfusion. Both preclinical and clinical studies show the decrease in the 2-methoxyestradiol levels in preeclampsia, which may be due to a decrease in estradiol itself along with a decrease in the enzymatic actions of the COMT enzyme. 2-Methoxyestradiol activates HIF1α and vascular endothelial growth factor receptors (VEGFR-2) to maintain placental perfusion by increasing angiogenesis. The present review discusses the preclinical and clinical studies describing the role of estrogen in preeclampsia along with possible mechanisms.
Collapse
Affiliation(s)
- Chang Shu
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, People's Republic of China
| | - Shumei Han
- Department of Medical Administration, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Peng Xu
- Department of Sports Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Ying Wang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, People's Republic of China
| | - Tingting Cheng
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, People's Republic of China
| | - Cong Hu
- Reproductive Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| |
Collapse
|
31
|
Fournier SB, D'Errico JN, Stapleton PA. Uterine Vascular Control Preconception and During Pregnancy. Compr Physiol 2021; 11:1871-1893. [PMID: 34061977 DOI: 10.1002/cphy.c190015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Successful pregnancy and reproduction are dependent on adequate uterine blood flow, placental perfusion, and vascular responsivity to fetal demands. The ability to support pregnancy centers on systemic adaptation and endometrial preparation through decidualization, embryonic implantation, trophoblast invasion, arterial/arteriolar reactivity, and vascular remodeling. These adaptations occur through responsiveness to endocrine signaling and local uteroplacental mediators. The purpose of this article is to highlight the current knowledge associated with vascular remodeling and responsivity during uterine preparation for and during pregnancy. We focus on maternal cardiovascular systemic and uterine modifications, endometrial decidualization, implantation and invasion, uterine and spiral artery remodeling, local uterine regulatory mechanisms, placentation, and pathological consequences of vascular dysfunction during pregnancy. © 2021 American Physiological Society. Compr Physiol 11:1-23, 2021.
Collapse
Affiliation(s)
- Sara B Fournier
- Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey, USA
| | - Jeanine N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Phoebe A Stapleton
- Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey, USA.,Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
32
|
Cañumil VA, Bogetti E, de la Cruz Borthiry FL, Ribeiro ML, Beltrame JS. Steroid hormones and first trimester vascular remodeling. VITAMINS AND HORMONES 2021; 116:363-387. [PMID: 33752825 DOI: 10.1016/bs.vh.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Successful implantation and placentation require neoangiogenesis and the remodeling of the uterine spiral arteries. Progesterone and estradiol control various of the placental functions, but their role in vascular remodeling remains controversial. Therefore, this chapter aims to summarize the current knowledge regarding the role of steroid hormones in the uteroplacental vascular remodeling during the first trimester of gestation.
Collapse
Affiliation(s)
- V A Cañumil
- Center of Pharmacological and Botanical Studies (CEFyBO), School of Medicine University of Buenos Aires (UBA)-National Research Council (CONICET), Buenos Aires, Argentina
| | - E Bogetti
- Center of Pharmacological and Botanical Studies (CEFyBO), School of Medicine University of Buenos Aires (UBA)-National Research Council (CONICET), Buenos Aires, Argentina
| | - F L de la Cruz Borthiry
- Center of Pharmacological and Botanical Studies (CEFyBO), School of Medicine University of Buenos Aires (UBA)-National Research Council (CONICET), Buenos Aires, Argentina
| | - M L Ribeiro
- Center of Pharmacological and Botanical Studies (CEFyBO), School of Medicine University of Buenos Aires (UBA)-National Research Council (CONICET), Buenos Aires, Argentina
| | - J S Beltrame
- Center of Pharmacological and Botanical Studies (CEFyBO), School of Medicine University of Buenos Aires (UBA)-National Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
33
|
Vishnyakova P, Poltavets A, Nikitina M, Midiber K, Mikhaleva L, Muminova K, Potapova A, Khodzhaeva Z, Pyregov A, Elchaninov A, Fatkhudinov T, Sukhikh G. Expression of Estrogen Receptor α by Decidual Macrophages in Preeclampsia. Biomedicines 2021; 9:191. [PMID: 33672970 PMCID: PMC7917975 DOI: 10.3390/biomedicines9020191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia is a gestation-associated hypertensive syndrome that threatens the life and health of the mother and the child. The condition is presumably caused by systemic failure with a strong involvement of innate immunity. In particular, it has been associated with flexible phenotypes of macrophages, which depend on the molecules circulating in the blood and tissue fluid, such as cytokines and hormones. This study aimed at a comparative evaluation of pro-inflammatory (TNFα) and anti-inflammatory (CD206, MMP9, HGF) markers, as well as the levels of estrogen receptor α, expressed by decidual macrophages in normal pregnancy and in patients with early- and late-onset preeclampsia. The tissue samples of decidua basalis were examined by immunohistochemistry and Western blotting. Isolation of decidual macrophages and their characterization were performed using cultural methods, flow cytometry and real-time PCR. Over 50% of the isolated decidual macrophages were positive for the pan-macrophage marker CD68. In the early-onset preeclampsia group, the levels of estrogen receptor α in decidua were significantly decreased. Furthermore, significantly decreased levels of HGF and CD206 were observed in both preeclampsia groups compared with the control group. The observed downregulation of estrogen receptor α, HGF and CD206 may contribute to the balance of pro- and anti-inflammatory macrophages and thereby to pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
- Histology Department, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Anastasiya Poltavets
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| | - Maria Nikitina
- Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (K.M.); (L.M.)
