1
|
Wen S, Jian H, Shang L, Kear PJ, Zhang M, Li Y, Yuan P, Lyu D. Comprehensive transcriptional regulatory networks in potato through chromatin accessibility and transcriptome under drought and salt stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70081. [PMID: 40086798 DOI: 10.1111/tpj.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/09/2025] [Accepted: 02/21/2025] [Indexed: 03/16/2025]
Abstract
Drought and high salt stress have a great negative impact on potato growth and development. However, the molecular mechanisms by which different tissues and organs of potato plants respond to drought and high salt stress at different stress times lack definition. In this study, we mapped the whole genome of THSs in potato in response to different stresses using RNA-seq and ATAC-seq technologies and constructed the unique and shared transcriptional regulatory networks (TRNs) under different stresses, stress time points, and tissues in potato. The results showed opposite trends for changes in chromatin accessibility and expression of genes under drought and salt stresses. Forty-eight hours and root-specific TRNs were more complex than those of 3 h and leaf, and there were genes with inconsistent drought- and salt-stress-regulated expression only in root-shared TRNs, demonstrating the variability of potato's response to stresses under different tissues and treatment times. These results provide a basis for elucidating the transcriptional mechanisms underlying the specific response of potato to drought or salt stress and the common response to salt and drought stress.
Collapse
Affiliation(s)
- Shiqi Wen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, 400715, P. R. China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, P. R. China
- Chongqing Key Laboratory of Potato Biology and Genetic Breeding, Southwest University, Chongqing, 400715, P. R. China
| | - Hongju Jian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, 400715, P. R. China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, P. R. China
- Chongqing Key Laboratory of Potato Biology and Genetic Breeding, Southwest University, Chongqing, 400715, P. R. China
| | - Lina Shang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, P. R. China
| | - Philip James Kear
- International Potato Center (CIP) China Center Asia Pacific, Beijing, 100000, P. R. China
| | - Meihua Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, P. R. China
| | - Yan Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, 400715, P. R. China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, P. R. China
- Chongqing Key Laboratory of Potato Biology and Genetic Breeding, Southwest University, Chongqing, 400715, P. R. China
| | - Pingping Yuan
- International Potato Center (CIP) China Center Asia Pacific, Beijing, 100000, P. R. China
| | - Dianqiu Lyu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, 400715, P. R. China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, P. R. China
- Chongqing Key Laboratory of Potato Biology and Genetic Breeding, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
2
|
Nozu R, Kadota M, Nakamura M, Kuraku S, Bono H. Meta-analysis of gonadal transcriptome provides novel insights into sex change mechanism across protogynous fishes. Genes Cells 2024; 29:1052-1068. [PMID: 39344081 PMCID: PMC11555629 DOI: 10.1111/gtc.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/25/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Protogyny, being capable of changing from female to male during their lifetime, is prevalent in 20 families of teleosts but is believed to have evolved within specific evolutionary lineages. Therefore, shared regulatory factors governing the sex change process are expected to be conserved across protogynous fishes. However, a comprehensive understanding of this mechanism remains elusive. To identify these factors, we conducted a meta-analysis using gonadal transcriptome data from seven species. We curated data pairs of ovarian tissue and transitional gonad, and employed ratios of expression level as a unified criterion for differential expression, enabling a meta-analysis across species. Our approach revealed that classical sex change-related genes exhibited differential expression levels between the ovary and transitional gonads, consistent with previous reports. These results validate our methodology's robustness. Additionally, we identified novel genes not previously linked to gonadal sex change in fish. Notably, changes in the expression levels of acetoacetyl-CoA synthetase and apolipoprotein Eb, which are involved in cholesterol synthesis and transport, respectively, suggest that the levels of cholesterol, a precursor of steroid hormones crucial for sex change, are decreased upon sex change onset in the gonads. This implies a potential universal influence of cholesterol dynamics on gonadal transformation in protogyny.
