1
|
Dipalma G, Inchingolo AD, Guglielmo M, Morolla R, Palumbo I, Riccaldo L, Mancini A, Palermo A, Malcangi G, Inchingolo AM, Inchingolo F. Nanotechnology and Its Application in Dentistry: A Systematic Review of Recent Advances and Innovations. J Clin Med 2024; 13:5268. [PMID: 39274481 PMCID: PMC11396671 DOI: 10.3390/jcm13175268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Background: This study looks at the clinical applications of nanotechnology in dentistry, with an emphasis on implantology, preventive care, orthodontics, restorative dentistry, and endodontics. Methods: Following PRISMA criteria and registered in PROSPERO (ID: CRD 564245), a PubMed, Scopus, and Web of Science search was conducted for studies from January 2014 to April 2024. The criteria were English-language research on nanotechnology in dental coatings, with a focus on clinical trials and observational studies. The electronic database search yielded 8881 publications. Following the screening process, 17 records were selected for qualitative analysis. Results: Nanotechnology has revolutionized dentistry. In orthodontics, nanoparticles improve antibacterial characteristics, durability, and biocompatibility, lowering bacterial colonization and plaque. In preventative care, Casein Phosphopeptide-Amorphous Calcium Phosphate (CPP-ACP) combined with stannous fluoride (SnF2) and nano-sized sodium trimetaphosphate (TMPnano) substantially remineralizes enamel. Nanostructured surfaces in dental implants, particularly those containing calcium, improve osseointegration and stability. Nanoparticles in restorative dentistry improve composite and adhesive strength, aesthetics, and longevity. Conclusions: Nanotechnology improves dental materials and equipment, resulting in better treatment outcomes and increased patient comfort. Its integration provides more effective treatments, which improves dental care and patient outcomes. More research is needed to overcome present problems and expand nanotechnology's medicinal applications.
Collapse
Affiliation(s)
- Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | | | | | - Roberta Morolla
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Irene Palumbo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Lilla Riccaldo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | | | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| |
Collapse
|
2
|
Toropova AP, Toropov AA, Fjodorova N. In Silico Simulation of Impacts of Metal Nano-Oxides on Cell Viability in THP-1 Cells Based on the Correlation Weights of the Fragments of Molecular Structures and Codes of Experimental Conditions Represented by Means of Quasi-SMILES. Int J Mol Sci 2023; 24:ijms24032058. [PMID: 36768396 PMCID: PMC9917241 DOI: 10.3390/ijms24032058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
A simulation of the effect of metal nano-oxides at various concentrations (25, 50, 100, and 200 milligrams per millilitre) on cell viability in THP-1 cells (%) based on data on the molecular structure of the oxide and its concentration is proposed. We used a simplified molecular input-line entry system (SMILES) to represent the molecular structure. So-called quasi-SMILES extends usual SMILES with special codes for experimental conditions (concentration). The approach based on building up models using quasi-SMILES is self-consistent, i.e., the predictive potential of the model group obtained by random splits into training and validation sets is stable. The Monte Carlo method was used as a basis for building up the above groups of models. The CORAL software was applied to building the Monte Carlo calculations. The average determination coefficient for the five different validation sets was R2 = 0.806 ± 0.061.
