1
|
Liu Z, Peng H, Liu P, Duan F, Yang Y, Li P, Li Z, Wu J, Chang J, Shang D, Tian Q, Zhang J, Xie Y, Liu Z, An Y. Deciphering significances of autophagy in the development and metabolism of adipose tissue. Exp Cell Res 2025; 446:114478. [PMID: 39978716 DOI: 10.1016/j.yexcr.2025.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The mechanisms of adipose tissue activation and inactivation have been a hot topic of research in the last decade, from which countermeasures have been attempted to be found against obesity as well as other lipid metabolism-related diseases, such as type 2 diabetes mellitus and non-alcoholic fatty liver disease. Autophagy has been shown to be closely related to the regulation of adipocyte activity, which is involved in the whole process including white adipocyte differentiation/maturation and brown or beige adipocyte generation/activation. Dysregulation of autophagy in adipose tissue has been demonstrated to be associated with obesity. On this basis, we summarize the pathways and mechanisms of autophagy involved in the regulation of lipid metabolism and present a review of its pathophysiological roles in lipid metabolism-related diseases, in the hope of providing ideas for the treatment of these diseases.
Collapse
Affiliation(s)
- Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Qiwen Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Jiawei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yucheng Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China; Henan Provincial Research Center of Engineering Technology for Nuclear Protein Medical Detection, Zhengzhou Health College, Zhengzhou, 450064, China.
| |
Collapse
|
2
|
Tian L, Su F, Zhu X, Zou X. The Effect of Maternal Obesity on Placental Autophagy in Lean Breed Sows. Vet Sci 2025; 12:97. [PMID: 40005857 PMCID: PMC11861729 DOI: 10.3390/vetsci12020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to evaluate the influence of back-fat thickness (BF), at mating of sows, on autophagy in placenta and the potential mechanism. The sows were divided into two groups according to their BF at mating: BFI (15-20 mm, n = 14) and BFII (21-27 mm, n = 14) as the maternal obesity group. The placental samples used for investigating autophagic function and fatty acid profiles were obtained by vaginal delivery. Our results demonstrated that autophagy defects were observed in placenta from BFII sows along with altered circulating and placental fatty acid profiles. Indicative of impaired autophagy, reduced autophagic vesicles as well as LC3-positive puncta were linked to decreased mRNA or protein expression of autophagy-related genes, including ATG5, ATG7, Beclin1, ATG12, LC3, LAMP1 and LAMP2 in the placenta of BFII sows (p < 0.05). Meanwhile, we found reduced conversion of LC3-I to LC3-II and up-regulated protein content of p62 in the placenta from BFII group (p < 0.05). Furthermore, excessive back-fat was also associated with increased activation of AKT/mTOR signaling and decreased mRNA content of transcription factors regulating the autophagic pathway, including PPARα and PGC1α, but increased mRNA expression of NcoR1 in placenta. Together, these findings indicate that maternal obesity incites autophagy injury in pig term placenta, which may contribute to augmented placental lipid accumulation and therefore impaired placental function.
Collapse
Affiliation(s)
- Liang Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | |
Collapse
|
3
|
Ma F, Yao J, Niu X, Zhang J, Shi D, Da M. MARK4 promotes the malignant phenotype of gastric cancer through the MAPK/ERK signaling pathway. Pathol Res Pract 2024; 261:155471. [PMID: 39079384 DOI: 10.1016/j.prp.2024.155471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 07/14/2024] [Indexed: 08/18/2024]
Abstract
BACKGROUND Microtubule affinity regulating kinase 4 (MARK4), which is overexpressed in various tumors, is involved in the regulation of cell division, proliferation, migration, and the cell cycle, and has been considered a potential marker for cancer; however, its mechanism of action in gastric cancer (GC) remains unclear. This study aimed to investigate the role of MARK4 in the proliferation, migration, and invasion of GC cell through the MAPK/ERK signaling pathway by targeting MARK4 knockdown. METHODS Using The Cancer Genome Atlas data and clinical information, MARK4 expression and its relationship with prognosis were analyzed. Possible pathways involving MARK4 were explored using enrichment analysis. Western blotting and real-time quantitative polymerase chain reaction were used to detect MARK4 expression in GC. After targeted transfection of siRNA, the transfection efficiency of the experimental group was detected in AGS and HGC-27 cells. The effects of knockdown MARK4 on the proliferation, migration, and invasion of GC cells were verified using CCK-8, colony formation, wound healing, and transwell assays. Finally, the relationship between MARK4, the MAPK/ERK pathway, and epithelial-mesenchymal transition in GC was verified by western blotting. RESULTS MARK4 expression was upregulated in GC and associated with poor prognosis in patients with GC. Enrichment analysis showed that MARK4 was involved in the activation of the MAPK signaling pathway. Western blotting results indicated that MARK4 overexpression promoted the proliferation, migration, and invasion of GC cells through the MAPK/ERK pathway. CONCLUSION MARK4 expression was upregulated in GC and promoted the proliferation, migration, and invasion of GC cells through the MAPK/ERK pathway.