Collapse
Affiliation(s)
- Ryo Nozu
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
- Laboratory of BioDX, Genome Editing Innovation CenterHiroshima UniversityHiroshimaJapan
| | - Mitsutaka Kadota
- Laboratory for PhyloinformaticsRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
- Laboratory for Developmental Genome SystemRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Masaru Nakamura
- Okinawa Churashima Research CenterOkinawa Churashima FoundationMotobu‐choJapan
| | - Shigehiro Kuraku
- Molecular Life History Laboratory, Department of Genomics and Evolutionary BiologyNational Institute of GeneticsMishimaJapan
- Department of GeneticsGraduate University for Advanced Studies, SOKENDAIMishimaJapan
| | - Hidemasa Bono
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
- Laboratory of BioDX, Genome Editing Innovation CenterHiroshima UniversityHiroshimaJapan
| |
Collapse
|
3
|
Zhao Z, Guo D, Wei Y, Li J, Jia X, Niu Y, Liu Z, Bai Y, Chen Z, Shi B, Zhang X, Hu J, Wang J, Liu X, Li S. Integrative ATAC-seq and RNA-seq Analysis of the Longissimus Dorsi Muscle of Gannan Yak and Jeryak. Int J Mol Sci 2024; 25:6029. [PMID: 38892214 PMCID: PMC11172533 DOI: 10.3390/ijms25116029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Jeryak is the F1 generation of the cross between Gannan yak and Jersey cattle, which has the advantages of fast growth and high adaptability. The growth and development of skeletal muscle is closely linked to meat production and the quality of meat. However, the molecular regulatory mechanisms of muscle growth differences between Gannan yak and Jeryak analyzed from the perspective of chromatin opening have not been reported. In this study, ATAC-seq was used to analyze the difference of chromatin openness in longissimus muscle of Gannan yak and Jeryak. It was found that chromatin accessibility was more enriched in Jeryak compared to Gannan yak, especially in the range of the transcription start site (TSS) ± 2 kb. GO and KEGG enrichment analysis indicate that differential peak-associated genes are involved in the negative regulation of muscle adaptation and the Hippo signaling pathway. Integration analysis of ATAC-seq and RNA-seq revealed overlapping genes were significantly enriched during skeletal muscle cell differentiation and muscle organ morphogenesis. At the same time, we screened FOXO1, ZBED6, CRY2 and CFL2 for possible involvement in skeletal muscle development, constructed a genes and transcription factors network map, and found that some transcription factors (TFs), including YY1, KLF4, KLF5 and Bach1, were involved in skeletal muscle development. Overall, we have gained a comprehensive understanding of the key factors that impact skeletal muscle development in various breeds of cattle, providing new insights for future analysis of the molecular regulatory mechanisms involved in muscle growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730000, China; (Z.Z.); (D.G.); (Y.W.); (J.L.); (X.J.); (Y.N.); (Z.L.); (Y.B.); (Z.C.); (B.S.); (X.Z.); (J.W.); (X.L.); (S.L.)
| | | | | | | |
Collapse
|
4
|
Yu ST, Zhao R, Sun XQ, Hou MX, Cao YM, Zhang J, Chen YJ, Wang KK, Zhang Y, Li JT, Wang Q. DNA Methylation and Chromatin Accessibility Impact Subgenome Expression Dominance in the Common Carp ( Cyprinus carpio). Int J Mol Sci 2024; 25:1635. [PMID: 38338913 PMCID: PMC10855618 DOI: 10.3390/ijms25031635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
DNA methylation and chromatin accessibility play important roles in gene expression, but their function in subgenome expression dominance remains largely unknown. We conducted comprehensive analyses of the transcriptome, DNA methylation, and chromatin accessibility in liver and muscle tissues of allotetraploid common carp, aiming to reveal the function of epigenetic modifications in subgenome expression dominance. A noteworthy overlap in differential expressed genes (DEGs) as well as their functions was observed across the two subgenomes. In the promoter and gene body, the DNA methylation level of the B subgenome was significantly different than that of the A subgenome. Nevertheless, differences in DNA methylation did not align with changes in homoeologous biased expression across liver and muscle tissues. Moreover, the B subgenome exhibited a higher prevalence of open chromatin regions and greater chromatin accessibility, in comparison to the A subgenome. The expression levels of genes located proximally to open chromatin regions were significantly higher than others. Genes with higher chromatin accessibility in the B subgenome exhibited significantly elevated expression levels compared to the A subgenome. Contrastingly, genes without accessibility exhibited similar expression levels in both subgenomes. This study contributes to understanding the regulation of subgenome expression dominance in allotetraploid common carp.
