1
|
Upadhyay A, Pal D, Kumar A. Combinatorial therapeutic enzymes to combat multidrug resistance in bacteria. Life Sci 2024; 353:122920. [PMID: 39047898 DOI: 10.1016/j.lfs.2024.122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
AIMS Antibiotic resistance including multidrug resistance (MDR) is a negative symbol to the human health system because it loses the capability to treat infections. Unfortunately, the available antibiotics do not show an effective therapeutic response against bacterial infections. In the situation of global antibiotic unresponsiveness, enzymatic therapy especially in combinatorial form seems an effective approach to control bacterial infection and combat resistance. The article is important because it focuses on combinatorial enzymatic therapy that has multiple properties (effective antibacterial performances, antibiofilm capacity, immunomodulators, targeted actions, synergistic actions, multiple targeting, and resistance-proof properties) and can address antibiotic resistance effectively. MATERIALS AND METHODS We searched the related topics with Pubmed, Scopus, and Google Scholar databases and finally 73 relevant papers were reviewed in detail and cited in this article. KEY FINDINGS Discusses properties of combinatorial therapeutic enzymes made it an accomplished means over antibiotic therapy. This article discusses the need for combinatorial enzymatic therapy against bacterial infection, its distinguished features, and properties with multi-mechanistic antibacterial action. It discussed the European Medicine Agency and Food and Drug Administration-approved therapeutic enzymes (antibacterial and antibiofilm). SIGNIFICANCE This article provided the possible combination of the enzyme that may be used as an antibacterial agent along with limitations and future scope of combinatorial antibacterial enzymatic agents. This article could draw the attention of researchers to combinatorial therapeutic enzymatic molecules as effective and futuristic therapy to overcome the problem of multiple antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Aditya Upadhyay
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India
| | - Dharm Pal
- Department of Chemical Engineering, National Institute of Technology, Raipur 492010, CG, India.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India.
| |
Collapse
|
2
|
Arora R, Nadar K, Bajpai U. Discovery and characterization of a novel LysinB from F2 sub-cluster mycobacteriophage RitSun. Sci Rep 2024; 14:18073. [PMID: 39103410 PMCID: PMC11300654 DOI: 10.1038/s41598-024-68636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
The escalating antibiotic resistance in mycobacterial species poses a significant threat globally, necessitating an urgent need to find alternative solutions. Bacteriophage-derived endolysins, which facilitate phage progeny release by attacking bacterial cell walls, present promising antibacterial candidates due to their rapid lytic action, high specificity and low risk of resistance development. In mycobacteria, owing to the complex, hydrophobic cell wall, mycobacteriophages usually synthesize two endolysins: LysinA, which hydrolyzes peptidoglycan; LysinB, which delinks mycolic acid-containing outer membrane and arabinogalactan, releasing free mycolic acid. In this study, we conducted domain analysis and functional characterization of a novel LysinB from RitSun, an F2 sub-cluster mycobacteriophage from our phage collection. Several key properties of RitSun LysinB make it an important antimycobacterial agent: its ability to lyse Mycobacterium smegmatis from without, a higher than previously reported specific activity of 1.36 U/mg and its inhibitory effect on biofilm formation. Given the impermeable nature of the mycobacterial cell envelope, dissecting RitSun LysinB at the molecular level to identify its cell wall-destabilizing sequence could be utilized to engineer other native lysins as fusion proteins, broadening their activity spectrum.
Collapse
Affiliation(s)
- Ritu Arora
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Kanika Nadar
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India.