| | - Konstantin Midiber
- Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (K.M.); (L.M.)
| | - Liudmila Mikhaleva
- Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (K.M.); (L.M.)
| | - Kamilla Muminova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| | - Alena Potapova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| | - Zulfiya Khodzhaeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| | - Alexey Pyregov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
- Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia
| | - Timur Fatkhudinov
- Histology Department, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
- Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (K.M.); (L.M.)
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| |
Collapse
|
34
|
Worsham W, Dalton S, Bilder DA. The Prenatal Hormone Milieu in Autism Spectrum Disorder. Front Psychiatry 2021; 12:655438. [PMID: 34276434 PMCID: PMC8280339 DOI: 10.3389/fpsyt.2021.655438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023] Open
Abstract
Though the etiology of autism spectrum disorder (ASD) remains largely unknown, recent findings suggest that hormone dysregulation within the prenatal environment, in conjunction with genetic factors, may alter fetal neurodevelopment. Early emphasis has been placed on the potential role of in utero exposure to androgens, particularly testosterone, to theorize ASD as the manifestation of an "extreme male brain." The relationship between autism risk and obstetric conditions associated with inflammation and steroid dysregulation merits a much broader understanding of the in utero steroid environment and its potential influence on fetal neuroendocrine development. The exploration of hormone dysregulation in the prenatal environment and ASD development builds upon prior research publishing associations with obstetric conditions and ASD risk. The insight gained may be applied to the development of chronic adult metabolic diseases that share prenatal risk factors with ASD. Future research directions will also be discussed.
Collapse
Affiliation(s)
- Whitney Worsham
- University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Susan Dalton
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, United States
| | - Deborah A Bilder
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
35
|
Raez-Villanueva S, Perono GA, Jamshed L, Thomas PJ, Holloway AC. Effects of dibenzothiophene, a sulfur-containing heterocyclic aromatic hydrocarbon, and its alkylated congener, 2,4,7-trimethyldibenzothiophene, on placental trophoblast cell function. J Appl Toxicol 2020; 41:1367-1379. [PMID: 33314207 DOI: 10.1002/jat.4128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022]
Abstract
Worldwide demand for petroleum products has resulted in increased oil and gas activities in many countries. Conventional and unconventional oil and gas extraction, production, and transport lead to increased levels of petroleum-derived polycyclic aromatic hydrocarbons (PAHs) in the environment. PAH exposure has profound effects on reproduction by affecting pathways involved in placental trophoblast cell function and impairing normal placental development and function-key contributors to reproductive success. However, other components found in petroleum and wastewaters from oil and gas extraction, including the sulfur-containing heterocyclic aromatic compounds such as dibenzothiophene (DBT) and its alkylated derivatives, may also impact reproductive success. The goal of this study was to examine the effect of exposure to DBT, a compound commonly detected in the environment, and one of its alkylated analogues, 2,4,7-trimethyldibenzothiophene (2,4,7-DBT), on steroidogenic and angiogenic pathways critical for mammalian development in placental trophoblast cells (HTR-8/SVneo cells). 2,4,7-DBT but not DBT increased estradiol output in association with increased tube-like formation (surrogate for angiogenesis). These changes in angiogenesis did not appear to be related to altered expression of the key placental angiogenic gene targets (ANGPTL4, VEGFA, and PGF). Neither compound showed a concentration related effect on progesterone synthesis or its receptor expression. Our results suggest that 2,4,7-DBT can disrupt key pathways important for placental trophoblast function and highlight the importance of determining the impact of exposure to both parent and alkylated compounds. Further, these data suggest that exposure to sulfur-containing heterocyclic aromatic compounds may lead to placental dysfunction and impact reproductive success at environmentally relevant levels.