Collapse
Affiliation(s)
- Shuang-Ting Yu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
- Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ran Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Xiao-Qing Sun
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Ming-Xi Hou
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Yi-Ming Cao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Jin Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Ying-Jie Chen
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Kai-Kuo Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Jiong-Tang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| |
Collapse
|
5
|
Hou M, Wang Q, Zhao R, Cao Y, Zhang J, Sun X, Yu S, Wang K, Chen Y, Zhang Y, Li J. Analysis of Chromatin Accessibility and DNA Methylation to Reveal the Functions of Epigenetic Modifications in Cyprinus carpio Gonads. Int J Mol Sci 2023; 25:321. [PMID: 38203492 PMCID: PMC10778764 DOI: 10.3390/ijms25010321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Epigenetic modifications are critical in precisely regulating gene expression. The common carp (Cyprinus carpio) is an economically important fish species, and females exhibit faster growth rates than males. However, the studies related to epigenetic modifications in the common carp gonads are limited. In this study, we conducted the Assay for Transposase Accessible Chromatin sequencing (ATAC-seq) and Bisulfite sequencing (BS-seq) to explore the roles of epigenetic modifications in the common carp gonads. We identified 84,207 more accessible regions and 77,922 less accessible regions in ovaries compared to testes, and some sex-biased genes showed differential chromatin accessibility in their promoter regions, such as sox9a and zp3. Motif enrichment analysis showed that transcription factors (TFs) associated with embryonic development and cell proliferation were heavily enriched in ovaries, and the TFs Foxl2 and SF1 were only identified in ovaries. We also analyzed the possible regulations between chromatin accessibility and gene expression. By BS-seq, we identified 2087 promoter differentially methylated genes (promoter-DMGs) and 5264 gene body differentially methylated genes (genebody-DMGs) in CG contexts. These genebody-DMGs were significantly enriched in the Wnt signaling pathway, TGF-beta signaling pathway, and GnRH signaling pathway, indicating that methylation in gene body regions could play an essential role in sex maintenance, just like methylation in promoter regions. Combined with transcriptomes, we revealed that the expression of dmrtb1-like, spag6, and fels was negatively correlated with their methylation levels in promoter regions. Our study on the epigenetic modifications of gonads contributes to elucidating the molecular mechanism of sex differentiation and sex maintenance in the common carp.
Collapse
Affiliation(s)
- Mingxi Hou
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Ran Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Yiming Cao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Jin Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Xiaoqing Sun
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Shuangting Yu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
- Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaikuo Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (K.W.); (Y.C.)
| | - Yingjie Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (K.W.); (Y.C.)
| | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Jiongtang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| |
Collapse
|
6
|
Chen G, Liu Z, Li S, Liu L, Lu L, Wang Z, Mendu V, Li F, Yang Z. Characterization of chromatin accessibility and gene expression reveal the key genes involved in cotton fiber elongation. PHYSIOLOGIA PLANTARUM 2023; 175:e13972. [PMID: 37405386 DOI: 10.1111/ppl.13972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Accepted: 06/29/2023] [Indexed: 07/06/2023]
Abstract
Cotton (Gossypium hirsutum L.) is an important economic crop, and cotton fiber is one of the longest plant cells, which provides an ideal model for the study of cell elongation and secondary cell wall synthesis. Cotton fiber length is regulated by a variety of transcription factors (TF) and their target genes; however, the mechanism of fiber elongation mediated by transcriptional regulatory networks is still unclear to a large extent. Here, we used a comparative assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) assay and RNA-seq analysis to identify fiber elongation transcription factors and genes using the short-fiber mutant ligon linless-2 (Li2 ) and wild type (WT). A total of 499 differential target genes were identified and GO analysis shows that differential genes are mainly involved in plant secondary wall synthesis and microtubule-binding processes. Analysis of the genomic regions preferentially accessible (Peak) has identified a number of overrepresented TF-binding motifs, highlighting sets of TFs that are important for cotton fiber development. Using ATAC-seq and RNA-seq data, we have constructed a functional regulatory network of each TF regulatory target gene and also the network pattern of TF regulating differential target genes. Further, to obtain the genes related to fiber length, the differential target genes were combined with FLGWAS data to identify the genes highly related to fiber length. Our work provides new insights into cotton fiber elongation.