| |
Collapse
|
3
|
Eldin ZE, Dishisha T, Sayed OM, Salama HM, Farghali A. A novel synergistic enzyme-antibiotic therapy with immobilization of mycobacteriophage Lysin B enzyme onto Rif@UiO-66 nanocomposite for enhanced inhaled anti-TB therapy; Nanoenzybiotics approach. Int J Biol Macromol 2024; 262:129675. [PMID: 38280693 DOI: 10.1016/j.ijbiomac.2024.129675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/01/2024] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
The emergence of antibiotic-resistant and phage-resistant strains of Mycobacterium tuberculosis (M. tuberculosis) necessitates improving new therapeutic plans. The objective of the current work was to ensure the effectiveness of rifampicin and the mycobacteriophage LysB D29 (LysB)enzyme in the treatment of multi-drug resistant tuberculosis (MDR-TB) infection, where new and safe metal-organic framework (MOF) nanoparticles were used in combination. UiO-66 nanoparticles were synthesized under mild conditions in which the antimycobacterial agent (rifampicin) was loaded (Rif@UiO-66) and LysB D29 enzyme immobilized onto Rif@UiO-66, which were further characterized. Subsequently, the antibacterial activity of different ratios of Rif@UiO-66 and LysB/Rif@uio-66 against the nonpathogenic tuberculosis model Mycobacterium smegmatis (M. smegmatis) was evaluated by minimum inhibitory concentration (MIC) tests. Impressively, the MIC of LysB/Rif@uio-66 was 16-fold lower than that of pure rifampicin. In vitro and in vivo toxicity studies proved that LysB/Rif@UiO-66 is a highly biocompatible therapy for pulmonary infection. A biodistribution assay showed that LysB/Rif@UiO-66 showed a 5.31-fold higher drug concentration in the lungs than free rifampicin. A synergistic interaction between UiO-66, rifampicin and the mycobacteriophage lysB D29 enzyme was shown in the computational method (docking). Therefore, all results indicated that the LysB/Rif@UiO-66 nanocomposite exhibited promising innovative enzyme-antibiotic therapy for tuberculosis treatment.
Collapse
Affiliation(s)
- Zienab E Eldin
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, 62511 Beni-Suef, Egypt.
| | - Tarek Dishisha
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Ossama M Sayed
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia 41636, Egypt
| | - Hanaa M Salama
- Department of Chemistry, Faculty of Science, Port Said University, Port Said, Egypt
| | - Ahmed Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, 62511 Beni-Suef, Egypt
| |
Collapse
|
4
|
Pantiora PD, Georgakis ND, Premetis GE, Labrou NE. Metagenomic analysis of hot spring soil for mining a novel thermostable enzybiotic. Appl Microbiol Biotechnol 2024; 108:163. [PMID: 38252132 PMCID: PMC10803476 DOI: 10.1007/s00253-023-12979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
The misuse and overuse of antibiotics have contributed to a rapid emergence of antibiotic-resistant bacterial pathogens. This global health threat underlines the urgent need for innovative and novel antimicrobials. Endolysins derived from bacteriophages or prophages constitute promising new antimicrobials (so-called enzybiotics), exhibiting the ability to break down bacterial peptidoglycan (PG). In the present work, metagenomic analysis of soil samples, collected from thermal springs, allowed the identification of a prophage-derived endolysin that belongs to the N-acetylmuramoyl-L-alanine amidase type 2 (NALAA-2) family and possesses a LysM (lysin motif) region as a cell wall binding domain (CWBD). The enzyme (Ami1) was cloned and expressed in Escherichia coli, and its bactericidal and lytic activity was characterized. The results indicate that Ami1 exhibits strong bactericidal and antimicrobial activity against a broad range of bacterial pathogens, as well as against isolated peptidoglycan (PG). Among the examined bacterial pathogens, Ami1 showed highest bactericidal activity against Staphylococcus aureus sand Staphylococcus epidermidis cells. Thermostability analysis revealed a melting temperature of 64.2 ± 0.6 °C. Overall, these findings support the potential that Ami1, as a broad spectrum antimicrobial agent, could be further assessed as enzybiotic for the effective treatment of bacterial infections. KEY POINTS: • Metagenomic analysis allowed the identification of a novel prophage endolysin • The endolysin belongs to type 2 amidase family with lysin motif region • The endolysin displays high thermostability and broad bactericidal spectrum.
