1
|
Meade R, Ibrahim D, Engel C, Belaygorod L, Arif B, Hsu FF, Adak S, Catlett R, Zhou M, Ilagan MXG, Semenkovich CF, Zayed MA. Targeting fatty acid synthase reduces aortic atherosclerosis and inflammation. Commun Biol 2025; 8:262. [PMID: 39972116 PMCID: PMC11840040 DOI: 10.1038/s42003-025-07656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025] Open
Abstract
Fatty acid synthase (FAS) is predominantly expressed in the liver and adipose tissue. It plays vital roles in de novo synthesis of saturated fatty acids and regulates insulin sensitivity. We previously demonstrated that serum circulating FAS (cFAS) is a clinical biomarker for advanced atherosclerosis, and that it is conjugated to low-density lipoproteins (LDL). However, it remains unknown whether cFAS can directly impact atheroprogression. To investigate this, we evaluate whether cFAS impacts macrophage foam cell formation - an important cellular process leading to atheroprogression. Macrophages exposed to human serum containing high levels of cFAS show increased foam cell formation as compared to cells exposed to serum containing low levels of cFAS. This difference is not observed using serum containing either high or low LDL. Pharmacological inhibition of cFAS using Platensimycin (PTM) decreases foam cell formation in vitro. In Apoe-/- mice with normal FAS expression, administration of PTM over 16 weeks along with a high fat diet decreases cFAS activity and aortic atherosclerosis without affecting circulating total cholesterol. This effect is also observed in Apoe-/- mice with liver-specific knockout of hepatic Fasn. Reductions in aortic root plaque are associated with decreased macrophage infiltration. These findings demonstrate that cFAS plays an important role in arterial atheroprogression.
Collapse
Affiliation(s)
- Rodrigo Meade
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Dina Ibrahim
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Connor Engel
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Larisa Belaygorod
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Batool Arif
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Fong-Fu Hsu
- Metabolism & Lipid Research, Division of Endocrinology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sangeeta Adak
- Metabolism & Lipid Research, Division of Endocrinology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Catlett
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Mingzhou Zhou
- Department Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ma Xenia G Ilagan
- Department Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Clay F Semenkovich
- Metabolism & Lipid Research, Division of Endocrinology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohamed A Zayed
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Veterans Affairs St. Louis Health Care System, St. Louis, MO, USA.
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Molecular Cell Biology, Washington University School of Medicine, St. Louis, MO, USA.
- McKelvey School of Engineering, Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- CardioVascular Research Innovation in Surgery & Engineering Center, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Surgical Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Sukhorukov VN, Khotina VA, Borodko DD, Ekta MB, Oishi Y, Omelchenko AV, Kolmychkova KI, Nikiforov NG, Sobenin IA, Orekhov AN. Evidence for the Involvement of Gene Regulation of Inflammatory Molecules in the Accumulation of Intracellular Cholesterol: The Mechanism of Foam Cell Formation in Atherosclerosis. Curr Med Chem 2025; 32:1755-1769. [PMID: 38415442 DOI: 10.2174/0109298673286400240206095814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND The relationship between the cellular pro-inflammatory response and intracellular lipid accumulation in atherosclerosis is not sufficiently studied. Transcriptomic analysis is one way to establish such a relationship. Previously, we identified 10 potential key genes (IL-15, CXCL8, PERK, IL-7, IL-7R, DUSP1, TIGIT, F2RL1, TSPYL2, and ANXA1) involved in cholesterol accumulation in macrophages. It should be noted that all these genes do not directly participate in cholesterol metabolism, but encode molecules related to inflammation. METHODS In this study, we conducted a knock-down of the 10 identified key genes using siRNA to determine their possible role in cholesterol accumulation in macrophages. To assess cholesterol accumulation, human monocyte-derived macrophages (MDM) were incubated with atherogenic LDL from patients with atherosclerosis. Cholesterol content was assessed by the enzymatic method. Differentially expressed genes were identified with DESeq2 analysis. Master genes were determined by the functional analysis. RESULTS We found that only 5 out of 10 genes (IL-15, PERK, IL-7, IL-7R, ANXA1) can affect intracellular lipid accumulation. Knock-down of the IL-15, PERK, and ANXA1 genes prevented lipid accumulation, while knock-down of the IL-7 and IL-7R genes led to increased intracellular lipid accumulation during incubation of MDM with atherogenic LDL. Seventeen overexpressed genes and 189 underexpressed genes were obtained in the DGE analysis, which allowed us to discover 20 upregulated and 86 downregulated metabolic pathways, a number of which are associated with chronic inflammation and insulin signaling. We also elucidated 13 master regulators of cholesterol accumulation that are immune response-associated genes. CONCLUSION Thus, it was discovered that 5 inflammation-related master regulators may be involved in lipid accumulation in macrophages. Therefore, the pro-inflammatory response of macrophages may trigger foam cell formation rather than the other way around, where intracellular lipid accumulation causes an inflammatory response, as previously assumed.