Collapse
Affiliation(s)
- Guoquan Chen
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhao Liu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shengdong Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Le Liu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Lili Lu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhi Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
| | - Venugopal Mendu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zuoren Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute of Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| |
Collapse
|
7
|
Xu Y, Zhong ZW, Feng Y, Zhang ZY, Ao LL, Liu H, Wang YL, Jiang YH. Expression pattern analysis of anti-Mullerian hormone in testis development of pearlscale angelfish (Centropyge vrolikii). JOURNAL OF FISH BIOLOGY 2023; 102:1067-1078. [PMID: 36840532 DOI: 10.1111/jfb.15358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/22/2023] [Indexed: 05/13/2023]
Abstract
In vertebrates, anti-Mullerian hormone (Amh) secreted by Sertoli cells (SC) performs a pivotal function in male sex differentiation. Compared with that of higher vertebrates, the expression pattern of Amh is more diversified in fish. In this study, the full-length complementary DNA (cDNA) of Amh in Centropyge vrolikii (Cv-Amh) was cloned and analysed, which was 2,470 bp, including a 238 bp 5'UTR, a 1,602 bp ORF and a 633 bp 3'UTR; the similarity of Amh between Cv-Amh and other fish is relatively high. The quantitative real-time PCR (qRT-PCR) results of healthy tissues and gonads at sex reversal stages in C. vrolikii showed that the expression level of Amh in the testis was significantly higher than that in other tissues (P < 0.05). Amh was weakly expressed in the vitellogenic stage ovary and perinucleolus stage ovary, but its expression significantly increased in the gonads at the hermaphroditic stage, and finally reached the highest in the pure testis after sexual reversal. The results of in situ hybridization indicated that the positive signal of Amh was strongly concentrated in SCs of testis. After Amh knockdown in the gonads, the effect on sex-related genes was tested using qRT-PCR. Among these, the expression of Dmrt1, Cyp11a, Hsd11b2, Sox8 and Sox9 significantly decreased, whereas that of Cyp19a, Sox4, Foxl2 and Sox3 increased. These results suggested that Amh could be the pivotal gene in reproductive regulation in C. vrolikii, and the data will contribute to sex-related research of C. vrolikii in the future.
Collapse
Affiliation(s)
- Yan Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
| | - Zhao-Wei Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yan Feng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
| | - Ze-Yu Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Lu-Lu Ao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
| | - Hongwei Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
| | - Yi-Lei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
| | - Yong-Hua Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
| |
Collapse
|
8
|
Zhang X, Li J, Wang X, Jie Y, Sun C, Zheng J, Li J, Yang N, Chen S. ATAC-seq and RNA-seq analysis unravel the mechanism of sex differentiation and infertility in sex reversal chicken. Epigenetics Chromatin 2023; 16:2. [PMID: 36617567 PMCID: PMC9827654 DOI: 10.1186/s13072-022-00476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Sex determination and differentiation are complex and delicate processes. In female chickens, the process of sex differentiation is sensitive and prone to be affected by the administration of aromatase inhibitors, which result in chicken sex reversal and infertility. However, the molecular mechanisms underlying sex differentiation and infertility in chicken sex reversal remain unclear. Therefore, we established a sex-reversed chicken flock by injecting an aromatase inhibitor, fadrozole, and constructed relatively high-resolution profiles of the gene expression and chromatin accessibility of embryonic gonads. RESULTS We revealed that fadrozole affected the transcriptional activities of several genes, such as DMRT1, SOX9, FOXL2, and CYP19A1, related to sex determination and differentiation, and the expression of a set of gonadal development-related genes, such as FGFR3 and TOX3, by regulating nearby open chromatin regions in sex-reversed chicken embryos. After sexual maturity, the sex-reversed chickens were confirmed to be infertile, and the possible causes of this infertility were further investigated. We found that the structure of the gonads and sperm were greatly deformed, and we identified several promising genes related to spermatogenesis and infertility, such as SPEF2, DNAI1, and TACR3, through RNA-seq. CONCLUSIONS This study provides clear insights into the exploration of potential molecular basis underlying sex differentiation and infertility in sex-reversed chickens and lays a foundation for further research into the sex development of birds.
