1
|
Eerdekens H, Pirlet E, Willems S, Bronckaers A, Pincela Lins PM. Extracellular vesicles: innovative cell-free solutions for wound repair. Front Bioeng Biotechnol 2025; 13:1571461. [PMID: 40248643 PMCID: PMC12003306 DOI: 10.3389/fbioe.2025.1571461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
Chronic non-healing wounds are often associated with conditions such as diabetes and peripheral vascular disease, pose significant medical and socioeconomic challenges. Cell-based therapies have shown promise in promoting wound healing but have major drawbacks such as immunogenicity and tumor formation. As a result, recent research has shifted to the potential of extracellular vesicles (EVs) derived from these cells. EVs are nanosized lipid bilayer vesicles, naturally produced by all cell types, which facilitate intercellular communication and carry bioactive molecules, offering advantages such as low immunogenicity, negligible toxicity and the potential to be re-engineered. Recent evidence recognizes that during wound healing EVs are released from a wide range of cells including immune cells, skin cells, epithelial cells and platelets and they actively participate in wound repair. This review comprehensively summarizes the latest research on the function of EVs from endogenous cell types during the different phases of wound healing, thereby presenting interesting therapeutic targets. Additionally, it gives a critical overview of the current status of mesenchymal stem cell-derived EVs in wound treatment highlighting their tremendous therapeutic potential as a non-cellular of-the-shelf alternative in wound care.
Collapse
Affiliation(s)
- Hanne Eerdekens
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Elke Pirlet
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Sarah Willems
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Annelies Bronckaers
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Paula M. Pincela Lins
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
- Flemish Institute for Technological Research (VITO), Environmental Intelligence Unit, Mol, Belgium
| |
Collapse
|
2
|
Su W, Liao C, Liu X. Angiogenic and neurogenic potential of dental-derived stem cells for functional pulp regeneration: A narrative review. Int Endod J 2025; 58:391-410. [PMID: 39660369 DOI: 10.1111/iej.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/26/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Dental pulp tissue engineering is expected to become an ideal treatment for irreversible pulpitis and apical periodontitis. However, angiogenesis and neurogenesis for functional pulp regeneration have not yet met the standard for large-scale clinical application, and need further research. OBJECTIVE This review focused on the potential mechanisms of angiogenesis and neurogenesis in pulp regeneration, including stem cell types, upstream and downstream regulatory molecules and cascade signalling pathways, thereby providing a theoretical basis and inspiring new ideas to improve the effectiveness of dental pulp tissue engineering. METHODS An electronic literature search was carried out using the keywords of 'pulp regeneration', 'stem cell transplantation', 'dental pulp stem cells', 'angiogenesis' and 'neurogenesis'. The resulting literature was screened and reviewed. RESULTS Stem cells used in dental pulp tissue engineering can be classified as dental-derived and non-dental-derived stem cells, amongst which dental pulp stem cells (DPSC) have achieved promising results in animal experiments and clinical trials. Multiple molecules and signalling pathways are involved in the process of DPSC-mediated angiogenic and neurogenetic regeneration. In order to promote angiogenesis and neurogenesis in pulp regeneration, feasible measures include the addition of growth factors, the modulation of transcription factors and signalling pathways, the use of extracellular vesicles and the modification of bioscaffold materials. CONCLUSION Dental pulp tissue engineering has had breakthroughs in preclinical and clinical studies in vivo. Overcoming difficulties in pulpal angiogenesis and neurogenesis, and achieving functional pulp regeneration will lead to a significant impact in endodontics.
Collapse
Affiliation(s)
- Wanting Su
- School of Stomatology, Jinan University, Guangzhou, China
| | - Chufang Liao
- School of Stomatology, Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China
- Hospital of stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China
- Hospital of stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Dongwen L, Dapeng M, Jiazhi Y, Xiaoguang L. Hydrogels in Oral Disease Management: A Review of Innovations in Drug Delivery and Tissue Regeneration. Med Sci Monit 2025; 31:e946122. [PMID: 39962794 PMCID: PMC11846253 DOI: 10.12659/msm.946122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/17/2024] [Indexed: 02/24/2025] Open
Abstract
The oral cavity is an open and complicated structure with a variety of factors affecting topical oral medications. The complicated physical and chemical surroundings of the oral cavity can influence the action of free drugs. Thus, the drug delivery system can serve as a support structure or carrier. Hydrogels are prospective tissue engineering biomaterials that demonstrate immense potential for oral tissue regeneration and drug delivery. Hydrogels are crosslinked polymer chains with a 3-dimensional network structure that can take up larger volumes of liquid and have a soft, porous structure that closely resembles living tissue. Hydrogels protect the active drug from systemic and topical elimination, increase the bioavailability and absorption into cells, and release or modify the therapeutic drug release immediately after dosing. In this review, we introduce the classification of hydrogels, introduce the application of hydrogels in oral diseases (periodontal disease, endodontics, oral mucosal disease, alveolar surgery, oral cancer, maxillofacial bone defects, and oral implantation), summarize the synthesis methods and the applications of hydrogels, and discuss the possible directions of the future development of hydrogels, which will provide a new idea for the formulation and production of a more advantageous and efficient topical oral drug delivery system.