Collapse
Affiliation(s)
- Vasily Nikolaevich Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991, Moscow, Russia
| | | | - Daria Dmitryevna Borodko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - Mariam Bagheri Ekta
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991, Moscow, Russia
| | - Yumiko Oishi
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Kira Ivanovna Kolmychkova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - Nikita G Nikiforov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - Igor Alexandrovich Sobenin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Chazov National Medical Research Center of Cardiology, 121552, Moscow, Russia
| | | |
Collapse
|
3
|
Jiang R, Jia Q, Li C, Gan X, Zhou Y, Pan Y, Fu Y, Chen X, Liang L, Jia E. Integrated analysis of differentially m6A modified and expressed lncRNAs for biomarker identification in coronary artery disease. Cell Biol Int 2024; 48:1664-1679. [PMID: 39004874 DOI: 10.1002/cbin.12224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal RNA modification in mammals. However, limited research has been conducted on the role of m6A in coronary artery disease (CAD). We conducted methylated RNA immunoprecipitation sequencing and RNA sequencing to obtain a genome-wide profile of m6A-modified long noncoding RNAs (lncRNAs) in human coronary artery smooth muscle cells either exposed to oxidized low-density lipoprotein treatment or not, and the characteristics of the expression profiles were explored using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The predictive effects of seven selected lncRNAs on CAD were evaluated in peripheral blood mononuclear cells (PBMCs). The differentially m6A-modified and expressed lncRNAs related genes were predominantly enriched in small GTPase-mediated signal transduction, ErbB signaling, and Rap1 signaling. Additionally, the expression levels of uc003pes.1, ENST00000422847, and NR_110155 were significantly associated with CAD, with uc003pes.1 identified as an independent risk factor and NR_110155 as an independent protective factor for CAD. NR_110155 and uc003pes.1 in PBMCs have the potential to serve as biomarkers for predicting CAD.
Collapse
Affiliation(s)
- Rongli Jiang
- Department of Geriatric, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qiaowei Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chengcheng Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiongkang Gan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yaqing Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yang Pan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yahong Fu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiumei Chen
- Department of Geriatric, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lanyu Liang
- Department of Geriatric, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
4
|
Song Y, Chen C, Li W. Ginsenoside Rb 1 in cardiovascular and cerebrovascular diseases: A review of therapeutic potentials and molecular mechanisms. CHINESE HERBAL MEDICINES 2024; 16:489-504. [PMID: 39606264 PMCID: PMC11589305 DOI: 10.1016/j.chmed.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 11/29/2024] Open
Abstract
Cardiovascular and cerebrovascular diseases (CCVDs), which are circulatory system diseases caused by heart defects and vascular diseases, are the major noncommunicable diseases affecting global public health. With the improvement of economic level and the change of human lifestyle, the prevalence of CCVDs continues to increase. Ginseng (Panax ginseng C. A. Mey.) was widely used in traditional diseases due to its supposed tonic properties. Ginsenoside Rb1 (G-Rb1) is the most abundant active ingredient with multiple pharmacological effects extracted from ginseng, which has been shown to have potential benefits on the cardiovascular system through a variety of mechanisms, including anti-oxidation, anti-inflammatory, regulation of vasodilation, reduction of platelet adhesion, influence of calcium ion channels, improvement of lipid distribution, involving in glucose metabolism and controlling blood sugar. This review reviewed the protective effects of G-Rb1 on CCVDs and its potential mechanisms, such as atherosclerosis (AS), hypertension, coronary heart disease (CHD), ischemic stroke (IS) and periocular microvascular retinopathy. Finally, we reviewed and reported the results of in vivo and in vitro experiments using G-Rb1 to improve CCVDs, highlighted its efficacy, safety, and limitations.
Collapse
Affiliation(s)
- Yueqin Song
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun 130118, China
| |
Collapse
|
5
|
Shang J, Ma Y, Liu X, Sun S, Pang X, Zhou R, Huan S, He Y, Xiong B, Zhang XB. Single-particle rotational microrheology enables pathological staging of macrophage foaming and antiatherosclerotic studies. Proc Natl Acad Sci U S A 2024; 121:e2403740121. [PMID: 39102540 PMCID: PMC11331104 DOI: 10.1073/pnas.2403740121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
The formation of macrophage-derived foam cells has been recognized as the pathological hallmark of atherosclerotic diseases. However, the pathological evolution dynamics and underlying regulatory mechanisms remain largely unknown. Herein, we introduce a single-particle rotational microrheology method for pathological staging of macrophage foaming and antiatherosclerotic explorations by probing the dynamic changes of lysosomal viscous feature over the pathological evolution progression. The principle of this method involves continuous monitoring of out-of-plane rotation-caused scattering brightness fluctuations of the gold nanorod (AuNR) probe-based microrheometer and subsequent determination of rotational relaxation time to analyze the viscous feature in macrophage lysosomes. With this method, we demonstrated the lysosomal viscous feature as a robust pathological reporter and uncovered three distinct pathological stages underlying the evolution dynamics, which are highly correlated with a pathological stage-dependent activation of the NLRP3 inflammasome-involved positive feedback loop. We also validated the potential of this positive feedback loop as a promising therapeutic target and revealed the time window-dependent efficacy of NLRP3 inflammasome-targeted drugs against atherosclerotic diseases. To our knowledge, the pathological staging of macrophage foaming and the pathological stage-dependent activation of the NLRP3 inflammasome-involved positive feedback mechanism have not yet been reported. These findings provide insights into in-depth understanding of evolutionary features and regulatory mechanisms of macrophage foaming, which can benefit the analysis of effective therapeutical drugs as well as the time window of drug treatment against atherosclerotic diseases in preclinical studies.