Collapse
Affiliation(s)
- Fubin Ma
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan, PR China.
| | - Jibin Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, PR China; Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, PR China.
| | - Xingdong Niu
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, PR China.
| | - Junrui Zhang
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, PR China.
| | - Donghai Shi
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, PR China.
| | - Mingxu Da
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, PR China; Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, PR China.
| |
Collapse
|
4
|
Chand S, Tripathi AS, Dewani AP, Sheikh NWA. Molecular targets for management of diabetes: Remodelling of white adipose to brown adipose tissue. Life Sci 2024; 345:122607. [PMID: 38583857 DOI: 10.1016/j.lfs.2024.122607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Diabetes mellitus is a disorder characterised metabolic dysfunction that results in elevated glucose level in the bloodstream. Diabetes is of two types, type1 and type 2 diabetes. Obesity is considered as one of the major reasons intended for incidence of diabetes hence it turns out to be essential to study about the adipose tissue which is responsible for fat storage in body. Adipose tissues play significant role in maintaining the balance between energy stabilization and homeostasis. The three forms of adipose tissue are - White adipose tissue (WAT), Brown adipose tissue (BAT) and Beige adipose tissue (intermediate form). The amount of BAT gets reduced, and WAT starts to increase with the age. WAT when exposed to certain stimuli gets converted to BAT by the help of certain transcriptional regulators. The browning of WAT has been a matter of study to treat the metabolic disorders and to initiate the expenditure of energy. The three main regulators responsible for the browning of WAT are PRDM16, PPARγ and PGC-1α via various cellular and molecular mechanism. Presented review article includes the detailed elaborative aspect of genes and proteins involved in conversion of WAT to BAT.
Collapse
Affiliation(s)
- Shushmita Chand
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, ERA College of Pharmacy, ERA University, Lucknow, Uttar Pradesh, India.
| | - Anil P Dewani
- Department of Pharmacology, P. Wadhwani College of Pharmacy, Yavatmal, Maharashtra, India
| | | |
Collapse
|
5
|
Lei Y, Chen Y, Zhang S, Wang W, Zheng M, Zhang R. Qingzhuan dark tea Theabrownin alleviates hippocampal injury in HFD-induced obese mice through the MARK4/NLRP3 pathway. Heliyon 2024; 10:e26923. [PMID: 38455533 PMCID: PMC10918207 DOI: 10.1016/j.heliyon.2024.e26923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/11/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Background Feeding on a high-fat diet (HFD) results in obesity and chronic inflammation, which may have long-term effects on neuroinflammation and hippocampal injury. Theabrownin, a biologically active compound derived from the microbial fermentation of Qingzhuan dark tea, exhibits anti-inflammatory properties and lipid-lowering effects. Nevertheless, its potential in neuroprotection has yet to be investigated. Consequently, this study aims to investigate the neuroprotective effects of Theabrownin extracted from Qingzhuan dark tea, as well as its potential therapeutic mechanisms. Methods Male C57 mice were subjected to an 8-week HFD to induce obesity, followed by oral administration of Theabrownin from Qingzhuan dark tea. Lipid levels were detected by Elisa kit, hippocampal morphological damage was evaluated by HE and Nissl staining, and the expression levels of GFAP, IBA1, NLRP3, MARK4, and BAX in the hippocampus were detected by immunofluorescence (IF), and protein expression levels of NLRP3, MARK4, PSD95, SYN1, SYP, and Bcl-2 were detected by Western Blot (WB). Results Theabrownin treatment from Qingzhuan dark tea prevents alterations in body weight and lipid levels in HFD-fed mice. Furthermore, Theabrownin decreased hippocampal morphological damage and reduced the activation of astrocytes and microglia in HFD-fed mice. Moreover, Theabrownin decreased the expression of MARK4 and NLRP3 in HFD-fed mice. Besides, Theabrownin elevated the expression of PSD95, SYN1, and SYP in HFD-fed obese mice. Finally, Theabrownin prevented neuronal apoptosis, reduced the expression of BAX, and increased the expression of Bcl-2 in HFD-fed obese mice. Conclusions In summary, our current study presents the first demonstration of the effective protective effect of Theabrownin from Qingzhuan dark tea against HFD-induced hippocampal damage in obese mice. This protection may result from the regulation of the MARK4/NLRP3 signaling pathway, subsequently inhibiting neuroinflammation, synaptic plasticity, and neuronal apoptosis.