Collapse
Affiliation(s)
- Panagiota D Pantiora
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece
| | - Nikolaos D Georgakis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece
| | - Georgios E Premetis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece.
| |
Collapse
|
5
|
Singh AK, Gangakhedkar R, Thakur HS, Raman SK, Patil SA, Jain V. Mycobacteriophage D29 Lysin B exhibits promising anti-mycobacterial activity against drug-resistant Mycobacterium tuberculosis. Microbiol Spectr 2023; 11:e0459722. [PMID: 37800970 PMCID: PMC10714809 DOI: 10.1128/spectrum.04597-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 08/18/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE To combat the rapidly emerging drug-resistant M. tuberculosis, it is now essential to look for alternative therapeutics. Mycobacteriophages can be considered as efficient therapeutics due to their natural ability to infect and kill mycobacteria including M. tuberculosis. Here, we have exploited the mycolyl-arabinogalactan esterase property of LysB encoded from mycobacteriophage D29. This study is novel in terms of targeting a multi-drug-resistant pathogenic strain of M. tuberculosis with LysB and also examining the combination of anti-TB drugs and LysB. All the experiments include external administration of LysB. Therefore, the remarkable lytic activity of LysB overcomes the difficulty to enter the complex cell envelope of mycobacteria. Targeting the intracellularly located M. tuberculosis by LysB and non-toxicity to macrophages take the process of the development of LysB as a drug one step ahead, and also, the interaction studies with rifampicin and isoniazid will help to form a new treatment regimen against tuberculosis.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, Uttar Pradesh, India
| | - Rutuja Gangakhedkar
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Hemant Singh Thakur
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, Uttar Pradesh, India
| | - Sunil Kumar Raman
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shripad A. Patil
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, Uttar Pradesh, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
6
|
Fajardo-Lubian A, Venturini C. Use of Bacteriophages to Target Intracellular Pathogens. Clin Infect Dis 2023; 77:S423-S432. [PMID: 37932114 DOI: 10.1093/cid/ciad515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Bacteriophages (phages) have shown great potential as natural antimicrobials against extracellular pathogens (eg, Escherichia coli or Klebsiella pneumoniae), but little is known about how they interact with intracellular targets (eg, Shigella spp., Salmonella spp., Mycobacterium spp.) in the mammalian host. Recent research has demonstrated that phages can enter human cells. However, for the design of successful clinical applications, further investigation is required to define their subcellular behavior and to understand the complex biological processes that underlie the interaction with their bacterial targets. In this review, we summarize the molecular evidence of phage internalization in eucaryotic cells, with specific focus on proof of phage activity against their bacterial targets within the eucaryotic host, and the current proposed strategies to overcome poor penetrance issues that may impact therapeutic use against the most clinically relevant intracellular pathogens.
Collapse
Affiliation(s)
- Alicia Fajardo-Lubian
- Faculty of Medicine and Health, Sydney ID Institute, University of Sydney, Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Carola Venturini
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
McCallin S, Drulis-Kawa Z, Ferry T, Pirnay JP, Nir-Paz R. Phages and phage-borne enzymes as new antibacterial agents. Clin Microbiol Infect 2023:S1198-743X(23)00528-1. [PMID: 37866680 DOI: 10.1016/j.cmi.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Persistent and resistant infections caused by bacteria are increasing in numbers and pose a treatment challenge to the medical community and public health. However, solutions with new agents that will enable effective treatment are lacking or delayed by complex development and authorizations. Bacteriophages are known as a possible solution for invasive infections for decades but were seldom used in the Western world. OBJECTIVES To provide an overview of the current status and emerging use of bacteriophage therapy and phage-based products, as well as touch on the socioeconomic and regulatory issues surrounding their development. SOURCES Peer-reviewed articles and authors' first-hand experience. CONTENT Although phage therapy is making a comeback since its early discovery, there are many hurdles to its current use. The lack of appropriate standardized bacterial susceptibility testing; lack of a simple business model and authorization for the need of many phages to treat a single species infection; and the lack of knowledge on predictable outcome measures are just a few examples. In this review, we explore the possible routes for phage use, either based on local specialty centres or by industry; the current status of phage therapy, which is mainly based on single-centre or single-bacterial cohorts, and emerging clinical trials; local country-level frameworks for phage utilization even without full authorization; and the use of phage-derived products as alternatives to antibiotics. We also explore what may be the current indications based on the possible availability of phages. IMPLICATIONS Although phages are emerging as a potential treatment for non-resolving and life-threatening infections, the models for their use and production still need to be defined by the medical community, regulatory bodies, and industry. Bacteriophages may have a great potential for infection treatment but many aspects still need to be defined before their routine use in the clinic.