Collapse
Affiliation(s)
- Xiuan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Jianbo Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Xiqiong Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yuchen Jie
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Sirui Chen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Xu Z, Wu J, Zhou J, Zhang Y, Qiao M, Sun H, Li Z, Li L, Chen N, Oyelami FO, Peng X, Mei S. Integration of ATAC-seq and RNA-seq analysis identifies key genes affecting intramuscular fat content in pigs. Front Nutr 2022; 9:1016956. [PMID: 36276837 PMCID: PMC9581296 DOI: 10.3389/fnut.2022.1016956] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Meat quality is one of the most important economic traits in pig breeding and production, and intramuscular fat (IMF) content is the major factor in improving meat quality. The IMF deposition in pigs is influenced by transcriptional regulation, which is dependent on chromatin accessibility. However, how chromatin accessibility plays a regulatory role in IMF deposition in pigs has not been reported. Xidu black is a composite pig breed with excellent meat quality, which is an ideal research object of this study. In this study, we used the assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq) analysis to identify the accessible chromatin regions and key genes affecting IMF content in Xidu black pig breed with extremely high and low IMF content. First, we identified 21,960 differential accessible chromatin peaks and 297 differentially expressed genes. The motif analysis of differential peaks revealed several potential cis-regulatory elements containing binding sites for transcription factors with potential roles in fat deposition, including Mef2c, CEBP, Fra1, and AP-1. Then, by integrating the ATAC-seq and RNA-seq analysis results, we found 47 genes in the extremely high IMF (IMF_H) group compared with the extremely low IMF (IMF_L) group. For these genes, we observed a significant positive correlation between the differential gene expression and differential ATAC-seq signal (r2 = 0.42). This suggests a causative relationship between chromatin remodeling and the resulting gene expression. We identified several candidate genes (PVALB, THRSP, HOXA9, EEPD1, HOXA10, and PDE4B) that might be associated with fat deposition. Through the PPI analysis, we found that PVALB gene was the top hub gene. In addition, some pathways that might regulate fat cell differentiation and lipid metabolism, such as the PI3K-Akt signaling pathway, MAPK signaling pathway, and calcium signaling pathway, were significantly enriched in the ATAC-seq and RNA-seq analysis. To the best of our knowledge, our study is the first to use ATAC-seq and RNA-seq to examine the mechanism of IMF deposition from a new perspective. Our results provide valuable information for understanding the regulation mechanism of IMF deposition and an important foundation for improving the quality of pork.
Collapse
Affiliation(s)
- Zhong Xu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Junjing Wu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Jiawei Zhou
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Yu Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Mu Qiao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Hua Sun
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Zipeng Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Lianghua Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Nanqi Chen
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | | | - Xianwen Peng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China,*Correspondence: Xianwen Peng,
| | - Shuqi Mei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China,Shuqi Mei,
| |
Collapse
|
10
|
Establishment of a Spermatogonial Stem Cell Line with Potential of Meiosis in a Hermaphroditic Fish, Epinephelus coioides. Cells 2022; 11:cells11182868. [PMID: 36139441 PMCID: PMC9496998 DOI: 10.3390/cells11182868] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are unique adult stem cells capable of self-renewal and differentiation into sperm. Grouper is a protogynous hermaphroditic fish farmed widely in the tropical and subtropical seas. In this study, we established an SSC line derived from adult testis of orange-spotted grouper, Epinephelus coioides. In the presence of basic fibroblast growth factor (bFGF) and leukemia inhibitory factor (LIF), the cells could be maintained with proliferation and self-renewal over 20 months and 120 passages under in vitro culture conditions. The cells exhibited strong alkaline phosphatase activity and the characteristics of SSCs with the expression of germ cell markers, including Vasa, Dazl, and Plzf, as well as the stem cell markers Nanog, Oct4, and Ssea1. Furthermore, the cultured cells could be induced by 11-ketotestosterone treatment to highly express the meiotic markers Rec8, Sycp3, and Dmc1, and produce some spherical cells, and even sperm-like cells with a tail. The findings of this study suggested that the cultured grouper SSC line would serve as an excellent tool to study the molecular mechanisms behind SSCs self-renewal and differentiation, meiosis during spermatogenesis, and sex reversal in hermaphroditic vertebrates. Moreover, this SSC line has great application value in grouper fish aquaculture, such as germ cell transplantation, genetic manipulation, and disease research.