Collapse
Affiliation(s)
- Yining Lei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Yong Chen
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Shuo Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Wei Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Min Zheng
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, Hubei, 437100, China
| | - Ruyi Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
| |
Collapse
|
6
|
Li Y, Cheng M, Jin J, Zhang D, Zhang S, Bai Y, Xu J. Interaction of Sp1 and Setd8 promotes vascular smooth muscle cells apoptosis by activating Mark4 in vascular calcification. Aging (Albany NY) 2024; 16:2438-2456. [PMID: 38301049 PMCID: PMC10911351 DOI: 10.18632/aging.205492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
Vascular calcification (VC) is directly related to high mortality in chronic kidney disease (CKD), and cellular apoptosis of vascular smooth muscle cells (VSMCs) is a crucial process in the initiation of VC. Microtubule affinity-regulating kinase 4 (Mark4), known as a serine/threonine protein kinase, can induce cell apoptosis and autophagy by modulating Akt phosphorylation. However, the potential functions and molecular mechanisms of Mark4 in VSMCs apoptosis and calcification need to be further explored. Initially, our data indicated that the mRNA expression of Mark4 was prominently elevated in high phosphorus-stimulated human VSMCs compared with the other members in Marks. Consistently, Mark4 expression was found to be significantly increased in the calcified arteries of both CKD patients and rats. In vitro, silencing Mark4 suppressed apoptosis-specific marker expression by promoting Akt phosphorylation, finally attenuating VSMCs calcification induced by high phosphate. Mechanically, the transcription factor Sp1 was enriched in the Mark4 promoter region and modulated Mark4 transcription. Moreover, SET domain-containing protein 8 (Setd8) was proved to interact with Sp1 and jointly participated in the transcriptional regulation of Mark4. Finally, rescue experiments revealed that Setd8 contributed to VSMCs apoptosis and calcification by modulating Mark4 expression. In conclusion, these findings reveal that Mark4 is transcriptionally activated by Sp1, which is interacted with Setd8, to promote VSMCs calcification through Akt-mediated antiapoptotic effects, suggesting that Mark4 represents a potent and promising therapeutic target for VC in CKD.
Collapse
Affiliation(s)
- Yun Li
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| | - Meijuan Cheng
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| | - Jingjing Jin
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| | - Dongxue Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| | - Shenglei Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| | - Yaling Bai
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| | - Jinsheng Xu
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| |
Collapse
|
7
|
Anwar S, Mohammad T, Azhar MK, Fatima H, Alam A, Hasan GM, Islam A, Kaur P, Hassan MI. Investigating MARK4 inhibitory potential of Bacopaside II: Targeting Alzheimer's disease. Int J Biol Macromol 2023:125364. [PMID: 37315665 DOI: 10.1016/j.ijbiomac.2023.125364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/19/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Microtubule affinity regulating kinase (MARK4) is known to hyperphosphorylate tau protein, which subsequently causes Alzheimer's disease (AD). MARK4 is a well-validated drug target for AD; thus, we employed its structural features to discover potential inhibitors. On the other hand, complementary and alternative medicines (CAMs) have been used for the treatment of numerous diseases with little side effects. In this regard, Bacopa monnieri extracts have been extensively used to treat neurological disorders because of their neuroprotective roles. The plant extract is used as a memory enhancer and a brain tonic. Bacopaside II is a major component of Bacopa monnieri; thus, we studied its inhibitory effects and binding affinity towards the MARK4. Bacopaside II show a considerable binding affinity for MARK4 (K = 107 M-1) and inhibited kinase activity with an IC50 value of 5.4 μM. To get atomistic insights into the binding mechanism, we performed Molecular dynamics (MD) simulation studies for 100 ns. Bacopaside II binds strongly to the active site pocket residues of MARK4 and a number of hydrogen bonds remain stable throughout the MD trajectory. Our findings provide the basis for the therapeutic implication of Bacopaside and its derivatives in MARK4-related neurodegenerative diseases, especially AD and neuroinflammation.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110026, India