Collapse
|
4
|
Wang Y, Mao J, Wang Y, Wang R, Jiang N, Hu X, Shi X. Odontogenic exosomes simulating the developmental microenvironment promote complete regeneration of pulp-dentin complex in vivo. J Adv Res 2025:S2090-1232(24)00626-X. [PMID: 39765328 DOI: 10.1016/j.jare.2024.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Establishing an optimized regenerative microenvironment for pulp-dentin complex engineering has become increasingly critical. Recently, exosomes have emerged as favorable biomimetic nanotherapeutic tools to simulate the developmental microenvironment and facilitate tissue regeneration. OBJECTIVES This study aimed to elucidate the multifaceted roles of exosomes from human dental pulp stem cells (DPSCs) that initiated odontogenic differentiation while sustaining mesenchymal stem cell (MSC) characteristics in odontogenesis, angiogenesis, and neurogenesis during pulp-dentin complex regeneration. METHODS Differential centrifugation was performed to isolate exosomes from normal DPSCs (DPSC-Exos) and DPSCs that initially triggered odontogenic differentiation (DPSC-Od-Exos). The impact of these exosomes on the biological behavior of DPSCs and human umbilical vein endothelial cells (HUVECs) was examined in vitro through CCK-8 assay and Transwell migration assay, as well as assays dedicated to assessing odontogenic, angiogenic, and neurogenic capabilities. In vivo, Matrigel plugs and human tooth root fragments incorporating either DPSC-Exos or DPSC-Od-Exos were subcutaneously transplanted into mouse models. Subsequent histological, immunohistochemical, and immunofluorescent analyses were conducted to determine the regenerative outcomes. RESULTS DPSC-Exos and DPSC-Od-Exos revealed no remarkable difference in their characteristics. In vitro analyses indicated that DPSC-Od-Exos significantly facilitated the proliferation, migration, and multilineage differentiation of DPSCs compared with DPSC-Exos. Furthermore, DPSC-Od-Exos elicited a more pronounced effect on the tubular structure formation of HUVECs. Consistently, Matrigel plug assays confirmed that DPSC-Od-Exos exhibited superior performance in promoting endothelial differentiation of DPSCs and stimulating angiogenesis in HUVECs. Notably, DPSC-Od-Exos contributed to complete pulp-dentin complex regeneration in human tooth root fragments, characterized by enriched neurovascular structures and a continuous layer of odontoblast-like cells, which extended cytoplasmic projections into the newly formed dentinal tubules. CONCLUSION By simulating the developmental microenvironment, multifunctional DPSC-Od-Exos demonstrated promising potential for reconstructing dentin-like tissue, vascular networks, and neural architectures, thereby enhancing our understanding of the therapeutic implications of DPSC-Od-Exos in regenerative endodontic treatment.
Collapse
Affiliation(s)
- Yifan Wang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, People's Republic of China
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, People's Republic of China
| | - Yujie Wang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, People's Republic of China
| | - Rui Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Nan Jiang
- Central Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Xiaohan Hu
- Outpatient Department Office, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xin Shi
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, People's Republic of China.
| |
Collapse
|
5
|
Jafari N, Seyed Habashi M, Afshar A, Ghasemi M, Kurmanalina MA, Mussin NM, Kaliyev AA, Zare S, Khodabandeh Z, Tanideh N, Tamadon A. The Effect of Exosomes Derived from Human Umbilical Cord Mesenchymal Stromal/Stem Cells on the Regeneration of Human Pulpectomized Tooth: A Case Report. IRANIAN JOURNAL OF MEDICAL SCIENCES 2025; 50:54-58. [PMID: 39957811 PMCID: PMC11829066 DOI: 10.30476/ijms.2024.103117.3638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/26/2024] [Accepted: 11/12/2024] [Indexed: 02/18/2025]
Abstract
The dental pulp is essential for tooth health and sensory function. However, conventional treatments for infected or necrotic pulp, such as root canal therapy, frequently result in tooth loss and increased fracture risk. Regenerative endodontic procedures (REPs) aim to regenerate pulp tissue while preserving tooth vitality. Exosomes from human umbilical cord mesenchymal stromal/stem cells (hUCMSCs) demonstrated potential for tissue regeneration. In this case report, the potential of hUCMSC-derived exosomes for regenerating the dental pulp of a pulpectomized tooth was investigated. The patient, a 40-year-old man, was presented with irreversible pulpitis in the mandibular second premolar. The patient underwent a pulpectomy, followed by the application of a chitosan and hUCMSC-derived exosome mixture into the root canal. This project was conceived and executed as a joint project in Bushehr (Iran), Shiraz (Iran), and Aktobe (Kazakhstan) from 2022 to 2024. Exosomes were isolated and characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Clinical evaluations, including visual inspection, palpation, pulp vitality tests, radiography, and cone beam computed tomography (CBCT) imaging, were conducted over 24 weeks post-treatment. The SEM and TEM images confirmed the effective isolation and characterization of exosomes. Clinical follow-ups showed no signs of infection, swelling, or tenderness around the treated tooth. Radiographic assessments indicated periapical radiolucency and periodontal ligament widening, suggesting active healing. Despite these radiographic changes, the absence of clinical symptoms indicated successful tissue regeneration and integration. This case report demonstrated the potential of hUCMSC-derived exosomes for dental pulp regeneration, with promising results in maintaining tooth vitality and promoting healing.
Collapse
Affiliation(s)
- Nazanin Jafari
- School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
- PerciaVista RandD Co. Shiraz, Iran
| | - Mina Seyed Habashi
- Department of Endodontics, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Alireza Afshar
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Ghasemi
- Department of Radiology, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Madina A. Kurmanalina
- Department of Therapeutic and Prosthetic Dentistry, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Nadiar M. Mussin
- Department of Surgery No. 2, West Kazakhstan Marat Ospanov Medical University Aktobe, Kazakhstan
| | - Asset A. Kaliyev
- Department of Surgery No. 2, West Kazakhstan Marat Ospanov Medical University Aktobe, Kazakhstan
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- PerciaVista RandD Co. Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Tamadon
- PerciaVista RandD Co. Shiraz, Iran
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| |
Collapse
|
6
|
Moreira MS, Mota ME, Ariga SKK, Jaguar GC, Marques MM. Mesenchymal stem cell therapies evidence in the treatment of irradiated salivary glands: A scoping review. J Clin Exp Dent 2024; 16:e1547-e1554. [PMID: 39822783 PMCID: PMC11733895 DOI: 10.4317/jced.62242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/08/2024] [Indexed: 01/19/2025] Open
Abstract
Background Radiotherapy is one of the main treatments for head and neck cancer; however, due to its non-selectivity the glandular tissue can be affected. This scoping review aimed to identify the evidence about mesenchymal stem cell therapies for irradiated salivary gland regeneration. Material and Methods Two independent reviewers performed a literature search in MEDLINE/PubMed, Scopus, and Web of Science. The inclusion criteria were: 1) studies evaluation regeneration of irradiated salivary glands by stem cell therapies (cell-based or cell-free), (2) in vivo studies. Results The search resulted in 13 included studies. In general, both therapies demonstrated increased salivary levels, with mucin and amylase increased and structural protection of acinar cells. The cell-free therapy based on labial glands stem cell extract demonstrated a higher number of parasympathetic nerves. Conclusions Stem cell therapies (cell-free and cell-based) appear promising strategies for recovering saliva production in patients presenting irradiation-induced hyposalivation, with positive results toward regeneration of the form and function of the glands. However, due to the scarcity and heterogenicity of these pre-clinical studies, it is not possible to indicate which is the more indicated therapy. Key words:Mesenchymal stem cells, extracellular vesicles, exosomes, salivary glands, stem cell biology, hyposalivation, radiotherapy.