Collapse
|
11
|
Pou5f1 and Nanog Are Reliable Germ Cell-Specific Genes in Gonad of a Protogynous Hermaphroditic Fish, Orange-Spotted Grouper (Epinephelus coioides). Genes (Basel) 2021; 13:genes13010079. [PMID: 35052423 PMCID: PMC8774525 DOI: 10.3390/genes13010079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/12/2021] [Accepted: 12/25/2021] [Indexed: 01/06/2023] Open
Abstract
Pluripotency markers Pou5f1 and Nanog are core transcription factors regulating early embryonic development and maintaining the pluripotency and self-renewal of stem cells. Pou5f1 and Nanog also play important roles in germ cell development and gametogenesis. In this study, Pou5f1 (EcPou5f1) and Nanog (EcNanog) were cloned from orange-spotted grouper, Epinephelus coioides. The full-length cDNAs of EcPou5f1 and EcNanog were 2790 and 1820 bp, and encoded 475 and 432 amino acids, respectively. EcPou5f1 exhibited a specific expression in gonads, whereas EcNanog was expressed highly in gonads and weakly in some somatic tissues. In situ hybridization analyses showed that the mRNA signals of EcNanog and EcPou5f1 were exclusively restricted to germ cells in gonads. Likewise, immunohistofluorescence staining revealed that EcNanog protein was limited to germ cells. Moreover, both EcPou5f1 and EcNanog mRNAs were discovered to be co-localized with Vasa mRNA, a well-known germ cell maker, in male and female germ cells. These results implied that EcPou5f1 and EcNanog could be also regarded as reliable germ cell marker genes. Therefore, the findings of this study would pave the way for elucidating the mechanism whereby EcPou5f1 and EcNanog regulate germ cell development and gametogenesis in grouper fish, and even in other protogynous hermaphroditic species.
Collapse
|
12
|
Single-Cell Atlas of Adult Testis in Protogynous Hermaphroditic Orange-Spotted Grouper, Epinephelus coioides. Int J Mol Sci 2021; 22:ijms222212607. [PMID: 34830486 PMCID: PMC8618070 DOI: 10.3390/ijms222212607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 01/08/2023] Open
Abstract
Spermatogenesis is a process of self-renewal and differentiation in spermatogonial stem cells. During this process, germ cells and somatic cells interact intricately to ensure long-term fertility and accurate genome propagation. Spermatogenesis has been intensely investigated in mammals but remains poorly understood with regard to teleosts. Here, we performed single-cell RNA sequencing of ~9500 testicular cells from the male, orange-spotted grouper. In the adult testis, we divided the cells into nine clusters and defined ten cell types, as compared with human testis data, including cell populations with characteristics of male germ cells and somatic cells, each of which expressed specific marker genes. We also identified and profiled the expression patterns of four marker genes (calr, eef1a, s100a1, vasa) in both the ovary and adult testis. Our data provide a blueprint of male germ cells and supporting somatic cells. Moreover, the cell markers are candidates that could be used for further cell identification.
Collapse
|
13
|
Zhong Z, Ao L, Wang Y, Wang S, Zhao L, Ma S, Jiang Y. Comparison of differential expression genes in ovaries and testes of Pearlscale angelfish Centropyge vrolikii based on RNA-Seq analysis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1565-1583. [PMID: 34415453 DOI: 10.1007/s10695-021-00977-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Pearlscale angelfish Centropyge vrolikii is a kind of protogynous hermaphrodite fish with a natural sexual reversion. Under appropriate social conditions, a female fish can transform into a male fish spontaneously. It is an important prerequisite for artificial breeding to understand the process of its gonadal development and sexual reversion. Gonadal development is regulated by many sex-related genes. In this study, we used unreferenced RNA-Seq technology to sequence the ovary at the perinucleolus stage (OII), ovary at the yolk vesicle stage (OIV),IV and testis (T), respectively; screened the gonadal differential expression genes (DEGs); and analyzed the expression of these genes in different developmental stages of ovary and different sex gonads. The results showed that a total of 142,589 all-unigene samples were assembled, and gene annotation was performed by COG, GO, KEGG, KOG, Pfam, Swissprot, eggNOG, and NR functional database. Comparative analysis revealed that there were 1919 genes that were up-regulated and 1289 genes were down-regulated in comparison to OIV vs OII, while there were 3653 genes that were up-regulated and 2874 genes were down-regulated in comparison of OIV vs T, there were 3345 genes that were up-regulated and 2995 genes were down-regulated in comparison of the OII vs the T. At the same time, the results verified by RT-qPCR were consistent with the variation trend of transcriptome data. Among the results, amh, sox9b, dmrt1, dmrt2, cyp11a, cyp17a, and cyp19a were significantly expressed in the testes, while sox3, sox4, sox11, sox17, and hsd3b7 were significantly expressed in the ovaries. And, the expression of the amh, sox9b, dmrt2, and dmrt1 were low in the OII and OIV, while significantly increased during the ovotestis in the hermaphroditic period (OT), and finally reached the highest level in pure testis after sex reversal. The expression of sox3, sox4, hsd3b7, sox11, and sox17 was significantly reduced during the hermaphroditic period (OT). These results suggested that these genes may play an important role in the process of sex reversal. This study is helpful to further understand the molecular regulation mechanism of gonadal development and sexual reversion in Pearlscale angelfish and also provide important clues for future studies.
