1
|
Rosa ADL, Metzendorf NG, Efverström J, Godec A, Sehlin D, Morrison J, Hultqvist G. Lowering the affinity of single-chain monovalent BBB shuttle scFc-scFv8D3 prolongs its half-life and increases brain concentration. Neurotherapeutics 2025; 22:e00492. [PMID: 39632160 PMCID: PMC11742849 DOI: 10.1016/j.neurot.2024.e00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Monoclonal antibody therapeutics is a massively growing field. Progress in providing monoclonal antibody therapeutics to treat brain disorders is complicated, due to the impermeability of the blood-brain barrier (BBB) to large macromolecular structures. To date, the most successful approach for delivering antibody therapeutics to the brain is by targeting the transferrin receptor (TfR) using anti-TfR BBB shuttles, with the 8D3 antibody being one of the most extensively studied in the field. The strategy of fine-tuning TfR binding affinity has shown promise, with previous results showing an improved brain delivery of bivalent 8D3-BBB constructs. In the current study, a fine-tuning TfR affinity strategy has been employed to improve single-chain variable fragment (scFv) 8D3 (scFv8D3) affinity mutants. Initially, in silico protein-protein docking analysis was performed to identify amino acids (AAs) likely to contribute to 8D3s TfR binding affinity. Mutating the identified AAs resulted in decreased TfR binding affinity, increased blood half-life and increased brain concentration. As monovalent BBB shuttles are seemingly superior for delivering antibodies at therapeutically relevant doses, our findings and approach may be relevant for optimizing brain delivery.
Collapse
Affiliation(s)
| | | | | | - Ana Godec
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Jamie Morrison
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Greta Hultqvist
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Petersen I, Morrison JI, Petrovic A, Babic N, Metzendorf NG, Godec A, de la Rosa A, Rofo F, Bondza S, Buijs J, Ranjbarian F, Hofer A, Sehlin D, Hultqvist G. A shorter linker in the bispecific antibody RmAb158-scFv8D3 improves TfR-mediated blood-brain barrier transcytosis in vitro. Sci Rep 2024; 14:30613. [PMID: 39715817 DOI: 10.1038/s41598-024-83627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
Transferrin Receptor (TfR)-mediated transcytosis across the blood-brain barrier (BBB) enables the uptake of bispecific therapeutic antibodies into the brain. At therapeutically relevant concentrations, bivalent binding to TfR appears to reduce the transcytosis efficiency by receptor crosslinking. In this study, we aimed to improve BBB transcytosis of symmetric antibodies through minimizing their ability to cause TfR crosslinking. We created variants of the previously published RmAb158-scFv8D3, where the linker length between RmAb158 and the mTfR-targeting scFv8D3 was adjusted. We investigated the effect of the linker length on the antibodies' binding kinetics to mTfR using ELISA and LigandTracer assays, and their ability to transcytose across BBB endothelial cells (In-Cell BBB-Trans assay). We show that even a direct fusion without a linker does not alter the antibodies' apparent affinities to mTfR indicating their valency is unlikely affected by the linker length. However, the shortest linker variants demonstrated BBB transcytosis levels comparable to that of the monovalent control at a high antibody concentration and showed an almost two-fold higher level of BBB transcytosis compared to the longer-linker variants at the high concentration. Our new RmAb158-scFv8D3 short-linker variants are examples of symmetric, therapeutic antibodies with improved TfR-binding characteristics to facilitate more efficient brain uptake. We hypothesize that bivalent binding to TfR as such does not negatively affect BBB transcytosis in vitro, but a very short distance between TfR-targeting domains lowers the probability of receptor crosslinking. This study provides valuable insights into antibody-TfR interaction kinetics, contributing to future development of TfR-targeting antibody-based treatments for brain diseases.
Collapse
Affiliation(s)
- Inga Petersen
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| | | | - Alex Petrovic
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Neira Babic
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Ana Godec
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Fadi Rofo
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Sina Bondza
- Ridgeview Instruments AB, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jos Buijs
- Ridgeview Instruments AB, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Farahnaz Ranjbarian
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Greta Hultqvist
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Zhang L, Zhang H. Recent advances of affibody molecules in biomedical applications. Bioorg Med Chem 2024; 113:117923. [PMID: 39278106 DOI: 10.1016/j.bmc.2024.117923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Affibody molecules are 58-amino-acid peptides with a molecular weight of about 6.5 kDa, derived from the Z domain of Staphylococcal Protein A. Since they have been used as substitutes for antibodies in biomedicine, several therapeutic affibody molecules have been developed for clinical use. Additionally, affibody molecules have been designed for a range of different applications. This review focuses on the progress made in the last five years in the field of affibody molecules and their potential uses in medical imaging, especially in oncology and cancer treatment. It covers areas such as molecular imaging, targeted delivery of toxic drugs, and their use in combination with nanoparticles. We also highlight some current biomedical applications where affibody molecules are commonly used as a "guide." Due to their many advantages, affibody molecules offer significant potential for applications in both biochemical and medical fields.