Collapse
Affiliation(s)
- Shawna McCallin
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland; ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland
| | - Zuzanna Drulis-Kawa
- ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland; Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | - Tristan Ferry
- ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland; Centre interrégional de référence pour la prise en charge des infections ostéoarticulaires complexes, CRIOAc Lyon, Hospices Civils de Lyon, Lyon, France; Infectious Diseases, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France; CIRI-Centre International de Recherche en Infectiologie, Inserm, Universite Claude Bernard Lyon, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Jean-Paul Pirnay
- ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland; Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Ran Nir-Paz
- ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland; Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Israeli Phage Therapy Center of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel.
| |
Collapse
|
8
|
Guo X, Zhang J, Wang Y, Zhou F, Li Q, Teng T. Phenotypic Characterization and Comparative Genomic Analyses of Mycobacteriophage WIVsmall as A New Member Assigned to F1 Subcluster. Curr Issues Mol Biol 2023; 45:6432-6448. [PMID: 37623225 PMCID: PMC10453261 DOI: 10.3390/cimb45080406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
In this study, we conducted the morphological observation, biological and genomic characterization, evolutionary analysis, comparative genomics description, and proteome identification of a recently isolated mycobacteriophage, WIVsmall. Morphologically, WIVsmall is classified as a member of the Siphoviridae family, characterized by a flexible tail, measuring approximately 212 nm in length. The double-stranded phage genome DNA of WIVsmall spans 53,359 base pairs, and exhibits a G + C content of 61.01%. The genome of WIVsmall comprises 103 protein-coding genes, while no tRNA genes were detected. The genome annotation unveiled the presence of functional gene clusters responsible for mycobacteriophage assembly and maturation, replication, cell lysis, and functional protein synthesis. Based on the analysis of the phylogenetic tree, the genome of WIVsmall was classified as belonging to subgroup F1. A comparative genomics analysis indicated that the WIVsmall genome exhibited the highest similarity to the phage SG4, with a percentage of 64%. The single-step growth curve analysis of WIVsmall revealed a latent period of 120 min, and an outbreak period of 200 min.
Collapse
Affiliation(s)
- Xinge Guo
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Jing Zhang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuhan Wang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Fang Zhou
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Qiming Li
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Tieshan Teng
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
9
|
Nguyen AT, Goswami S, Ferracane J, Koley D. Real-time monitoring of the pH microenvironment at the interface of multispecies biofilm and dental composites. Anal Chim Acta 2022; 1201:339589. [PMID: 35300800 PMCID: PMC9167049 DOI: 10.1016/j.aca.2022.339589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
Abstract
Bacterial-mediated local pH change plays an important role in altering the integrity of resin dental composite materials in a dynamic environment such as the oral cavity. To address this, we developed a 300-μm-diameter, flexible, solid-state potentiometric pH microsensor capable of detecting and quantifying the local pH microenvironment at the interface of multispecies biofilm and dental resin in real time over 10 days. We used fluorinated poly(3,4-ethylenedioxythiophene) as the back contact in our newly developed pH sensor, along with a PVC-based ion-selective membrane and PTFE-AF coating. The high temporal resolution pH data demonstrated pH changes from 7 to 6 and 7 to 5.8 for the first 2 days and then fluctuated between 6.5 to 6 and 6 to 5.5 for the remaining 8 days with the resin composite or glass slide substrate respectively. We could observe the fluctuations in pH mediated by lactic acid production within the biofilm and the re-establishment of pH back to 7. However, acid production started to overwhelm buffering capacity with the continuous feed of sucrose cycles and reduced the local pH nearer to 5.5. No such changes or fluctuations were observed above the biofilm, as the pH remained at 7.0 ± 0.2 for 10 days. The localized real-time monitoring of the pH within the biofilm showed that the pH shift underneath the biofilm could lead to damage to the underlying material and their interface but cannot be sensed external to the biofilm.