Collapse
Affiliation(s)
| | - Genevieve A Perono
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Laiba Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Philippe J Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
36
|
Jafarpour R, Pashangzadeh S, Mehdizadeh S, Bayatipoor H, Shojaei Z, Motallebnezhad M. Functional significance of lymphocytes in pregnancy and lymphocyte immunotherapy in infertility: A comprehensive review and update. Int Immunopharmacol 2020; 87:106776. [PMID: 32682255 DOI: 10.1016/j.intimp.2020.106776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
During pregnancy, the fetal-maternal interface underlies several dynamic alterations to permit the fetus to be cultivated and developed in the uterus, in spite of being identifies by the maternal immune system. A large variety of decidual leukocyte populations, including natural killer cells, NKT cells, innate lymphoid cells, dendritic cells, B cells, T cells, subpopulations of helper T cells play a vital role in controlling the trophoblast invasion, angiogenesis as well as vascular remodeling. In contrast, several regulatory immunosuppressive mechanisms, including regulatory T cells, regulatory B cells, several cytokines and mediators are involved in maintain the homeostasis of immune system in the fetal-maternal interface. Nonetheless, aberrant alterations in the balance of immune inflammatory or immunosuppressive arms have been associated with various pregnancy losses and infertilities. As a result, numerous strategies have been developed to revers dysregulated balance of immune players to increase the chance of successful pregnancy. Lymphocyte immunotherapy has been developed through utilization of peripheral white blood cells of the husband or others and administered into the mother to confer an immune tolerance for embryo's antigens. However, the results have not always been promising, implying to further investigations to improve the approach. This review attempts to clarify the involvement of lymphocytes in contributing to the pregnancy outcome and the potential of lymphocyte immunotherapy in treatment of infertilities with dysregulated immune system basis.
Collapse
Affiliation(s)
- Roghayeh Jafarpour
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saber Mehdizadeh
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hashem Bayatipoor
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Shojaei
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Motallebnezhad
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Estrogen Receptors and Estrogen-Induced Uterine Vasodilation in Pregnancy. Int J Mol Sci 2020; 21:ijms21124349. [PMID: 32570961 PMCID: PMC7352873 DOI: 10.3390/ijms21124349] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Normal pregnancy is associated with dramatic increases in uterine blood flow to facilitate the bidirectional maternal–fetal exchanges of respiratory gases and to provide sole nutrient support for fetal growth and survival. The mechanism(s) underlying pregnancy-associated uterine vasodilation remain incompletely understood, but this is associated with elevated estrogens, which stimulate specific estrogen receptor (ER)-dependent vasodilator production in the uterine artery (UA). The classical ERs (ERα and ERβ) and the plasma-bound G protein-coupled ER (GPR30/GPER) are expressed in UA endothelial cells and smooth muscle cells, mediating the vasodilatory effects of estrogens through genomic and/or nongenomic pathways that are likely epigenetically modified. The activation of these three ERs by estrogens enhances the endothelial production of nitric oxide (NO), which has been shown to play a key role in uterine vasodilation during pregnancy. However, the local blockade of NO biosynthesis only partially attenuates estrogen-induced and pregnancy-associated uterine vasodilation, suggesting that mechanisms other than NO exist to mediate uterine vasodilation. In this review, we summarize the literature on the role of NO in ER-mediated mechanisms controlling estrogen-induced and pregnancy-associated uterine vasodilation and our recent work on a “new” UA vasodilator hydrogen sulfide (H2S) that has dramatically changed our view of how estrogens regulate uterine vasodilation in pregnancy.
Collapse
|