Collapse
Affiliation(s)
- Maria Stella Moreira
- Department of Stomatology, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Maria Emília Mota
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Suely Kunimi Kubo Ariga
- School of Medicine, Emergency Medicine Laboratory, University of São Paulo, São Paulo, SP, Brazil
| | | | - Márcia Martins Marques
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
- AALZ, Sigmund Freud University, Vienna, Austria
| |
Collapse
|
7
|
Zhang S, Chen J, Cao Y, Cui Y, Zhang M, Yue C, Yang B. Divergent Proteomic Profiles and Uptake Mechanisms of Exosomes Derived from Human Dental Pulp Stem Cells, Endothelial Cells, and Fibroblasts. Mol Pharm 2024. [PMID: 39535266 DOI: 10.1021/acs.molpharmaceut.4c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Effective intercellular communication is crucial for tissue repair and regeneration, with exosomes playing a key role in mediating these processes by transferring proteins, lipids, and nucleic acids between cells. This study explored the mechanisms underlying the uptake of exosomes derived from human dental pulp stem cells (hDPSCs), human umbilical vein endothelial cells (HUVECs), and human fibroblasts (HFBs). Our findings revealed that hDPSCs exhibited the greatest capacity for exosome uptake across all three cell types. Moreover, exosomes originating from hDPSCs were also taken up in the highest amounts by all three cell types. Proteomic analysis uncovered significant differences in protein expression among exosomes from these different cell types, particularly in proteins related to endocytosis. Clathrin-dependent endocytosis emerged as the primary pathway for exosome uptake in hDPSCs and HUVECs, while HFBs appeared to use a different mechanism. Additionally, proteins such as fibronectin and tetraspanins were found to be highly expressed in hDPSC-derived exosomes, suggesting their potential involvement in exosome-cell interactions. This study offers new insights into exosome uptake mechanisms and highlights the potential of exosomes in advancing tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Siqi Zhang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
- National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jun Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
- National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yipu Cao
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
- National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yifan Cui
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
- National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Mei Zhang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
- National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Chongxia Yue
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
- National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial and Institute of Regulatory Science for Medical Devices and NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, People's Republic of China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Bangcheng Yang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
- National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
8
|
Xia EJ, Zou S, Zhao X, Liu W, Zhang Y, Zhao IS. Extracellular vesicles as therapeutic tools in regenerative dentistry. Stem Cell Res Ther 2024; 15:365. [PMID: 39402576 PMCID: PMC11476107 DOI: 10.1186/s13287-024-03936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Dental and maxillofacial diseases are always accompanied by complicated hard and soft tissue defects, involving bone, teeth, blood vessels and nerves, which are difficult to repair and severely affect the life quality of patients. Recently, extracellular vesicles (EVs) secreted by all types of cells and extracted from body fluids have gained more attention as potential solutions for tissue regeneration due to their special physiological characteristics and intrinsic signaling molecules. Compared to stem cells, EVs present lower immunogenicity and tumorigenicity, cause fewer ethical problems, and have higher stability. Thus, EV therapy may have a broad clinical application in regenerative dentistry. Herein, we reviewed the currently available literature regarding the functional roles of EVs in oral and maxillofacial tissue regeneration, including in maxilla and mandible bone, periodontal tissues, temporomandibular joint cartilage, dental hard tissues, peripheral nerves and soft tissues. We also summarized the underlying mechanisms of actions of EVs and their delivery strategies for dental tissue regeneration. This review would provide helpful guidelines and valuable insights into the emerging potential of EVs in future research and clinical applications in regenerative dentistry.
Collapse
Affiliation(s)
- Evelyn Jingwen Xia
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Ave, Shenzhen, 518015, China
| | - Shasha Zou
- Longgang Center for Chronic Disease Control, Shenzhen, 518172, China
| | - Xiu Zhao
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen, 518015, China
| | - Wei Liu
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen, 518015, China
| | - Yang Zhang
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Ave, Shenzhen, 518015, China.
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518015, China.
| | - Irene Shuping Zhao
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Ave, Shenzhen, 518015, China.
| |
Collapse
|
9
|
Quigley RM, Kearney M, Kennedy OD, Duncan HF. Tissue engineering approaches for dental pulp regeneration: The development of novel bioactive materials using pharmacological epigenetic inhibitors. Bioact Mater 2024; 40:182-211. [PMID: 38966600 PMCID: PMC11223092 DOI: 10.1016/j.bioactmat.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
The drive for minimally invasive endodontic treatment strategies has shifted focus from technically complex and destructive root canal treatments towards more conservative vital pulp treatment. However, novel approaches to maintaining dental pulp vitality after disease or trauma will require the development of innovative, biologically-driven regenerative medicine strategies. For example, cell-homing and cell-based therapies have recently been developed in vitro and trialled in preclinical models to study dental pulp regeneration. These approaches utilise natural and synthetic scaffolds that can deliver a range of bioactive pharmacological epigenetic modulators (HDACis, DNMTis, and ncRNAs), which are cost-effective and easily applied to stimulate pulp tissue regrowth. Unfortunately, many biological factors hinder the clinical development of regenerative therapies, including a lack of blood supply and poor infection control in the necrotic root canal system. Additional challenges include a need for clinically relevant models and manufacturing challenges such as scalability, cost concerns, and regulatory issues. This review will describe the current state of bioactive-biomaterial/scaffold-based engineering strategies to stimulate dentine-pulp regeneration, explicitly focusing on epigenetic modulators and therapeutic pharmacological inhibition. It will highlight the components of dental pulp regenerative approaches, describe their current limitations, and offer suggestions for the effective translation of novel epigenetic-laden bioactive materials for innovative therapeutics.