Collapse
Affiliation(s)
- Liuyanlin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
4
|
Ek M, Nilvebrant J, Nygren PÅ, Ståhl S, Lindberg H, Löfblom J. An anti-sortilin affibody-peptide fusion inhibits sortilin-mediated progranulin degradation. Front Immunol 2024; 15:1437886. [PMID: 39185427 PMCID: PMC11342335 DOI: 10.3389/fimmu.2024.1437886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Heterozygous loss-of-function mutations in the GRN gene are a common cause of frontotemporal dementia. Such mutations lead to decreased plasma and cerebrospinal fluid levels of progranulin (PGRN), a neurotrophic factor with lysosomal functions. Sortilin is a negative regulator of extracellular PGRN levels and has shown promise as a therapeutic target for frontotemporal dementia, enabling increased extracellular PGRN levels through inhibition of sortilin-mediated PGRN degradation. Here we report the development of a high-affinity sortilin-binding affibody-peptide fusion construct capable of increasing extracellular PGRN levels in vitro. By genetic fusion of a sortilin-binding affibody generated through phage display and a peptide derived from the progranulin C-terminus, an affinity protein (A3-PGRNC15*) with 185-pM affinity for sortilin was obtained. Treating PGRN-secreting and sortilin-expressing human glioblastoma U-251 cells with the fusion protein increased extracellular PGRN levels up to 2.5-fold, with an EC50 value of 1.3 nM. Our results introduce A3-PGRNC15* as a promising new agent with therapeutic potential for the treatment of frontotemporal dementia. Furthermore, the work highlights means to increase binding affinity through synergistic contribution from two orthogonal polypeptide units.
Collapse
Affiliation(s)
| | | | | | | | | | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
5
|
Bonvicini G, Bagawath Singh S, Nygren P, Xiong M, Syvänen S, Sehlin D, Falk R, Andersson KG. Comparing in vitro affinity measurements of antibodies to TfR1: Surface plasmon resonance versus on-cell affinity. Anal Biochem 2024; 686:115406. [PMID: 38006952 DOI: 10.1016/j.ab.2023.115406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Despite years of utilizing the transferrin receptor 1 (TfR1) to transport large biomolecules into the brain, there is no consensus on how to optimally measure affinity to it. The aim of this study was to compare different methods for measuring the affinities of anti-TfR1 antibodies. Antibodies 15G11, OX26 and 8D3 are known to successfully carry large biologics across the blood-brain barrier in humans, rats, and mice, respectively. The affinity to their respective species of TfR1 was measured with different surface plasmon resonance setups in Biacore and an on-cell assay. When the antibody was captured and TfR1 was the analyte, the dissociation in Biacore was very slow. The dissociation was faster when the antibody was the analyte and TfR1 was the ligand. The Biacore setup with capture of N-terminal FLAG-tag TfR1 yielded the most similar apparent affinities as the cell assay. In conclusion, it is important to evaluate assay parameters including assay orientation, surface capture method, and antibody-format when comparing binding kinetics for TfR1 antibodies. Although it seems possible to determine relative affinities of TfR1 antibodies using the methods described here, both the FLAG-tag TfR1 capture setup and cell assays likely yield apparent affinities that are most translatable in vivo.
Collapse
Affiliation(s)
- Gillian Bonvicini
- BioArctic AB, Warfvinges väg 35, SE-112 51, Stockholm, Sweden; Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | | | - Patrik Nygren
- BioArctic AB, Warfvinges väg 35, SE-112 51, Stockholm, Sweden
| | - Mengfei Xiong
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Ronny Falk
- BioArctic AB, Warfvinges väg 35, SE-112 51, Stockholm, Sweden
| | - Ken G Andersson
- BioArctic AB, Warfvinges väg 35, SE-112 51, Stockholm, Sweden.