Collapse
Affiliation(s)
- Jinhui Shang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Yuan Ma
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Xixuan Liu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Shijie Sun
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Xiayun Pang
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang712083, China
| | - Rui Zhou
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang712083, China
| | - Shuangyan Huan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Yan He
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Bin Xiong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| |
Collapse
|
6
|
Moll TO, Klemek ML, Farber SA. Directly Measuring Atherogenic Lipoprotein Kinetics in Zebrafish with the Photoconvertible LipoTimer Reporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596423. [PMID: 38853962 PMCID: PMC11160697 DOI: 10.1101/2024.05.29.596423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Lipoprotein kinetics are a crucial factor in understanding lipoprotein metabolism since a prolonged time in circulation can contribute to the atherogenic character of apolipoprotein-B (ApoB)-containing lipoproteins (B-lps). Here, we report a method to directly measure lipoprotein kinetics in live developing animals. We developed a zebrafish geneticly encoded reporter, LipoTimer, in which endogenous ApoBb.1 is fused to the photoconvertible fluorophore Dendra2 which shift its emission profile from green to red upon UV exposure. By quantifying the red population of ApoB-Dendra2 over time, we found that B-lp turnover in wild-type larvae becomes faster as development proceeds. Mutants with impaired B-lp uptake or lipolysis present with increased B-lp levels and half-life. In contrast, mutants with impaired B-lp triglyceride loading display slightly fewer and smaller-B-lps, which have a significantly shorter B-lp half-life. Further, we showed that chronic high-cholesterol feeding is associated with a longer B-lp half-life in wild-type juveniles but does not lead to changes in B-lp half-life in lipolysis deficient apoC2 mutants. These data support the hypothesis that B-lp lipolysis is suppressed by the flood of intestinal-derived B-lps that follow a high-fat meal.
Collapse
Affiliation(s)
- Tabea O.C. Moll
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Steven A. Farber
- Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
7
|
Voronina AK, Arapidi GP. Helicobacter cinaedi bacterium association with atherosclerosis and other diseases. Front Microbiol 2024; 15:1371717. [PMID: 38650874 PMCID: PMC11033375 DOI: 10.3389/fmicb.2024.1371717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Helicobacter is a genus of spiral-shaped Gram-negative enterohepatic bacteria whose members are capable of causing bacteremia in humans. One of the poorly studied members of this genus is the bacterium Helicobacter cinaedi. This microorganism was first isolated from human fecal samples in 1984. Although it was long considered to be associated with only immunocompromised patients, more evidence in recent years has implicated H. cinaedi in causing serious pathologies in immunocompetent populations. In addition, H. cinaedi is also reported to be associated with a few chronic or severe illnesses, such as atherosclerosis, which in turn can lead to the development of other cardiovascular pathologies: one of the leading causes of mortality worldwide. Helicobacter cinaedi often goes unnoticed in standard diagnostic methods due to its slow growth under microaerobic conditions. This often leads to significant underdetection and hence undermines the role of this bacterium in the pathogenesis of various diseases and the extent of its spread in humans. In this review, we have compiled information on pathologies associated with H. cinaedi, the occurrence of the bacterium in humans and animals, and the latest developments in diagnosing the bacterium and treating associated diseases.
Collapse
Affiliation(s)
- Alice K. Voronina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Georgij P. Arapidi
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Orekhov A, Khotina V, Sukhorukov V, Sobenin I. Non-oxidative vs Oxidative Forms of Modified Low-density Lipoprotein: What is More Important in Atherogenesis? Curr Med Chem 2024; 31:2309-2313. [PMID: 38204226 DOI: 10.2174/0109298673294245240102105814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Affiliation(s)
- Alexander Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, 125315, Russia
| | | | - Vasily Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, 125315, Russia
| | - Igor Sobenin
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, 125315, Russia
| |
Collapse
|
9
|
Kwak D, Bradley PB, Subbotina N, Ling S, Teitz-Tennenbaum S, Osterholzer JJ, Sisson TH, Kim KK. CD36/Lyn kinase interactions within macrophages promotes pulmonary fibrosis in response to oxidized phospholipid. Respir Res 2023; 24:314. [PMID: 38098035 PMCID: PMC10722854 DOI: 10.1186/s12931-023-02629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
Recent data from human studies and animal models have established roles for type II alveolar epithelial cell (AEC2) injury/apoptosis and monocyte/macrophage accumulation and activation in progressive lung fibrosis. Although the link between these processes is not well defined, we have previously shown that CD36-mediated uptake of apoptotic AEC2s by lung macrophages is sufficient to drive fibrosis. Importantly, apoptotic AEC2s are rich in oxidized phospholipids (oxPL), and amongst its multiple functions, CD36 serves as a scavenger receptor for oxPL. Recent studies have established a role for oxPLs in alveolar scarring, and we hypothesized that uptake and accrual of oxPL by CD36 would cause a macrophage phenotypic change that promotes fibrosis. To test this hypothesis, we treated wild-type and CD36-null mice with the oxPL derivative oxidized phosphocholine (POVPC) and found that CD36-null mice were protected from oxPL-induced scarring. Compared to WT mice, fewer macrophages accumulated in the lungs of CD36-null animals, and the macrophages exhibited a decreased accumulation of intracellular oxidized lipid. Importantly, the attenuated accrual of oxPL in CD36-null macrophages was associated with diminished expression of the profibrotic mediator, TGFβ. Finally, the pathway linking oxPL uptake and TGFβ expression was found to require CD36-mediated activation of Lyn kinase. Together, these observations elucidate a causal pathway that connects AEC2 injury with lung macrophage activation via CD36-mediated uptake of oxPL and suggest several potential therapeutic targets.