Collapse
Affiliation(s)
- Ross M. Quigley
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
| | - Oran D. Kennedy
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| | - Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| |
Collapse
|
10
|
Ning X, Liu R, Huang Y, Huang Z, Li H, Li Q, Sheng Z, Wu J. Dental Stem Cell-Derived Exosomes: A Review of Their Isolation, Classification, Functions, and Mechanisms. Stem Cells Int 2024; 2024:2187392. [PMID: 39184549 PMCID: PMC11343633 DOI: 10.1155/2024/2187392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
The scientific field concerned with the study of regeneration has developed rapidly in recent years. Stem cell therapy is a highly promising therapeutic modality for repairing tissue defects; however, several limitations exist, such as cytotoxicity, potential immune rejection, and ethical issues. Exosomes secreted by stem cells are cell-specific secreted vesicles that play a regulatory role in many biological functions in the human body; they not only have a series of functional roles of stem cells and exert the expected therapeutic effects, but they can also overcome the mass limitations of stem cells and are thus considered in the research as an alternative treatment strategy for stem cells. Since dental stem cell-derived exosomes (DSC-Exos) are easy to acquire and present modulating effects in several fields, including neurovascular regeneration and craniofacial soft and hard tissue regeneration processes, they are served as an emerging cell-free therapeutic strategy in various systematic diseases. There is a growing body of research on various types of DSC-Exos; however, they lack systematic elaboration and tabular summarization. Therefore, this review presents the isolation, characterization, and phenotypes of DSC-Exos and focuses on their current status of functions and mechanisms, as well as the multiple challenges prior to clinical applications.
Collapse
Affiliation(s)
- Xiner Ning
- Department of OrthodonticsSchool of StomatologyState Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesThe Fourth Military Medical University, Xi'an 710032, China
| | - Rui Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyNursing DepartmentSchool of StomatologyThe Fourth Military Medical University, Xi'an 710032, China
| | - Yingying Huang
- Department of OrthodonticsSchool of StomatologyState Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesThe Fourth Military Medical University, Xi'an 710032, China
| | - Zhilong Huang
- Department of OrthodonticsSchool of StomatologyState Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesThe Fourth Military Medical University, Xi'an 710032, China
| | - Haodi Li
- Department of OrthodonticsSchool of StomatologyState Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesThe Fourth Military Medical University, Xi'an 710032, China
| | - Qiqi Li
- Department of OrthodonticsSchool of StomatologyState Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesThe Fourth Military Medical University, Xi'an 710032, China
| | - Zengyan Sheng
- Department of OrthodonticsSchool of StomatologyState Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesThe Fourth Military Medical University, Xi'an 710032, China
| | - Junjie Wu
- Department of OrthodonticsSchool of StomatologyState Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesThe Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
11
|
Shi X, Hu X, Jiang N, Mao J. Regenerative endodontic therapy: From laboratory bench to clinical practice. J Adv Res 2024:S2090-1232(24)00267-4. [PMID: 38969092 DOI: 10.1016/j.jare.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/16/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Maintaining the vitality and functionality of dental pulp is paramount for tooth integrity, longevity, and homeostasis. Aiming to treat irreversible pulpitis and necrosis, there has been a paradigm shift from conventional root canal treatment towards regenerative endodontic therapy. AIM OF REVIEW This extensive and multipart review presents crucial laboratory and practical issues related to pulp-dentin complex regeneration aimed towards advancing clinical translation of regenerative endodontic therapy and enhancing human life quality. KEY SCIENTIFIC CONCEPTS OF REVIEW In this multipart review paper, we first present a panorama of emerging potential tissue engineering strategies for pulp-dentin complex regeneration from cell transplantation and cell homing perspectives, emphasizing the critical regenerative components of stem cells, biomaterials, and conducive microenvironments. Then, this review provides details about current clinically practiced pulp regenerative/reparative approaches, including direct pulp capping and root revascularization, with a specific focus on the remaining hurdles and bright prospects in developing such therapies. Next, special attention was devoted to discussing the innovative biomimetic perspectives opened in establishing functional tissues by employing exosomes and cell aggregates, which will benefit the clinical translation of dental pulp engineering protocols. Finally, we summarize careful consideration that should be given to basic research and clinical applications of regenerative endodontics. In particular, this review article highlights significant challenges associated with residual infection and inflammation and identifies future insightful directions in creating antibacterial and immunomodulatory microenvironments so that clinicians and researchers can comprehensively understand crucial clinical aspects of regenerative endodontic procedures.
Collapse
Affiliation(s)
- Xin Shi
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaohan Hu
- Outpatient Department Office, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Nan Jiang
- Central Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
12
|
Fuest S, Salviano-Silva A, Maire CL, Xu Y, Apel C, Grust ALC, Delle Coste A, Gosau M, Ricklefs FL, Smeets R. Doping of casted silk fibroin membranes with extracellular vesicles for regenerative therapy: a proof of concept. Sci Rep 2024; 14:3553. [PMID: 38347108 PMCID: PMC10861453 DOI: 10.1038/s41598-024-54014-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024] Open
Abstract
Bioactive material concepts for targeted therapy have been an important research focus in regenerative medicine for years. The aim of this study was to investigate a proof-of-concept composite structure in the form of a membrane made of natural silk fibroin (SF) and extracellular vesicles (EVs) from gingival fibroblasts. EVs have multiple abilities to act on their target cell and can thus play crucial roles in both physiology and regeneration. This study used pH neutral, degradable SF-based membranes, which have excellent cell- and tissue-specific properties, as the carrier material. The characterization of the vesicles showed a size range between 120 and 180 nm and a high expression of the usual EV markers (e.g. CD9, CD63 and CD81), measured by nanoparticle tracking analysis (NTA) and single-EV flow analysis (IFCM). An initial integration of the EVs into the membrane was analyzed using scanning and transmission electron microscopy (SEM and TEM) and vesicles were successfully detected, even if they were not homogeneously distributed in the membrane. Using direct and indirect tests, the cytocompatibility of the membranes with and without EVs could be proven and showed significant differences compared to the toxic control (p < 0.05). Additionally, proliferation of L929 cells was increased on membranes functionalized with EVs (p > 0.05).