| |
Collapse
|
6
|
Shi S, Ren H, Xie Y, Yu M, Chen Y, Yang L. Engineering advanced nanomedicines against central nervous system diseases. MATERIALS TODAY 2023; 69:355-392. [DOI: 10.1016/j.mattod.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Hjelm LC, Hedhammar M, Löfblom J. In vitro Blood-Brain barrier model based on recombinant spider silk protein nanomembranes for evaluation of transcytosis capability of biomolecules. Biochem Biophys Res Commun 2023; 669:77-84. [PMID: 37267863 DOI: 10.1016/j.bbrc.2023.05.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
The blood-brain barrier (BBB) limits the uptake of central nervous system (CNS)-targeting drugs into the brain. Engineering molecular shuttles for active transportation across the barrier has thus potential for improving the efficacy of such drugs. In vitro assessment of potential transcytosis capability for engineered shuttle proteins facilitates ranking and the selection of promising candidates during development. Herein, the development of an assay based on brain endothelial cells cultured on permeable recombinant silk nanomembranes for screening of transcytosis capability of biomolecules is described. The silk nanomembranes supported growth of brain endothelial cells to form confluent monolayers with relevant cell morphology, and induced expression of tight-junction proteins. Evaluation of the assay using an established BBB shuttle antibody showed transcytosis over the membranes with an apparent permeability that significantly differed from the isotype control antibody.
Collapse
Affiliation(s)
- Linnea Charlotta Hjelm
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-106 91, Stockholm, Sweden
| | - My Hedhammar
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-106 91, Stockholm, Sweden.
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
8
|
Hjelm LC, Lindberg H, Ståhl S, Löfblom J. Affibody Molecules Intended for Receptor-Mediated Transcytosis via the Transferrin Receptor. Pharmaceuticals (Basel) 2023; 16:956. [PMID: 37513868 PMCID: PMC10383291 DOI: 10.3390/ph16070956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
The development of biologics for diseases affecting the central nervous system has been less successful compared to other disease areas, in part due to the challenge of delivering drugs to the brain. The most well-investigated and successful strategy for increasing brain uptake of biological drugs is using receptor-mediated transcytosis over the blood-brain barrier and, in particular, targeting the transferrin receptor-1 (TfR). Here, affibody molecules are selected for TfR using phage display technology. The two most interesting candidates demonstrated binding to human TfR, cross-reactivity to the murine orthologue, non-competitive binding with human transferrin, and binding to TfR-expressing brain endothelial cell lines. Single amino acid mutagenesis of the affibody molecules revealed the binding contribution of individual residues and was used to develop second-generation variants with improved properties. The second-generation variants were further analyzed and showed an ability for transcytosis in an in vitro transwell assay. The new TfR-specific affibody molecules have the potential for the development of small brain shuttles for increasing the uptake of various compounds to the central nervous system and thus warrant further investigations.
Collapse
Affiliation(s)
- Linnea Charlotta Hjelm
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Hanna Lindberg
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Stefan Ståhl
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| |
Collapse
|
9
|
Construction and Validation of a New Naïve Sequestrin Library for Directed Evolution of Binders against Aggregation-Prone Peptides. Int J Mol Sci 2023; 24:ijms24010836. [PMID: 36614273 PMCID: PMC9821733 DOI: 10.3390/ijms24010836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Affibody molecules are small affinity proteins that have excellent properties for many different applications, ranging from biotechnology to diagnostics and therapy. The relatively flat binding surface is typically resulting in high affinity and specificity when developing binding reagents for globular target proteins. For smaller unstructured peptides, the paratope of affibody molecules makes it more challenging to achieve a sufficiently large binding surface for high-affinity interactions. Here, we describe the development of a new type of protein scaffold based on a dimeric form of affibodies with a secondary structure content and mode of binding that is distinct from conventional affibody molecules. The interaction is characterized by encapsulation of the target peptide in a tunnel-like cavity upon binding. The new scaffold was used for construction of a high-complexity phage-displayed library and selections from the library against the amyloid beta peptide resulted in identification of high-affinity binders that effectively inhibited amyloid aggregation.