Collapse
Affiliation(s)
- Doyun Kwak
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Patrick B Bradley
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Natalia Subbotina
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Song Ling
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Seagal Teitz-Tennenbaum
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
- Pulmonary Section, Department of Medicine, VA Ann Arbor Health System, Ann Arbor, MI, 48105, USA
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
- Pulmonary Section, Department of Medicine, VA Ann Arbor Health System, Ann Arbor, MI, 48105, USA
| | - Thomas H Sisson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
10
|
Yang M, Su Y, Zheng H, Xu K, Yuan Q, Cai Y, Aihaiti Y, Xu P. Identification of the potential regulatory interactions in rheumatoid arthritis through a comprehensive analysis of lncRNA-related ceRNA networks. BMC Musculoskelet Disord 2023; 24:799. [PMID: 37814309 PMCID: PMC10561475 DOI: 10.1186/s12891-023-06936-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVE This study aimed at constructing a network of competing endogenous RNA (ceRNA) in the synovial tissues of rheumatoid arthritis (RA). It seeks to discern potential biomarkers and explore the long non-coding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) axes that are intricately linked to the pathophysiological mechanisms underpinning RA, and providing a scientific basis for the pathogenesis and treatment of RA. METHODS Microarray data pertaining to RA synovial tissue, GSE103578, GSE128813, and GSE83147, were acquired from the Gene Expression Omnibus (GEO) database ( http://www.ncbi.nlm.nih.gov/geo ). Conducted to discern both differentially expressed lncRNAs (DELncRNAs) and differentially expressed genes (DEGs). A ceRNA network was obtained through key lncRNAs, key miRNAs, and key genes. Further investigations involved co-expression analyses to uncover the lncRNA-miRNA-mRNA axes contributing to the pathogenesis of RA. To delineate the immune-relevant facets of this axis, we conducted an assessment of key genes, emphasizing those with the most substantial immunological correlations, employing the GeneCards database. Finally, gene set enrichment analysis (GSEA) was executed on the identified key lncRNAs to elucidate their functional implications in RA. RESULTS The 2 key lncRNAs, 7 key miRNAs and 6 key genes related to the pathogenesis of RA were obtained, as well as 2 key lncRNA-miRNA-mRNA axes (KRTAP5-AS1-hsa-miR-30b-5p-PNN, XIST-hsa-miR-511-3p/hsa-miR-1277-5p-F2RL1). GSEA of two key lncRNAs obtained biological processes and signaling pathways related to RA synovial lesions. CONCLUSION The findings of this investigation hold promise in furnishing a foundational framework and guiding future research endeavors aimed at comprehending the etiology and therapeutic interventions for RA.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yani Su
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Haishi Zheng
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Qiling Yuan
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yongsong Cai
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yirixiati Aihaiti
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
11
|
Multi-omics analysis identifies potential mechanisms by which high glucose accelerates macrophage foaming. Mol Cell Biochem 2023; 478:665-678. [PMID: 36029453 DOI: 10.1007/s11010-022-04542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Atherosclerotic morbidity is significantly higher in the diabetic population. Hyperglycemia, a typical feature of diabetes, has been proven to accelerate foam cell formation. However, the molecular mechanisms behind this process remain unclear. In this study, LPS and IFN-γ were used to convert THP-1-derived macrophages into M1 macrophages, which were then activated with ox-LDL in either high glucose or normal condition. We identified lipids within macrophages by Oil red O staining and total cholesterol detection. The genes involved in lipid absorption, efflux, inflammation, and metabolism were analyzed using qRT-PCR. The mechanisms of high glucose-induced foam cell formation were further investigated through metabolomics and transcriptomics analysis. We discovered that high glucose speed up lipid accumulation in macrophages (both lipid droplets and total cholesterol increased), diminished lipid efflux (ABCG1 down-regulation), and aggravated inflammation (IL1B and TNF up-regulation). Following multi-omics analysis, it was determined that glucose altered the metabolic and transcriptional profiles of macrophages, identifying 392 differently expressed metabolites and 293 differentially expressed genes, respectively. Joint pathway analysis suggested that glucose predominantly disrupted the glycerolipid, glycerophospholipid, and arachidonic acid metabolic pathways in macrophages. High glucose in the glyceride metabolic pathway, for instance, suppressed the transcription of triglyceride hydrolase (LIPG and LPL), causing cells to deposit excess triglycerides into lipid droplets and encouraging foam cell formation. More importantly, high glucose triggered the accumulation of pro-atherosclerotic lipids (7-ketocholesterol, lysophosphatidylcholine, and glycerophosphatidylcholine). In conclusion, this work elucidated mechanisms of glucose-induced foam cell formation via a multi-omics approach.
Collapse
|
12
|
Hypotheses on Atherogenesis Triggering: Does the Infectious Nature of Atherosclerosis Development Have a Substruction? Cells 2023; 12:cells12050707. [PMID: 36899843 PMCID: PMC10001176 DOI: 10.3390/cells12050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Since the end of the 20th century, it has been clear that atherosclerosis is an inflammatory disease. However, the main triggering mechanism of the inflammatory process in the vascular walls is still unclear. To date, many different hypotheses have been put forward to explain the causes of atherogenesis, and all of them are supported by strong evidence. Among the main causes of atherosclerosis, which underlies these hypotheses, the following can be mentioned: lipoprotein modification, oxidative transformation, shear stress, endothelial dysfunction, free radicals' action, homocysteinemia, diabetes mellitus, and decreased nitric oxide level. One of the latest hypotheses concerns the infectious nature of atherogenesis. The currently available data indicate that pathogen-associated molecular patterns from bacteria or viruses may be an etiological factor in atherosclerosis. This paper is devoted to the analysis of existing hypotheses for atherogenesis triggering, and special attention is paid to the contribution of bacterial and viral infections to the pathogenesis of atherosclerosis and cardiovascular disease.