Collapse
Affiliation(s)
- Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Amanda Salviano-Silva
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Cecile L Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Yong Xu
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute of RWTH Aachen University and Hospital, 52074, Aachen, Germany
| | - Christian Apel
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute of RWTH Aachen University and Hospital, 52074, Aachen, Germany
| | - Audrey Laure Céline Grust
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Arianna Delle Coste
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| |
Collapse
|
13
|
Shan BH, Wu FG. Hydrogel-Based Growth Factor Delivery Platforms: Strategies and Recent Advances. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210707. [PMID: 37009859 DOI: 10.1002/adma.202210707] [Citation(s) in RCA: 110] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Growth factors play a crucial role in regulating a broad variety of biological processes and are regarded as powerful therapeutic agents in tissue engineering and regenerative medicine in the past decades. However, their application is limited by their short half-lives and potential side effects in physiological environments. Hydrogels are identified as having the promising potential to prolong the half-lives of growth factors and mitigate their adverse effects by restricting them within the matrix to reduce their rapid proteolysis, burst release, and unwanted diffusion. This review discusses recent progress in the development of growth factor-containing hydrogels for various biomedical applications, including wound healing, brain tissue repair, cartilage and bone regeneration, and spinal cord injury repair. In addition, the review introduces strategies for optimizing growth factor release including affinity-based delivery, carrier-assisted delivery, stimuli-responsive delivery, spatial structure-based delivery, and cellular system-based delivery. Finally, the review presents current limitations and future research directions for growth factor-delivering hydrogels.
Collapse
Affiliation(s)
- Bai-Hui Shan
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
14
|
Arif S, Larochelle S, Trudel B, Gounou C, Bordeleau F, Brisson AR, Moulin VJ. The diffusion of normal skin wound myofibroblast-derived microvesicles differs according to matrix composition. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e131. [PMID: 38938680 PMCID: PMC11080821 DOI: 10.1002/jex2.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 06/29/2024]
Abstract
Microvesicles (MVs) are a subtype of extracellular vesicles that can transfer biological information over long distances, affecting normal and pathological processes including skin wound healing. However, the diffusion of MVs into tissues can be impeded by the extracellular matrix (ECM). We investigated the diffusion of dermal wound myofibroblast-derived MVs into the ECM by using hydrogels composed of different ECM molecules such as fibrin, type III collagen and type I collagen that are present during the healing process. Fluorescent MVs mixed with hydrogels were employed to detect MV diffusion using fluorometric methods. Our results showed that MVs specifically bound type I collagen and diffused freely out of fibrin and type III collagen. Further analysis using flow cytometry and specific inhibitors revealed that MVs bind to type I collagen via the α2β1 integrin. These data demonstrate that MV transport depends on the composition of the wound environment.
Collapse
Affiliation(s)
- Syrine Arif
- Faculté de MédecineUniversité Laval QuebecQuebec CityCanada
- Centre de Recherche du CHU de Québec‐Université Laval QuebecQuebec CityCanada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX QuebecQuebec CityCanada
| | - Sébastien Larochelle
- Centre de Recherche du CHU de Québec‐Université Laval QuebecQuebec CityCanada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX QuebecQuebec CityCanada
| | - Benjamin Trudel
- Faculté de MédecineUniversité Laval QuebecQuebec CityCanada
- Centre de Recherche du CHU de Québec‐Université Laval QuebecQuebec CityCanada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX QuebecQuebec CityCanada
- Centre de Recherche sur le Cancer de l'Université Laval QuebecQuebec CityCanada
| | | | - François Bordeleau
- Faculté de MédecineUniversité Laval QuebecQuebec CityCanada
- Centre de Recherche du CHU de Québec‐Université Laval QuebecQuebec CityCanada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX QuebecQuebec CityCanada
- Centre de Recherche sur le Cancer de l'Université Laval QuebecQuebec CityCanada
| | | | - Véronique J. Moulin
- Faculté de MédecineUniversité Laval QuebecQuebec CityCanada
- Centre de Recherche du CHU de Québec‐Université Laval QuebecQuebec CityCanada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX QuebecQuebec CityCanada
- Department of Surgery, Faculty of MedicineUniversité LavalQuebec CityCanada
| |
Collapse
|
15
|
Li Y, Liu C, Han G. Research progress of odontogenic extracellular vesicles in regeneration of dental pulp. Oral Dis 2023; 29:2565-2577. [PMID: 36415913 DOI: 10.1111/odi.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
It is well understood that maintaining viable pulp is critical for tooth retention. This review focused on cell-free therapy based on extracellular vesicles (EVs), a novel minimally invasive treatment strategy for endodontic restoration. This study was conducted by searching mainstream electronic databases such as Web of Science and PubMed for relevant studies on the therapeutic role of odontogenic EVs in pulp healing published in the last five years. We selected 89 relevant articles and discovered that dental stem cells (DSCs) derived EVs (DSC-EVs) have become a research hotspot in oral regenerative medicine, with significant advantages over cell transplantation in terms of low immunogenicity, ease of isolation, preservation, and management. Here, we introduce in detail the therapeutic effects of DSC-EVs for pulp restoration from three perspectives: excellent odontogenic properties, clinical applications, and possible molecular mechanisms. This article contributes a new viewpoint to the field of regenerative endodontics.
Collapse
Affiliation(s)
- Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
16
|
Kim S, Hwangbo H, Chae S, Lee H. Biopolymers and Their Application in Bioprinting Processes for Dental Tissue Engineering. Pharmaceutics 2023; 15:2118. [PMID: 37631331 PMCID: PMC10457894 DOI: 10.3390/pharmaceutics15082118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Dental tissues are composed of multiple tissues with complex organization, such as dentin, gingiva, periodontal ligament, and alveolar bone. These tissues have different mechanical and biological properties that are essential for their functions. Therefore, dental diseases and injuries pose significant challenges for restorative dentistry, as they require innovative strategies to regenerate damaged or missing dental tissues. Biomimetic bioconstructs that can effectively integrate with native tissues and restore their functionalities are desirable for dental tissue regeneration. However, fabricating such bioconstructs is challenging due to the diversity and complexity of dental tissues. This review provides a comprehensive overview of the recent developments in polymer-based tissue engineering and three-dimensional (3D) printing technologies for dental tissue regeneration. It also discusses the current state-of-the-art, focusing on key techniques, such as polymeric biomaterials and 3D printing with or without cells, used in tissue engineering for dental tissues. Moreover, the final section of this paper identifies the challenges and future directions of this promising research field.