Collapse
|
10
|
Śliwka P, Ochocka M, Skaradzińska A. Applications of bacteriophages against intracellular bacteria. Crit Rev Microbiol 2021; 48:222-239. [PMID: 34428105 DOI: 10.1080/1040841x.2021.1960481] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Infectious diseases pose a significant threat to both human and animal populations. Intracellular bacteria are a group of pathogens that invade and survive within the interior of eukaryotic cells, which in turn protect them from antibacterial drugs and the host immune system. Limited penetration of antibacterials into host cells results in insufficient bacterial clearance and treatment failure. Bacteriophages have, over the decades, been proved to play an important role in combating bacterial infections (phage therapy), making them an important alternative to classical antibiotic strategies today. Phages have been found to be effective at killing various species of extracellular bacteria, but little is still known about how phages control intracellular infections. With advances in phage genomics and mechanisms of delivery and cell uptake, the development of phage-based antibacterial strategies to address the treatment of intracellular bacteria has general potential. In this review, we present the current state of knowledge regarding the application of bacteriophages against intracellular bacteria. We cover phage deployment against the most common intracellular pathogens with special attention to therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Marta Ochocka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
11
|
Exploration of synergistic action of cell wall-degrading enzymes against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2021; 65:e0065921. [PMID: 34280017 DOI: 10.1128/aac.00659-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The major global health threat tuberculosis is caused by Mycobacterium tuberculosis (Mtb). Mtb has a complex cell envelope - a partially covalently linked composite of polysaccharides, peptidoglycan and lipids, including a mycolic acid layer - which conveys pathogenicity but also protects against antibiotics. Given previous successes in treating gram-positive and -negative infections with cell wall degrading enzymes, we investigated such approach for Mtb. Objectives (i) Development of an Mtb microtiter growth inhibition assay that allows undisturbed cell envelope formation, to overcome the invalidation of results by typical clumped Mtb-growth in surfactant-free assays. (ii) Exploring anti-Mtb potency of cell wall layer-degrading enzymes. (iii) Investigation of the concerted action of several such enzymes. Methods We inserted a bacterial luciferase-operon in an auxotrophic Mtb strain to develop a microtiter assay that allows proper evaluation of cell wall degrading anti-Mtb enzymes. We assessed growth-inhibition by enzymes (recombinant mycobacteriophage mycolic acid esterase (LysB), fungal α-amylase and human and chicken egg white lysozymes) and combinations thereof, in presence or absence of biopharmaceutically acceptable surfactant. Results Our biosafety level-2 assay identified both LysB and lysozymes as potent Mtb-inhibitors, but only in presence of surfactant. Moreover, most potent disruption of the mycolic acid hydrophobic barrier was obtained by the highly synergistic combination of LysB, α-amylase and polysorbate 80. Conclusions Synergistically acting cell wall degrading enzymes are potently inhibiting Mtb - which sets the scene for the design of specifically tailored antimycobacterial (fusion) enzymes. Airway delivery of protein therapeutics has already been established and should be studied in animal models for active TB.
Collapse
|
12
|
Azeredo J, García P, Drulis-Kawa Z. Targeting biofilms using phages and their enzymes. Curr Opin Biotechnol 2021; 68:251-261. [PMID: 33714050 DOI: 10.1016/j.copbio.2021.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023]
Abstract
The complex biofilm architecture composed of extracellular polymeric structures (EPS) provides a protective shield to physiologically diverse bacterial cells immersed in its structure. The evolutionary interplay between bacteria and their viruses (phages) forced the latter ones to develop specific strategies to overcome the biofilm defensive barriers and kill sessile cells. Phages are equipped with a wide panel of enzyme-degrading EPS macromolecules which together are powerful weapons to combat biofilms. Antibiofilm performance can be achieved by combining phages or phage-borne enzymes with other antimicrobials such as antibiotics. Nevertheless, a variety of enzymes encoded in phage genomes still need to be explored. To advance in biofilm control strategies we must deepen the understanding of the biofilm biology itself, as well as discover and better exploit the unlimited antibacterial potential of phages.
Collapse
Affiliation(s)
- Joana Azeredo
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares sn. 33300, Villaviciosa, Asturias, Spain.
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| |
Collapse
|