Collapse
|
13
|
P Karagodin V, I Summerhill V, Yet SF, N Orekhov A. The anti-atherosclerotic effects of natural polysaccharides: from phenomena to the main mechanisms of action. Curr Pharm Des 2022; 28:1823-1832. [PMID: 35585810 DOI: 10.2174/1381612828666220518095025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Polysaccharides (PSs) of plant origin have a variety of biological activities, anti-atherosclerotic including, but their use in atherosclerosis therapy is hindered by insufficient knowledge on the cellular and molecular mechanisms of action. In this review, the influence of several natural PSs on the function of macrophages, viral activity, and macrophage cholesterol metabolism has been discussed considering the tight interplay between these aspects in the pathogenesis of atherosclerosis. The anti-atherosclerotic activities of natural PSs related to other mechanisms have been also explored. Directions for further research of anti-atherosclerotic effects of natural PSs have been outlined, the most promising of which can be nutrigenomic studies.
Collapse
Affiliation(s)
- Vasily P Karagodin
- Department of Commodity Research and Expertise, Plekhanov Russian University of Economics, 36 Stremyanny Pereulok, 117997 Moscow, Russia
| | - Volha I Summerhill
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan R.O.C
| | - Alexander N Orekhov
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia.,Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
| |
Collapse
|
14
|
Kolpakov F, Akberdin I, Kiselev I, Kolmykov S, Kondrakhin Y, Kulyashov M, Kutumova E, Pintus S, Ryabova A, Sharipov R, Yevshin I, Zhatchenko S, Kel A. BioUML-towards a universal research platform. Nucleic Acids Res 2022; 50:W124-W131. [PMID: 35536253 PMCID: PMC9252820 DOI: 10.1093/nar/gkac286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
BioUML (https://www.biouml.org)—is a web-based integrated platform for systems biology and data analysis. It supports visual modelling and construction of hierarchical biological models that allow us to construct the most complex modular models of blood pressure regulation, skeletal muscle metabolism, COVID-19 epidemiology. BioUML has been integrated with git repositories where users can store their models and other data. We have also expanded the capabilities of BioUML for data analysis and visualization of biomedical data: (i) any programs and Jupyter kernels can be plugged into the BioUML platform using Docker technology; (ii) BioUML is integrated with the Galaxy and Galaxy Tool Shed; (iii) BioUML provides two-way integration with R and Python (Jupyter notebooks): scripts can be executed on the BioUML web pages, and BioUML functions can be called from scripts; (iv) using plug-in architecture, specialized viewers and editors can be added. For example, powerful genome browsers as well as viewers for molecular 3D structure are integrated in this way; (v) BioUML supports data analyses using workflows (own format, Galaxy, CWL, BPMN, nextFlow). Using these capabilities, we have initiated a new branch of the BioUML development—u-science—a universal scientific platform that can be configured for specific research requirements.
Collapse
Affiliation(s)
- Fedor Kolpakov
- Sirius University of Science and Technology, Sochi 354340, Russian Federation.,Federal Research Center for Information and Computational Technologies, Novosibirsk 630090, Russian Federation.,Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Russian Federation
| | - Ilya Akberdin
- Sirius University of Science and Technology, Sochi 354340, Russian Federation.,Biosoft.ru, LLC, Novosibirsk 630058, Russian Federation.,Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Ilya Kiselev
- Sirius University of Science and Technology, Sochi 354340, Russian Federation.,Federal Research Center for Information and Computational Technologies, Novosibirsk 630090, Russian Federation.,Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Russian Federation
| | - Semyon Kolmykov
- Sirius University of Science and Technology, Sochi 354340, Russian Federation.,Biosoft.ru, LLC, Novosibirsk 630058, Russian Federation
| | - Yury Kondrakhin
- Federal Research Center for Information and Computational Technologies, Novosibirsk 630090, Russian Federation.,Biosoft.ru, LLC, Novosibirsk 630058, Russian Federation
| | | | - Elena Kutumova
- Sirius University of Science and Technology, Sochi 354340, Russian Federation.,Federal Research Center for Information and Computational Technologies, Novosibirsk 630090, Russian Federation
| | - Sergey Pintus
- Sirius University of Science and Technology, Sochi 354340, Russian Federation
| | - Anna Ryabova
- Sirius University of Science and Technology, Sochi 354340, Russian Federation
| | - Ruslan Sharipov
- Sirius University of Science and Technology, Sochi 354340, Russian Federation.,Biosoft.ru, LLC, Novosibirsk 630058, Russian Federation.,Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Ivan Yevshin
- Sirius University of Science and Technology, Sochi 354340, Russian Federation.,Biosoft.ru, LLC, Novosibirsk 630058, Russian Federation
| | - Sergey Zhatchenko
- Sirius University of Science and Technology, Sochi 354340, Russian Federation.,Biosoft.ru, LLC, Novosibirsk 630058, Russian Federation
| | - Alexander Kel
- Biosoft.ru, LLC, Novosibirsk 630058, Russian Federation.,geneXplain GmbH, Wolfenbüttel 38302, Germany
| |
Collapse
|
15
|
Paukner K, Králová Lesná I, Poledne R. Cholesterol in the Cell Membrane-An Emerging Player in Atherogenesis. Int J Mol Sci 2022; 23:533. [PMID: 35008955 PMCID: PMC8745363 DOI: 10.3390/ijms23010533] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Membrane cholesterol is essential for cell membrane properties, just as serum cholesterol is important for the transport of molecules between organs. This review focuses on cholesterol transport between lipoproteins and lipid rafts on the surface of macrophages. Recent studies exploring this mechanism and recognition of the central dogma-the key role of macrophages in cardiovascular disease-have led to the notion that this transport mechanism plays a major role in the pathogenesis of atherosclerosis. The exact molecular mechanism of this transport remains unclear. Future research will improve our understanding of the molecular and cellular bases of lipid raft-associated cholesterol transport.