Collapse
Affiliation(s)
- Suhon Kim
- Barun Plant Orthodontics and Dental Clinic, Seongnam 13312, Republic of Korea;
| | - Hanjun Hwangbo
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea; (H.H.); (S.C.)
| | - SooJung Chae
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea; (H.H.); (S.C.)
| | - Hyeongjin Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea; (H.H.); (S.C.)
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
17
|
Ruan Q, Tan S, Guo L, Ma D, Wen J. Prevascularization techniques for dental pulp regeneration: potential cell sources, intercellular communication and construction strategies. Front Bioeng Biotechnol 2023; 11:1186030. [PMID: 37274160 PMCID: PMC10232868 DOI: 10.3389/fbioe.2023.1186030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
One of the difficulties of pulp regeneration is the rapid vascularization of transplanted engineered tissue, which is crucial for the initial survival of the graft and subsequent pulp regeneration. At present, prevascularization techniques, as emerging techniques in the field of pulp regeneration, has been proposed to solve this challenge and have broad application prospects. In these techniques, endothelial cells and pericytes are cocultured to induce intercellular communication, and the cell coculture is then introduced into the customized artificial vascular bed or induced to self-assembly to simulate the interaction between cells and extracellular matrix, which would result in construction of a prevascularization system, preformation of a functional capillary network, and rapid reconstruction of a sufficient blood supply in engineered tissue after transplantation. However, prevascularization techniques for pulp regeneration remain in their infancy, and there remain unresolved problems regarding cell sources, intercellular communication and the construction of prevascularization systems. This review focuses on the recent advances in the application of prevascularization techniques for pulp regeneration, considers dental stem cells as a potential cell source of endothelial cells and pericytes, discusses strategies for their directional differentiation, sketches the mechanism of intercellular communication and the potential application of communication mediators, and summarizes construction strategies for prevascularized systems. We also provide novel ideas for the extensive application and follow-up development of prevascularization techniques for dental pulp regeneration.
Collapse
Affiliation(s)
| | | | | | - Dandan Ma
- *Correspondence: Dandan Ma, ; Jun Wen,
| | - Jun Wen
- *Correspondence: Dandan Ma, ; Jun Wen,
| |
Collapse
|
18
|
Hammouda DA, Mansour AM, Saeed MA, Zaher AR, Grawish ME. Stem cell-derived exosomes for dentin-pulp complex regeneration: a mini-review. Restor Dent Endod 2023; 48:e20. [PMID: 37284341 PMCID: PMC10240090 DOI: 10.5395/rde.2023.48.e20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/12/2023] [Accepted: 03/22/2023] [Indexed: 06/08/2023] Open
Abstract
This mini-review was conducted to present an overview of the use of exosomes in regenerating the dentin-pulp complex (DPC). The PubMed and Scopus databases were searched for relevant articles published between January 1, 2013 and January 1, 2023. The findings of basic in vitro studies indicated that exosomes enhance the proliferation and migration of mesenchymal cells, as human dental pulp stem cells, via mitogen-activated protein kinases and Wingless-Int signaling pathways. In addition, they possess proangiogenic potential and contribute to neovascularization and capillary tube formation by promoting endothelial cell proliferation and migration of human umbilical vein endothelial cells. Likewise, they regulate the migration and differentiation of Schwann cells, facilitate the conversion of M1 pro-inflammatory macrophages to M2 anti-inflammatory phenotypes, and mediate immune suppression as they promote regulatory T cell conversion. Basic in vivo studies have indicated that exosomes triggered the regeneration of dentin-pulp-like tissue, and exosomes isolated under odontogenic circumstances are particularly strong inducers of tissue regeneration and stem cell differentiation. Exosomes are a promising regenerative tool for DPC in cases of small pulp exposure or for whole-pulp tissue regeneration.
Collapse
Affiliation(s)
- Dina A. Hammouda
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Alaa M Mansour
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Mahmoud A. Saeed
- Department of Oral Biology, Faculty of Dentistry, Menoufia University, Shibin el Kom, Egypt
| | - Ahmed R. Zaher
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Mohammed E. Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Dakahlia, Egypt
| |
Collapse
|
19
|
Mattei V, Delle Monache S. Dental Pulp Stem Cells (DPSCs) and Tissue Regeneration: Mechanisms Mediated by Direct, Paracrine, or Autocrine Effects. Biomedicines 2023; 11:biomedicines11020386. [PMID: 36830923 PMCID: PMC9953448 DOI: 10.3390/biomedicines11020386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Among mesenchymal stem cells, dental pulp stem cells (DPSCs) were discovered most recently [...].
Collapse
Affiliation(s)
- Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy
- Correspondence: (V.M.); (S.D.M.)
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Correspondence: (V.M.); (S.D.M.)
| |
Collapse
|
20
|
Lai H, Li J, Kou X, Mao X, Zhao W, Ma L. Extracellular Vesicles for Dental Pulp and Periodontal Regeneration. Pharmaceutics 2023; 15:282. [PMID: 36678909 PMCID: PMC9862817 DOI: 10.3390/pharmaceutics15010282] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid bound particles derived from their original cells, which play critical roles in intercellular communication through their cargoes, including protein, lipids, and nucleic acids. According to their biogenesis and release pathway, EVs can be divided into three categories: apoptotic vesicles (ApoVs), microvesicles (MVs), and small EVs (sEVs). Recently, the role of EVs in oral disease has received close attention. In this review, the main characteristics of EVs are described, including their classification, biogenesis, biomarkers, and components. Moreover, the therapeutic mechanism of EVs in tissue regeneration is discussed. We further summarize the current status of EVs in pulp/periodontal tissue regeneration and discuss the potential mechanisms. The therapeutic potential of EVs in pulp and periodontal regeneration might involve the promotion of tissue regeneration and immunomodulatory capabilities. Furthermore, we highlight the current challenges in the translational use of EVs. This review would provide valuable insights into the potential therapeutic strategies of EVs in dental pulp and periodontal regeneration.