Collapse
Affiliation(s)
- Zhaowei Zhong
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Lulu Ao
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University), Xiamen, 361021, China
| | - Shuhong Wang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University), Xiamen, 361021, China
| | - Liping Zhao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Senwei Ma
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yonghua Jiang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China.
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University), Xiamen, 361021, China.
| |
Collapse
|
14
|
Geffroy B, Gesto M, Clota F, Aerts J, Darias MJ, Blanc MO, Ruelle F, Allal F, Vandeputte M. Parental selection for growth and early-life low stocking density increase the female-to-male ratio in European sea bass. Sci Rep 2021; 11:13620. [PMID: 34193934 PMCID: PMC8245542 DOI: 10.1038/s41598-021-93116-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/21/2021] [Indexed: 11/09/2022] Open
Abstract
In European sea bass (Dicentrarchus labrax), as in many other fish species, temperature is known to influence the sex of individuals, with more males produced at relatively high temperatures. It is however unclear to what extent growth or stress are involved in such a process, since temperature is known to influence both growth rate and cortisol production. Here, we designed an experiment aiming at reducing stress and affecting early growth rate. We exposed larvae and juveniles originating from both captive and wild parents to three different treatments: low stocking density, food supplemented with tryptophan and a control. Low stocking density and tryptophan treatment respectively increased and decreased early growth rate. Each treatment influenced the stress response depending on the developmental stage, although no clear pattern regarding the whole-body cortisol concentration was found. During sex differentiation, fish in the low-density treatment exhibited lower expression of gr1, gr2, mr, and crf in the hypothalamus when compared to the control group. Fish fed tryptophan displayed lower crf in the hypothalamus and higher level of serotonin in the telencephalon compared to controls. Overall, fish kept at low density produced significantly more females than both control and fish fed tryptophan. Parents that have been selected for growth for three generations also produced significantly more females than parents of wild origin. Our findings did not allow to detect a clear effect of stress at the group level and rather point out a key role of early sexually dimorphic growth rate in sex determination.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.
| | - Manuel Gesto
- Techn Section for Aquaculture, DTU Aqua, Technical University of Denmark, Willemoesvej 2, 9850, Hirtshals, Denmark
| | - Fréderic Clota
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.,Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Johan Aerts
- Stress Physiology Research Group, Faculty of Sciences, Ghent University, Ostend, Belgium
| | - Maria J Darias
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Marie-Odile Blanc
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - François Ruelle
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - François Allal
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Marc Vandeputte
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.,Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| |
Collapse
|
15
|
Hong M, Tao S, Zhang L, Diao LT, Huang X, Huang S, Xie SJ, Xiao ZD, Zhang H. RNA sequencing: new technologies and applications in cancer research. J Hematol Oncol 2020; 13:166. [PMID: 33276803 PMCID: PMC7716291 DOI: 10.1186/s13045-020-01005-x] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, RNA sequencing has significantly progressed, becoming a paramount approach for transcriptome profiling. The revolution from bulk RNA sequencing to single-molecular, single-cell and spatial transcriptome approaches has enabled increasingly accurate, individual cell resolution incorporated with spatial information. Cancer, a major malignant and heterogeneous lethal disease, remains an enormous challenge in medical research and clinical treatment. As a vital tool, RNA sequencing has been utilized in many aspects of cancer research and therapy, including biomarker discovery and characterization of cancer heterogeneity and evolution, drug resistance, cancer immune microenvironment and immunotherapy, cancer neoantigens and so on. In this review, the latest studies on RNA sequencing technology and their applications in cancer are summarized, and future challenges and opportunities for RNA sequencing technology in cancer applications are discussed.
Collapse
Affiliation(s)
- Mingye Hong
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Shuang Tao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Ling Zhang
- Health Science Center, The University of Texas, Houston, 77030, USA
| | - Li-Ting Diao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xuanmei Huang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Shaohui Huang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Shu-Juan Xie
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zhen-Dong Xiao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Hua Zhang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|