Collapse
Affiliation(s)
- Karel Paukner
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.K.L.); (R.P.)
- Department of Physiology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
- Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Small Animal Clinic, 612 00 Brno, Czech Republic
| | - Ivana Králová Lesná
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.K.L.); (R.P.)
- Department of Anesthesia and Intensive Medicine, First Faculty of Medicine, Charles University and University Military Hospital, 128 08 Prague, Czech Republic
| | - Rudolf Poledne
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.K.L.); (R.P.)
| |
Collapse
|
16
|
Qiu X, Lin J, Chen Y, Liang B, Li L. Identification of Hub Genes Associated with Abnormal Endothelial Function in Early Coronary Atherosclerosis. Biochem Genet 2021; 60:1189-1204. [PMID: 34800203 DOI: 10.1007/s10528-021-10139-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022]
Abstract
Abnormal coronary endothelial function is an important step in the development of atherosclerosis. Coronary atherosclerosis is one of the main causes of death worldwide. We constructed a co-expression network to identify hub genes associated with abnormal coronary endothelial function in early coronary atherosclerosis. In brief, we used the GSE132651 dataset from the gene expression omnibus database. The top 5000 genes with greatest variances were used for weighted gene co-expression network analysis, and the module most strongly correlated with abnormal coronary endothelial function was chosen as key module. Functional enrichment analysis was performed for genes in the key module, a protein-protein interaction network was constructed to find hub genes, and gene set enrichment analysis (GSEA) was also performed. Genes were classified into 7 modules, with the midnightblue module being the one that was most related to abnormal coronary endothelial function and containing genes enriched in DNA replication, cell cycle, nucleotide excision repair, and Human T-cell leukemia virus 1 infection. We identified nine hub genes (HOXC5, PRND, PADI3, RC3H1, DAPP1, SIT1, DRICH1, GPRIN2, and RHO), which differently expressed in abnormal and normal coronary endothelial function samples. GSEA suggested that samples associated with abnormal coronary endothelial function and highly expressed hub genes were linked with immune, coagulation, hypoxia, and angiogenesis processes. These hub genes, their expression pattern, and pathways may be involved in the development of abnormal coronary endothelial function and promotion of early coronary atherosclerosis.
Collapse
Affiliation(s)
- Xue Qiu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jinyan Lin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yanbing Chen
- The First Clinical Medical School, Guangxi Medical University, Nanning, 530021, Guangxi Province, People's Republic of China
| | - Bixiao Liang
- The First Clinical Medical School, Guangxi Medical University, Nanning, 530021, Guangxi Province, People's Republic of China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
17
|
Salnikova D, Orekhova V, Grechko A, Starodubova A, Bezsonov E, Popkova T, Orekhov A. Mitochondrial Dysfunction in Vascular Wall Cells and Its Role in Atherosclerosis. Int J Mol Sci 2021; 22:8990. [PMID: 34445694 PMCID: PMC8396504 DOI: 10.3390/ijms22168990] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022] Open
Abstract
Altered mitochondrial function is currently recognized as an important factor in atherosclerosis initiation and progression. Mitochondrial dysfunction can be caused by mitochondrial DNA (mtDNA) mutations, which can be inherited or spontaneously acquired in various organs and tissues, having more or less profound effects depending on the tissue energy status. Arterial wall cells are among the most vulnerable to mitochondrial dysfunction due to their barrier and metabolic functions. In atherosclerosis, mitochondria cause alteration of cellular metabolism and respiration and are known to produce excessive amounts of reactive oxygen species (ROS) resulting in oxidative stress. These processes are involved in vascular disease and chronic inflammation associated with atherosclerosis. Currently, the list of known mtDNA mutations associated with human pathologies is growing, and many of the identified mtDNA variants are being tested as disease markers. Alleviation of oxidative stress and inflammation appears to be promising for atherosclerosis treatment. In this review, we discuss the role of mitochondrial dysfunction in atherosclerosis development, focusing on the key cell types of the arterial wall involved in the pathological processes. Accumulation of mtDNA mutations in isolated arterial wall cells, such as endothelial cells, may contribute to the development of local inflammatory process that helps explaining the focal distribution of atherosclerotic plaques on the arterial wall surface. We also discuss antioxidant and anti-inflammatory approaches that can potentially reduce the impact of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Diana Salnikova
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia;
- Laboratory of Oncoproteomics, Institute of Carconigenesis, N. N. Blokhin Cancer Research Centre, 115478 Moscow, Russia
| | - Varvara Orekhova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.B.); (A.O.)
| | - Andrey Grechko
- Federal Scientific Clinical Center for Resuscitation and Rehabilitation, 109240 Moscow, Russia;
| | - Antonina Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia;
- Therapy Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Evgeny Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.B.); (A.O.)
- Institute of Human Morphology, 117418 Moscow, Russia
| | - Tatyana Popkova
- V. A. Nasonova Institute of Rheumatology, 115522 Moscow, Russia;
| | - Alexander Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.B.); (A.O.)