Collapse
Affiliation(s)
- Alla P. Toropova
- Laboratory of Environmental Chemistry and Toxicology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156 Milano, Italy
- Correspondence: ; Tel.: +39-02-3901-4595
| | - Andrey A. Toropov
- Laboratory of Environmental Chemistry and Toxicology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156 Milano, Italy
| | | |
Collapse
|
3
|
Lee YL, Shih YS, Chen ZY, Cheng FY, Lu JY, Wu YH, Wang YJ. Toxic Effects and Mechanisms of Silver and Zinc Oxide Nanoparticles on Zebrafish Embryos in Aquatic Ecosystems. NANOMATERIALS 2022; 12:nano12040717. [PMID: 35215043 PMCID: PMC8880218 DOI: 10.3390/nano12040717] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 02/05/2023]
Abstract
The global application of engineered nanomaterials and nanoparticles (ENPs) in commercial products, industry, and medical fields has raised some concerns about their safety. These nanoparticles may gain access into rivers and marine environments through industrial or household wastewater discharge and thereby affect the ecosystem. In this study, we investigated the effects of silver nanoparticles (AgNPs) and zinc oxide nanoparticles (ZnONPs) on zebrafish embryos in aquatic environments. We aimed to characterize the AgNP and ZnONP aggregates in natural waters, such as lakes, reservoirs, and rivers, and to determine whether they are toxic to developing zebrafish embryos. Different toxic effects and mechanisms were investigated by measuring the survival rate, hatching rate, body length, reactive oxidative stress (ROS) level, apoptosis, and autophagy. Spiking AgNPs or ZnONPs into natural water samples led to significant acute toxicity to zebrafish embryos, whereas the level of acute toxicity was relatively low when compared to Milli-Q (MQ) water, indicating the interaction and transformation of AgNPs or ZnONPs with complex components in a water environment that led to reduced toxicity. ZnONPs, but not AgNPs, triggered a significant delay of embryo hatching. Zebrafish embryos exposed to filtered natural water spiked with AgNPs or ZnONPs exhibited increased ROS levels, apoptosis, and lysosomal activity, an indicator of autophagy. Since autophagy is considered as an early indicator of ENP interactions with cells and has been recognized as an important mechanism of ENP-induced toxicity, developing a transgenic zebrafish system to detect ENP-induced autophagy may be an ideal strategy for predicting possible ecotoxicity that can be applied in the future for the risk assessment of ENPs.
Collapse
Affiliation(s)
- Yen-Ling Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-L.L.); (Y.-S.S.); (Z.-Y.C.); (J.-Y.L.)
- Department of Oncology, Tainan Hospital, Ministry of Health and Welfare, Tainan 70101, Taiwan
| | - Yung-Sheng Shih
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-L.L.); (Y.-S.S.); (Z.-Y.C.); (J.-Y.L.)
| | - Zi-Yu Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-L.L.); (Y.-S.S.); (Z.-Y.C.); (J.-Y.L.)
| | - Fong-Yu Cheng
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Jing-Yu Lu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-L.L.); (Y.-S.S.); (Z.-Y.C.); (J.-Y.L.)
| | - Yuan-Hua Wu
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
- Correspondence: (Y.-H.W.); (Y.-J.W.); Tel.: +886-6-235-3535 (ext. 5804) (Y.-J.W.)
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-L.L.); (Y.-S.S.); (Z.-Y.C.); (J.-Y.L.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Correspondence: (Y.-H.W.); (Y.-J.W.); Tel.: +886-6-235-3535 (ext. 5804) (Y.-J.W.)
| |
Collapse
|
4
|
Omari Shekaftik S, Sedghi Noushabadi Z, Ashtarinezhad A. Nanosafety: a knowledge, attitude and practice (KAP) study among Iranian researchers working in nanotechnology laboratories. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2021; 28:2541-2545. [PMID: 34766532 DOI: 10.1080/10803548.2021.2005958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Objectives. There is a set of evidence about the adverse effects of engineered nanomaterials (ENMs) on humans and the environment. People working with nanomaterials (NMs) (in nanotechnology laboratories and workplaces) are often exposed to these materials. Following nanosafety principals can reduce exposure to ENMs. This study aimed to investigate the knowledge, attitude and practice (KAP) of Iranian researchers toward nanosafety. Methods. This descriptive cross-sectional study was conducted via a questionnaire designed using the results of a literature review and validated by a panel of experts. After completion of questionnaires by Iranian researchers, data were analyzed using SPSS version 20.0. Results. Investigation into the knowledge of study participants showed that 61.38% of them answered the questions correctly. Although 74.34% of the study participants had a proper attitude to nanosafety, only 27.3% of them considered ENMs to be harmful to humans and the environment. Examination of researchers' performance in laboratories showed that 24.25% of them 'always' have good performance. Conclusions. It seems that increasing awareness by teaching the principles of working safely with NMs can help to create a positive attitude toward the principles of nanosafety. Positive attitude can finally lead to the optimal performance of researchers in laboratories involved with NMs.
Collapse
Affiliation(s)
- Soqrat Omari Shekaftik
- Department of Occupational Health Engineering, Faculty of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Zhaleh Sedghi Noushabadi
- Department of Occupational Health Engineering, Faculty of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Ashtarinezhad
- Air Pollution Research Center, Department of Occupational Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|