| | - Md Khabeer Azhar
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Hera Fatima
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afsar Alam
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110026, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
8
|
Alrouji M, DasGupta D, Ashraf GM, Bilgrami AL, Alhumaydhi FA, Al Abdulmonem W, Shahwan M, Alsayari A, Atiya A, Shamsi A. Inhibition of microtubule affinity regulating kinase 4 by an acetylcholinesterase inhibitor, Huperzine A: Computational and experimental approaches. Int J Biol Macromol 2023; 235:123831. [PMID: 36870649 DOI: 10.1016/j.ijbiomac.2023.123831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Microtubule affinity regulating kinase 4 (MARK4), 752 amino acids long, belonging to the AMPK superfamily, plays a vital role in regulating microtubules due to its potential to phosphorylate microtubule-associated proteins (MAP's) and thus, MARK4 plays a key role in Alzheimer's disease (AD) pathology. MARK4 is a druggable target for cancer, neurodegenerative diseases, and metabolic disorders. In this study, we have evaluated the MARK4 inhibitory potential of Huperzine A (HpA), an acetylcholinesterase inhibitor (AChEI), a potential AD drug. Molecular docking revealed the key residues governing the MARK4-HpA complex formation. The structural stability and conformational dynamics of the MARK4-HpA complex was assessed by employing Molecular dynamics (MD) simulation. The results suggested that the binding of HpA with MARK4 leads to minimal structural alterations in the native conformation of MARK4, implying the stability of the MARK4-HpA complex. Isothermal titration calorimetry (ITC) studies deciphered that HpA binds to MARK4 spontaneously. Moreover, the kinase assay depicted significant inhibition of MARK by HpA (IC50 = 4.91 μM), implying it to be a potent MARK4 inhibitor that can be implicated in the treatment of MARK4-directed diseases.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Debarati DasGupta
- 428 Church Street, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Saudi Arabia
| | - Moyad Shahwan
- College of Pharmacy and Health Sciences, Ajman University, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia; Complementary and Alternative Medicine Unit, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia.
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| |
Collapse
|
9
|
Targeting inhibition of microtubule affinity regulating kinase 4 by Harmaline: Strategy to combat Alzheimer's disease. Int J Biol Macromol 2022; 224:188-195. [DOI: 10.1016/j.ijbiomac.2022.10.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
10
|
Abstract
Heart disease remains the leading cause of morbidity and mortality worldwide. With the advancement of modern technology, the role(s) of microtubules in the pathogenesis of heart disease has become increasingly apparent, though currently there are limited treatments targeting microtubule-relevant mechanisms. Here, we review the functions of microtubules in the cardiovascular system and their specific adaptive and pathological phenotypes in cardiac disorders. We further explore the use of microtubule-targeting drugs and highlight promising druggable therapeutic targets for the future treatment of heart diseases.
Collapse
Affiliation(s)
- Emily F Warner
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, United Kingdom (E.F.W., X.L.)
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University School of Medicine, People's Republic of China (Y.L.)
| | - Xuan Li
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, United Kingdom (E.F.W., X.L.)
| |
Collapse
|
11
|
Qin YS, Li H, Wang SZ, Wang ZB, Tang CK. Microtubule affinity regulating kinase 4: A promising target in the pathogenesis of atherosclerosis. J Cell Physiol 2021; 237:86-97. [PMID: 34289095 DOI: 10.1002/jcp.30530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022]
Abstract
Microtubule affinity regulating kinase 4 (MARK4), an important member of the serine/threonine kinase family, regulates the phosphorylation of microtubule-associated proteins and thus modulates microtubule dynamics. In human atherosclerotic lesions, the expression of MARK4 is significantly increased. Recently, accumulating evidence suggests that MARK4 exerts a proatherogenic effect via regulation of lipid metabolism (cholesterol, fatty acid, and triglyceride), inflammation, cell cycle progression and proliferation, insulin signaling, and glucose homeostasis, white adipocyte browning, and oxidative stress. In this review, we summarize the latest findings regarding the role of MARK4 in the pathogenesis of atherosclerosis to provide a rationale for future investigation and therapeutic intervention.