- Institute of Human Morphology, 117418 Moscow, Russia
| |
Collapse
|
18
|
Broker M, Frager SZ, Patel NS, Lebovics E, Frishman WH. The Inflammatory Relationship Between Hepatitis C Virus With Coronary and Carotid Atherosclerosis. Cardiol Rev 2021; 29:178-183. [PMID: 32618587 DOI: 10.1097/crd.0000000000000314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hepatitis C virus (HCV), a global health concern, has been linked to various hepatic and extrahepatic deleterious manifestations. Several observational studies have either supported the increased likelihood of coronary and carotid atherosclerosis after infection with HCV or refuted it. To date, there has been no clear consensus to support either train of thought, as randomized, controlled clinical trials have not been completed. In this review, we first discuss articles that support the notion that HCV infection leads to increased plaque formation due to systemic inflammation and then focus on articles that refute this idea. From the literature, we do know that both inflammatory and lipid processes play a role in plaque formation, and thus both components are important in the successful treatment of atherosclerosis. Based on our review of the literature, we do believe that HCV-infected individuals are at an increased risk for more severe coronary artery disease than their healthy counterparts. Although there is no irrefutable evidence that links HCV infection with plaque formation and/or rupture, cardioprotective measures should be taken to reduce poor health outcomes, especially in those individuals who are already at risk of coronary disease.
Collapse
Affiliation(s)
- Michael Broker
- From the Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| | - Shalom Z Frager
- Department of Medicine, Division of Gastroenterology and Hepatology, New York Medical College/Westchester Medical Center, Valhalla, NY
| | - Nayan S Patel
- Department of Medicine, University of Rochester/Strong Memorial Hospital, Rochester, NY
| | - Edward Lebovics
- Department of Medicine, Division of Gastroenterology and Hepatology, New York Medical College/Westchester Medical Center, Valhalla, NY
| | - William H Frishman
- From the Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| |
Collapse
|
19
|
Zhou Y, Zhang S, Ji W, Gan X, Hua L, Hou C, Chen J, Wang Y, He S, Zhou H, Jia E. LncRNA Landscape of Coronary Atherosclerosis Reveals Differentially Expressed LncRNAs in Proliferation and Migration of Coronary Artery Smooth Muscle Cells. Front Cell Dev Biol 2021; 9:656636. [PMID: 34084771 PMCID: PMC8168468 DOI: 10.3389/fcell.2021.656636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
We aimed to investigate differentially expressed long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in atherosclerosis and validate the expression of lncRNAs and co-expressed target genes in proliferation and migration models of human coronary artery smooth muscle cells (HCASMCs). Ten coronary artery specimens from a subject who died from a heart attack were employed. The pathological analysis was analyzed by hematoxylin and eosin (H&E) staining, and the lncRNAs and mRNAs were identified by RNA sequencing. Bioinformatic analyses were performed to predict possible mechanisms. The proliferation and migration of HCASMCs were induced with oxidized low-density lipoprotein (ox-LDL). Differentially expressed lncRNAs and mRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). In this study, 68 lncRNAs and 222 mRNAs were identified differentially expressed in atherosclerosis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the Fanconi anemia pathway may be involved in atherosclerosis. GON4L was found to be the co-localized target gene of LNC_000439, and 14 genes had high correlations with the expression of seven lncRNAs. In addition, nine lncRNA–miRNA–mRNA networks were constructed, and 53 co-expressed gene modules were detected with weighted gene co-expression network analysis (WGCNA). LNC_000684, LNC_001046, LNC_001333, LNC_001538, and LNC_002115 were downregulated, while LNC_002936 was upregulated in proliferation and migration models of HCASMCs. In total, six co-expressed mRNAs were upregulated in HCASMCs. This study suggests that the differentially expressed lncRNAs identified by RNA sequencing and validated in smooth muscle cells may be a target for regulating HCASMC proliferation and migration in atherosclerosis, which will provide a new diagnostic basis and therapeutic target for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yaqing Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenfeng Ji
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiongkang Gan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Hua
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Can Hou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaxin Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanjun Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shu He
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hanxiao Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Chen Q, Qi X, Zhang W, Zhang Y, Bi Y, Meng Q, Bian H, Li Y. Catalpol Inhibits Macrophage Polarization and Prevents Postmenopausal Atherosclerosis Through Regulating Estrogen Receptor Alpha. Front Pharmacol 2021; 12:655081. [PMID: 33995075 PMCID: PMC8120111 DOI: 10.3389/fphar.2021.655081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
Lacking estrogen increases the risk of atherosclerosis (AS) in postmenopausal women. Inflammation plays a vital role in the pathological process of AS, and macrophages are closely related to inflammation. Catalpol is an iridoid glucoside extracted from the fresh roots of the traditional Chinese herb Rehmanniae radix preparata. In this study, we aimed to evaluate the effects of catalpol on macrophage polarization and postmenopausal AS. In addition, we investigated whether the mechanism of catalpol was dependent on regulating the expression of estrogen receptors (ERs). In vitro, lipopolysaccharides (LPS) and interferon-γ (IFN-γ) were applied to induce M1 macrophage polarization. In vivo, the ApoE-/- mice were fed with a high-fat diet to induce AS, and ovariectomy was operated to mimic the estrogen cessation. We demonstrated catalpol inhibited M1 macrophage polarization induced by LPS and INF-γ, and eliminated lipid accumulation in postmenopausal AS mice. Catalpol not only suppressed the inflammatory response but also reduced the level of oxidative stress. Then, ERs (ERα and ERβ) inhibitors and ERα siRNA were also applied in confirming that the protective effect of catalpol was mediated by ERα, rather than ERβ. In conclusion, catalpol significantly inhibited macrophage polarization and prevented postmenopausal AS by increasing ERα expression.