Collapse
Affiliation(s)
- Hongbin Lai
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jiaqi Li
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Xueli Mao
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wei Zhao
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Lan Ma
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
21
|
Liu C, Sharpe P, Volponi AA. Applications of regenerative techniques in adult orthodontics. FRONTIERS IN DENTAL MEDICINE 2023. [DOI: 10.3389/fdmed.2022.1100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Management of the growing adult orthodontic patient population must contend with challenges particular to orthodontic treatment in adults. These include a limited rate of tooth movement, increased incidence of periodontal complications, higher risk of iatrogenic root resorption and pulp devitalisation, resorbed edentulous ridges, and lack of growth potential. The field of regenerative dentistry has evolved numerous methods of manipulating cellular and molecular processes to rebuild functional oral and dental tissues, and research continues to advance our understanding of stem cells, signalling factors that stimulate repair and extracellular scaffold interactions for the purposes of tissue engineering. We discuss recent findings in the literature to synthesise our understanding of current and prospective approaches based on biological repair that have the potential to improve orthodontic treatment outcomes in adult patients. Methods such as mesenchymal stem cell transplantation, biomimetic scaffold manipulation, and growth factor control may be employed to overcome the challenges described above, thereby reducing adverse sequelae and improving orthodontic treatment outcomes in adult patients. The overarching goal of such research is to eventually translate these regenerative techniques into clinical practice, and establish a new gold standard of safe, effective, autologous therapies.
Collapse
|
22
|
Hu N, Li W, Jiang W, Wen J, Gu S. Creating a Microenvironment to Give Wings to Dental Pulp Regeneration-Bioactive Scaffolds. Pharmaceutics 2023; 15:158. [PMID: 36678787 PMCID: PMC9861529 DOI: 10.3390/pharmaceutics15010158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
Dental pulp and periapical diseases make patients suffer from acute pain and economic loss. Although root canal therapies, as demonstrated through evidence-based medicine, can relieve symptoms and are commonly employed by dentists, it is still difficult to fully restore a dental pulp's nutrition, sensory, and immune-regulation functions. In recent years, researchers have made significant progress in tissue engineering to regenerate dental pulp in a desired microenvironment. With breakthroughs in regenerative medicine and material science, bioactive scaffolds play a pivotal role in creating a suitable microenvironment for cell survival, proliferation, and differentiation, following dental restoration and regeneration. This article focuses on current challenges and novel perspectives about bioactive scaffolds in creating a microenvironment to promote dental pulp regeneration. We hope our readers will gain a deeper understanding and new inspiration of dental pulp regeneration through our summary.
Collapse
Affiliation(s)
- Nan Hu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Weiping Li
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Department of Oral and Maxillofacial Head & Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Wentao Jiang
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jin Wen
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Shensheng Gu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| |
Collapse
|
23
|
Liu C, Li Y, Han G. Advances of Mesenchymal Stem Cells Released Extracellular Vesicles in Periodontal Bone Remodeling. DNA Cell Biol 2022; 41:935-950. [PMID: 36315196 DOI: 10.1089/dna.2022.0359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles that include exosomes, microvesicles, and apoptotic bodies; they interact with target cell surface receptors and transport contents, including mRNA, proteins, and enzymes into the cytoplasm of target cells to function. The biological fingerprints of EVs practically mirror those of the parental cells they originated from. In the bone remodeling microenvironment, EVs could act on osteoblasts to regulate the bone formation, promote osteoclast differentiation, and regulate bone resorption. Therefore, there have been many attempts wherein EVs were used to achieve targeted therapy in bone-related diseases. Periodontitis, a common bacterial infectious disease, could cause severe alveolar bone resorption, resulting in tooth loss, whereas research on periodontal bone regeneration is also an urgent question. Therefore, EVs-related studies are important for periodontal bone remodeling. In this review, we summarize the current knowledge of mesenchymal stem cell-EVs involved in periodontal bone remodeling and explore the functional gene expression through a comparative analysis of transcriptomic content.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
24
|
The Four Pillars for Successful Regenerative Therapy in Endodontics: Stem Cells, Biomaterials, Growth Factors, and Their Synergistic Interactions. Stem Cells Int 2022; 2022:1580842. [PMID: 36193253 PMCID: PMC9526564 DOI: 10.1155/2022/1580842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 08/14/2022] [Accepted: 08/25/2022] [Indexed: 01/08/2023] Open
Abstract
Endodontics has made significant progress in regenerative approaches in recent years, thanks to advances in biologically based procedures or regenerative endodontic therapy (RET). In recent years, our profession has witnessed a clear conceptual shift in this therapy. RET was initially based on a blood clot induced by apical bleeding without harvesting the patient’s cells or cell-free RET. Later, the RET encompassed the three principles of tissue engineering, stromal/stem cells, scaffolds, and growth factors, aiming for the regeneration of a functional dentin pulp complex. The regenerated dental pulp will recover the protective mechanisms including innate immunity, tertiary dentin formation, and pain sensitivity. This comprehensive review covers the basic knowledge and practical information for translational applications of stem cell-based RET and tissue engineering procedures for the regeneration of dental pulp. It will also provide overall information on the emerging technologies in biological and synthetic matrices, biomaterials, and signaling molecules, recent advances in stem cell therapy, and updated experimental results. This review brings useful and timely clinical evidence for practitioners to understand the challenges faced for a successful cell-based RET and the importance of preserving or reestablishing tooth vitality. The clinical translation of these current bioengineering approaches will undoubtedly be beneficial to the future practice of endodontics.