Collapse
Affiliation(s)
- Yu-Sheng Qin
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province,Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Medical Instrument and equipment technology laboratory of Hengyang medical college, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province,Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Medical Instrument and equipment technology laboratory of Hengyang medical college, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmacy; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmacy; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province,Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Medical Instrument and equipment technology laboratory of Hengyang medical college, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
12
|
Zhang Z, Yang D, Xiang J, Zhou J, Cao H, Che Q, Bai Y, Guo J, Su Z. Non-shivering Thermogenesis Signalling Regulation and Potential Therapeutic Applications of Brown Adipose Tissue. Int J Biol Sci 2021; 17:2853-2870. [PMID: 34345212 PMCID: PMC8326120 DOI: 10.7150/ijbs.60354] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
In mammals, thermogenic organs exist in the body that increase heat production and enhance energy regulation. Because brown adipose tissue (BAT) consumes energy and generates heat, increasing energy expenditure via BAT might be a potential strategy for new treatments for obesity and obesity-related diseases. Thermogenic differentiation affects normal adipose tissue generation, emphasizing the critical role that common transcriptional regulation factors might play in common characteristics and sources. An understanding of thermogenic differentiation and related factors could help in developing ways to improve obesity indirectly or directly through targeting of specific signalling pathways. Many studies have shown that the active components of various natural products promote thermogenesis through various signalling pathways. This article reviews recent major advances in this field, including those in the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA), cyclic guanosine monophosphate-GMP-dependent protein kinase G (cGMP-AKT), AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), transforming growth factor-β/bone morphogenic protein (TGF-β/BMP), transient receptor potential (TRP), Wnt, nuclear factor-κ-light-chain-enhancer of activated B cells (NF-κΒ), Notch and Hedgehog (Hh) signalling pathways in brown and brown-like adipose tissue. To provide effective information for future research on weight-loss nutraceuticals or drugs, this review also highlights the natural products and their active ingredients that have been reported in recent years to affect thermogenesis and thus contribute to weight loss via the above signalling pathways.
Collapse
Affiliation(s)
- Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Di Yang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junwei Xiang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hua Cao
- Guangdong Cosmetics Engineering & Technology Research Center, School of Chemistry and Chemical Engneering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Guangzhou 510663, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
13
|
Wang S, Gao G, He Y, Li Q, Li Z, Tong G. Amidation-Modified Apelin-13 Regulates PPAR γ and Perilipin to Inhibit Adipogenic Differentiation and Promote Lipolysis. Bioinorg Chem Appl 2021; 2021:3594630. [PMID: 34054938 PMCID: PMC8123992 DOI: 10.1155/2021/3594630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
With the adjustment of human diet and lifestyle changes, the prevalence of obesity is increasing year by year. Obesity is closely related to the excessive accumulation of white adipose tissue (WAT), which can synthesize and secrete a variety of adipokines. Apelin is a biologically active peptide in the adipokines family. Past studies have shown that apelin plays an important regulatory role in the pathogenesis and pathophysiology of diseases such as the cardiovascular system, respiratory system, digestive system, nervous system, and endocrine system. Apelin is also closely related to diabetes and obesity. Therefore, we anticipate that apelin-13 has an effect on lipometabolism and intend to explore the effect of apelin-13 on lipometabolism at the cellular and animal levels. In in vitro experiments, amidation-modified apelin-13 can significantly reduce the lipid content; TG content; and the expression of PPARγ, perilipin mRNA, and protein in adipocytes. Animal experiments also show that amidation modification apelin-13 can improve the abnormal biochemical indicators of diet-induced obesity (DOI) rats and can reduce the average diameter of adipocytes in adipose tissue, the concentration of glycerol, and the expression of PPARγ and perilipin mRNA and protein. Our results show that apelin-13 can affect the metabolism of adipose tissue, inhibit adipogenic differentiation of adipocytes, promote lipolysis, and thereby improve obesity. The mechanism may be regulating the expression of PPARγ to inhibit adipogenic differentiation and regulating the expression of perilipin to promote lipolysis. This study helps us understand the role of apelin-13 in adipose tissue and provide a basis for the elucidation of the regulation mechanism of lipometabolism and the development of antiobesity drugs.
Collapse
Affiliation(s)
- Sha Wang
- Department of Endocrinology, The First Affiliated Hospital, Changsha Medical University, Changsha, Hunan 410219, China
| | - Guoying Gao
- Department of Cardiology, The First Affiliated Hospital of Changsha Medical University, Changsha, Hunan 410219, China
| | - Yiwei He
- Department of Cardiology, The First Affiliated Hospital of Changsha Medical University, Changsha, Hunan 410219, China
| | - Qiong Li
- Department of Endocrinology, The First Affiliated Hospital, Changsha Medical University, Changsha, Hunan 410219, China
| | - Zhan Li
- Department of Cardiology, The First Affiliated Hospital of Changsha Medical University, Changsha, Hunan 410219, China
| | - Guoxiang Tong
- Department of Endocrinology, The First Affiliated Hospital, Changsha Medical University, Changsha, Hunan 410219, China
| |
Collapse
|