Collapse
|
10
|
Transferrin Receptor Binding BBB-Shuttle Facilitates Brain Delivery of Anti-Aβ-Affibodies. Pharm Res 2022; 39:1509-1521. [PMID: 35538266 PMCID: PMC9246779 DOI: 10.1007/s11095-022-03282-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022]
Abstract
Affibodies targeting amyloid-beta (Aβ) could potentially be used as therapeutic and diagnostic agents in Alzheimer's disease (AD). Affibodies display suitable characteristics for imaging applications such as high stability and a short biological half-life. The aim of this study was to explore brain delivery and retention of Aβ protofibril-targeted affibodies in wild-type (WT) and AD transgenic mice and to evaluate their potential as imaging agents. Two affibodies, Z5 and Z1, were fused with the blood-brain barrier (BBB) shuttle single-chain variable fragment scFv8D3. In vitro binding of 125I-labeled affibodies with and without scFv8D3 was evaluated by ELISA and autoradiography. Brain uptake and retention of the affibodies at 2 h and 24 h post injection was studied ex vivo in WT and transgenic (tg-Swe and tg-ArcSwe) mice. At 2 h post injection, [125I]I-Z5 and [125I]I-Z1 displayed brain concentrations of 0.37 ± 0.09% and 0.46 ± 0.08% ID/g brain, respectively. [125I]I-scFv8D3-Z5 and [125I]I-scFv8D3-Z1 showed increased brain concentrations of 0.53 ± 0.16% and 1.20 ± 0.35%ID/g brain. At 24 h post injection, brain retention of [125I]I-Z1 and [125I]I-Z5 was low, while [125I]I-scFv8D3-Z1 and [125I]I-scFv8D3-Z5 showed moderate brain retention, with a tendency towards higher retention of [125I]I-scFv8D3-Z5 in AD transgenic mice. Nuclear track emulsion autoradiography showed greater parenchymal distribution of [125I]I-scFv8D3-Z5 and [125I]I-scFv8D3-Z1 compared with the affibodies without scFv8D3, but could not confirm specific affibody accumulation around Aβ deposits. Affibody-scFv8D3 fusions displayed increased brain and parenchymal delivery compared with the non-fused affibodies. However, fast brain washout and a suboptimal balance between Aβ and mTfR1 affinity resulted in low intrabrain retention around Aβ deposits.
Collapse
|
11
|
Pardridge WM. Kinetics of Blood-Brain Barrier Transport of Monoclonal Antibodies Targeting the Insulin Receptor and the Transferrin Receptor. Pharmaceuticals (Basel) 2021; 15:3. [PMID: 35056060 PMCID: PMC8778919 DOI: 10.3390/ph15010003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 12/21/2022] Open
Abstract
Biologic drugs are large molecule pharmaceuticals that do not cross the blood-brain barrier (BBB), which is formed by the brain capillary endothelium. Biologics can be re-engineered for BBB transport as IgG fusion proteins, where the IgG domain is a monoclonal antibody (MAb) that targets an endogenous BBB transporter, such as the insulin receptor (IR) or transferrin receptor (TfR). The IR and TfR at the BBB transport the receptor-specific MAb in parallel with the transport of the endogenous ligand, insulin or transferrin. The kinetics of BBB transport of insulin or transferrin, or an IRMAb or TfRMAb, can be quantified with separate mathematical models. Mathematical models to estimate the half-time of receptor endocytosis, MAb or ligand exocytosis into brain extracellular space, or receptor recycling back to the endothelial luminal membrane were fit to the brain uptake of a TfRMAb or a IRMAb fusion protein in the Rhesus monkey. Model fits to the data also allow for estimates of the rates of association of the MAb in plasma with the IR or TfR that is embedded within the endothelial luminal membrane in vivo. The parameters generated from the model fits can be used to estimate the brain concentration profile of the MAb over time, and this brain exposure is shown to be a function of the rate of clearance of the antibody fusion protein from the plasma compartment.
Collapse
|
12
|
Sjöström DJ, Mohlin C, Ambrosetti E, Garforth SJ, Teixeira AI, Bjelic S. Motif-driven protein binder design towards transferrin receptor helical domain. FEBS J 2021; 289:2935-2947. [PMID: 34862739 DOI: 10.1111/febs.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
Human transferrin receptor 1 (TfR) is necessary for the delivery of the iron carrier protein transferrin into cells and can be utilized for targeted delivery across cellular membranes. Binding of transferrin to the receptor is regulated by hereditary hemochromatosis protein (HFE), an iron regulatory protein that partly shares a binding site with transferrin on TfR. Here, we derived essential binding interactions from HFE and computationally grafted these into a library of small protein scaffolds. One of the designed proteins, TB08, was further optimized computationally and experimentally to identify variants with improved binding to TfR. The optimized variant, TB08 S3.1, expressed well in the E. coli expression system and had an affinity to TfR in the low micromolar range, Kd ≈ 1 μm, as determined by surface plasmon resonance. A binding competition assay with transferrin further confirmed the interaction of the evolved variant to TfR at the shared binding surface. Additionally, the GFP-tagged evolved variant of TB08 demonstrated cellular internalization as determined by fluorescent and confocal microscopy in HeLa cells. The designed protein is small, allows for robust cargo tagging, and interacts specifically with TfR, thus making it a valuable tool for the characterization of TfR-mediated cellular transport mechanisms and for the assessment of engineering strategies for cargo delivery across cell membranes.