Collapse
Affiliation(s)
- Qi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xu Qi
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuhan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunhui Bi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinghai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Li J, Meng Q, Fu Y, Yu X, Ji T, Chao Y, Chen Q, Li Y, Bian H. Novel insights: Dynamic foam cells derived from the macrophage in atherosclerosis. J Cell Physiol 2021; 236:6154-6167. [PMID: 33507545 DOI: 10.1002/jcp.30300] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Atherosclerosis can be regarded as a chronic disease derived from the interaction between disordered lipoproteins and an unsuitable immune response. The evolution of foam cells is not only a significant pathological change in the early stage of atherosclerosis but also a key stage in the occurrence and development of atherosclerosis. The formation of foam cells is mainly caused by the imbalance among lipids uptake, lipids treatment, and reverse cholesterol transport. Although a large number of studies have summarized the source of foam cells and the mechanism of foam cells formation, we propose a new idea about foam cells in atherosclerosis. Rather than an isolated microenvironment, the macrophage multiple lipid uptake pathways, lipid internalization, lysosome, mitochondria, endoplasmic reticulum, neutral cholesterol ester hydrolase (NCEH), acyl-coenzyme A-cholesterol acyltransferase (ACAT), and reverse cholesterol transport are mutually influential, and form a dynamic process under multi-factor regulation. The macrophage takes on different uptake lipid statuses depending on multiple uptake pathways and intracellular lipids, lipid metabolites versus pro-inflammatory factors. Except for NCEH and ACAT, the lipid internalization of macrophages also depends on multicellular organelles including the lysosome, mitochondria, and endoplasmic reticulum, which are associated with each other. A dynamic balance between esterification and hydrolysis of cholesterol for macrophages is essential for physiology and pathology. Therefore, we propose that the foam cell in the process of atherosclerosis may be dynamic under multi-factor regulation, and collate this study to provide a holistic and dynamic idea of the foam cell.
Collapse
Affiliation(s)
- Jun Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinghai Meng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Fu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xichao Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Ji
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Chao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huimin Bian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
22
|
Poznyak AV, Nikiforov NG, Markin AM, Kashirskikh DA, Myasoedova VA, Gerasimova EV, Orekhov AN. Overview of OxLDL and Its Impact on Cardiovascular Health: Focus on Atherosclerosis. Front Pharmacol 2021; 11:613780. [PMID: 33510639 PMCID: PMC7836017 DOI: 10.3389/fphar.2020.613780] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular pathologies maintain the leading position in mortality worldwide. Atherosclerosis is a chronic disease that can result in a variety of serious complications, such as myocardial infarction, stroke, and cardiovascular disease. Inflammation and lipid metabolism alterations play a crucial role in atherogenesis, but the details of relationships and causality of these fundamental processes remain not clear. The oxidation of LDL was considered the main atherogenic modification of LDL within the vascular wall for decades. However, recent investigations provided a growing body of evidence in support of the multiple LDL modification theory. It suggests that LDL particles undergo numerous modifications that change their size, density, and chemical properties within the blood flow and vascular wall. Oxidation is the last stage in this cascade resulting in the atherogenic properties. Moreover, recent investigations have discovered that oxLDL may have both anti-inflammatory and pro-inflammatory properties. Oxidized LDL can trigger inflammation through the activation of macrophages and other cells. After all, oxidized LDL is still a promising object for further investigations that have the potential to clarify the unknown parts of the atherogenic process. In this review, we discuss the role of oxLDL in atherosclerosis development on different levels.
Collapse
Affiliation(s)
- Anastasia V Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Nikita G Nikiforov
- Centre of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow, Russia.,Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander M Markin
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Dmitry A Kashirskikh
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Centro Cardiologico Monzino, Istituti di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Elena V Gerasimova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia.,Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
23
|
Shemiakova T, Ivanova E, Grechko AV, Gerasimova EV, Sobenin IA, Orekhov AN. Mitochondrial Dysfunction and DNA Damage in the Context of Pathogenesis of Atherosclerosis. Biomedicines 2020; 8:E166. [PMID: 32570831 PMCID: PMC7344998 DOI: 10.3390/biomedicines8060166] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a multifactorial disease of the cardiovascular system associated with aging, inflammation, and oxidative stress. An important role in the development of atherosclerosis play elevated plasma lipoproteins. A number of external factors (smoking, diabetes, infections) can also contribute to the development of the disease. For a long time, atherosclerosis remains asymptomatic, therefore, the search for early markers of the disease is critical for the timely management and better outcomes for patients. Mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage appear to connect different aspects of atherosclerosis pathogenesis. To date, multiple lines of research have demonstrated the strong association of mitochondrial dysfunction with the development of various human diseases. Therapies aimed at restoring the mitochondrial function are being actively developed, and are expected to broaden the therapeutic possibilities for several chronic human diseases. The development of such therapies depends on our understanding of the functional roles of different mtDNA variants associated with one or another disorder, and the molecular mechanisms linking mitochondrial dysfunction with a given pathological feature. These questions are, however, challenging and require future intensive research. This review summarizes the recent studies and describes the central processes of the development of atherosclerosis, and shows their relationship with mitochondrial dysfunction. One of the promising therapeutic approaches for future atherosclerosis treatments is the use of mitochondria-targeted antioxidants. Future studies should focus on characterizing the mechanisms of mitochondrial involvement in cardiovascular pathologies to better direct the search for novel therapies.
Collapse
Affiliation(s)
- Taisiia Shemiakova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Ekaterina Ivanova
- Department of Basic Research, Institute for Atherosclerosis Research, 121609 Moscow, Russia
| | - Andrey V. Grechko
- Federal Scientific Clinical Center for Resuscitation and Rehabilitation, 109240 Moscow, Russia;
| | - Elena V. Gerasimova
- Laboratory of Systemic Rheumatic Disorders, V.A. Nasonova Institute of Rheumatology, 115522 Moscow, Russia;
| | - Igor A. Sobenin
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia;
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 117418 Moscow, Russia
| |
Collapse
|