Collapse
Affiliation(s)
- Dick J Sjöström
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Camilla Mohlin
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Elena Ambrosetti
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Scott J Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana I Teixeira
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sinisa Bjelic
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
13
|
Zhong X, D’Antona AM. Recent Advances in the Molecular Design and Applications of Multispecific Biotherapeutics. Antibodies (Basel) 2021; 10:13. [PMID: 33808165 PMCID: PMC8103270 DOI: 10.3390/antib10020013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Recombinant protein-based biotherapeutics drugs have transformed clinical pipelines of the biopharmaceutical industry since the launch of recombinant insulin nearly four decades ago. These biologic drugs are structurally more complex than small molecules, and yet share a similar principle for rational drug discovery and development: That is to start with a pre-defined target and follow with the functional modulation with a therapeutic agent. Despite these tremendous successes, this "one target one drug" paradigm has been challenged by complex disease mechanisms that involve multiple pathways and demand new therapeutic routes. A rapidly evolving wave of multispecific biotherapeutics is coming into focus. These new therapeutic drugs are able to engage two or more protein targets via distinct binding interfaces with or without the chemical conjugation to large or small molecules. They possess the potential to not only address disease intricacy but also exploit new therapeutic mechanisms and assess undruggable targets for conventional monospecific biologics. This review focuses on the recent advances in molecular design and applications of major classes of multispecific biotherapeutics drugs, which include immune cells engagers, antibody-drug conjugates, multispecific tetherbodies, biologic matchmakers, and small-scaffold multispecific modalities. Challenges posed by the multispecific biotherapeutics drugs and their future outlooks are also discussed.
Collapse
Affiliation(s)
- Xiaotian Zhong
- Department of BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA;
| | | |
Collapse
|
14
|
Wu WT, Lin WY, Chen YW, Lin CF, Wang HH, Wu SH, Lee YY. New Era of Immunotherapy in Pediatric Brain Tumors: Chimeric Antigen Receptor T-Cell Therapy. Int J Mol Sci 2021; 22:ijms22052404. [PMID: 33673696 PMCID: PMC7957810 DOI: 10.3390/ijms22052404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy, including chimeric antigen receptor (CAR) T-cell therapy, immune checkpoint inhibitors, cancer vaccines, and dendritic cell therapy, has been incorporated as a fifth modality of modern cancer care, along with surgery, radiation, chemotherapy, and target therapy. Among them, CAR T-cell therapy emerges as one of the most promising treatments. In 2017, the first two CAR T-cell drugs, tisagenlecleucel and axicabtagene ciloleucel for B-cell acute lymphoblastic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL), respectively, were approved by the Food and Drug Administration (FDA). In addition to the successful applications to hematological malignancies, CAR T-cell therapy has been investigated to potentially treat solid tumors, including pediatric brain tumor, which serves as the leading cause of cancer-associated death for children and adolescents. However, the employment of CAR T-cell therapy in pediatric brain tumors still faces multiple challenges, such as CAR T-cell transportation and expansion through the blood–brain barrier, and identification of the specific target antigen on the tumor surface and immunosuppressive tumor microenvironment. Nevertheless, encouraging outcomes in both clinical and preclinical trials are coming to light. In this article, we outline the current propitious progress and discuss the obstacles needed to be overcome in order to unveil a new era of treatment in pediatric brain tumors.
Collapse
Affiliation(s)
- Wan-Tai Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (W.-T.W.); (Y.-W.C.); (C.-F.L.)
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei 112201, Taiwan
| | - Wen-Ying Lin
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan;
| | - Yi-Wei Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (W.-T.W.); (Y.-W.C.); (C.-F.L.)
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Chun-Fu Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (W.-T.W.); (Y.-W.C.); (C.-F.L.)
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Hsin-Hui Wang
- Department of Pediatrics, Division of Pediatric Immunology and Nephrology, Taipei Veterans General Hospital, Taipei 112201, Taiwan;
- Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Szu-Hsien Wu
- Department of Plastic and Reconstructive Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan;
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Yen Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (W.-T.W.); (Y.-W.C.); (C.-F.L.)
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei 112201, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Correspondence: ; Tel.: +886-2-2875-7491; Fax: +886-2-2875-7588
| |
Collapse
|