Collapse
|
25
|
Moghanian A, Cecen B, Nafisi N, Miri Z, Rosenzweig DH, Miri AK. Review of Current Literature for Vascularized Biomaterials in Dental Repair. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
26
|
Ye S, Wei B, Zeng L. Advances on Hydrogels for Oral Science Research. Gels 2022; 8:gels8050302. [PMID: 35621600 PMCID: PMC9140480 DOI: 10.3390/gels8050302] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogels are biocompatible polymer systems, which have become a hotspot in biomedical research. As hydrogels mimic the structure of natural extracellular matrices, they are considered as good scaffold materials in the tissue engineering area for repairing dental pulp and periodontal damages. Combined with different kinds of stem cells and growth factors, various hydrogel complexes have played an optimistic role in endodontic and periodontal tissue engineering studies. Further, hydrogels exhibit biological effects in response to external stimuli, which results in hydrogels having a promising application in local drug delivery. This review summarized the advances of hydrogels in oral science research, in the hopes of providing a reference for future applications.
Collapse
Affiliation(s)
- Shengjia Ye
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China;
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China
| | - Bin Wei
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China
- Department of Stomatology Special Consultation Clinic, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (B.W.); (L.Z.)
| | - Li Zeng
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China;
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China
- Correspondence: (B.W.); (L.Z.)
| |
Collapse
|
27
|
Li B, Xian X, Lin X, Huang L, Liang A, Jiang H, Gong Q. Hypoxia Alters the Proteome Profile and Enhances the Angiogenic Potential of Dental Pulp Stem Cell-Derived Exosomes. Biomolecules 2022; 12:biom12040575. [PMID: 35454164 PMCID: PMC9029684 DOI: 10.3390/biom12040575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Dental pulp stem cells (DPSCs) and their exosomes (Exos) are effective treatments for regenerative medicine. Hypoxia was confirmed to improve the angiogenic potential of stem cells. However, the angiogenic effect and mechanism of hypoxia-preconditioned DPSC-Exos are poorly understood. We isolated exosomes from DPSCs under normoxia (Nor-Exos) and hypoxia (Hypo-Exos) and added them to human umbilical vein endothelial cells (HUVECs). HUVEC proliferation, migration and angiogenic capacity were assessed by CCK-8, transwell, tube formation assays, qRT-PCR and Western blot. iTRAQ-based proteomics and bioinformatic analysis were performed to investigate proteome profile differences between Nor-Exos and Hypo-Exos. Western blot, immunofluorescence and immunohistochemistry were used to detect the expression of lysyl oxidase-like 2 (LOXL2) in vitro and in vivo. Finally, we silenced LOXL2 in HUVECs and rescued tube formation with Hypo-Exos. Hypo-Exos enhanced HUVEC proliferation, migration and tube formation in vitro superior to Nor-Exos. The proteomics analysis identified 79 proteins with significantly different expression in Hypo-Exos, among which LOXL2 was verified as being upregulated in hypoxia-preconditioned DPSCs, Hypo-Exos, and inflamed dental pulp. Hypo-Exos partially rescued the inhibitory influence of LOXL2 silence on HUVEC tube formation. In conclusion, hypoxia enhanced the angiogenic potential of DPSCs-Exos and partially altered their proteome profile. LOXL2 is likely involved in Hypo-Exos mediated angiogenesis.
Collapse
Affiliation(s)
- Baoyu Li
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Xuehong Xian
- Department of Stomatology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China;
- Foshan Stomatological Hospital, Foshan University, Foshan 528000, China
| | - Xinwei Lin
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Luo Huang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Ailin Liang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Hongwei Jiang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
- Correspondence: (H.J.); (Q.G.)
| | - Qimei Gong
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
- Correspondence: (H.J.); (Q.G.)
| |
Collapse
|
28
|
Carvalho GL, Sarra G, Schröter GT, Silva LSRG, Ariga SKK, Gonçalves F, Caballero-Flores HV, Moreira MS. Pro-angiogenic potential of a functionalized hydrogel scaffold as a secretome delivery platform: An innovative strategy for cell homing-based dental pulp tissue engineering. J Tissue Eng Regen Med 2022; 16:472-483. [PMID: 35244346 DOI: 10.1002/term.3294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 01/03/2023]
Abstract
Angiogenesis is a key process that provides a suitable environment for successful tissue engineering and is even more crucial in regenerative endodontic procedures, since the root canal anatomy limits the development of a vascular network supply. Thus, sustainable and accelerated vascularization of tissue-engineered dental pulp constructs remains a major challenge in cell homing approaches. This study aimed to functionalize a chitosan hydrogel scaffold (CS) as a platform loaded with secretomes of stem cells from human exfoliated deciduous teeth (SHEDs) and evaluate its bioactive function and pro-angiogenic properties. Initially, the CS was loaded with SHED secretomes (CS-S), and the release kinetics of several trophic factors were assessed. Proliferation and chemotaxis assays were performed to analyze the effect of functionalized scaffold on stem cells from apical papilla (SCAPs) and the angiogenic potential was analyzed through the Matrigel tube formation assay with co-cultured of human umbilical vein endothelial cells and SCAPs. SHEDs and SCAPs expressed typical levels of mesenchymal stem cell surface markers. CS-S was able to release the trophic factors in a sustained manner, but each factor has its own release kinetics. The CS-S group showed a significantly higher proliferation rate, accelerated the chemotaxis, and higher capacity to form vascular-like structures. CS-S provided a sustained and controlled release of trophic factors, which, in turn, improved proliferation, chemotaxis and all angiogenesis parameters in the co-culture. Thus, the functionalization of chitosan scaffolds loaded with secretomes is a promising platform for cell homing-based tissue engineering.
Collapse
Affiliation(s)
- Giovanna Lopes Carvalho
- Post-Graduation Program in Dentistry, School of Dentistry, Ibirapuera University, São Paulo, Brazil
| | - Giovanna Sarra
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Suely Kunimi Kubo Ariga
- Department of Clinical Medicine, School of Medicine, Emergency Medicine Laboratory, University of São Paulo, São Paulo, Brazil
| | - Flávia Gonçalves
- Post-Graduation Program in Dentistry, School of Dentistry, Ibirapuera University, São Paulo, Brazil
| | | | - Maria Stella Moreira
- Post-Graduation Program in Dentistry, School of Dentistry, Ibirapuera University, São Paulo, Brazil.,Department of Stomatology, A.C. Camargo Cancer Center, São Paulo, Brazil
| |
Collapse
|
29
|
Zeng J, He K, Mai R, Lin T, Wei R, Nong J, Wu Y. Exosomes from human umbilical cord mesenchymal stem cells and human dental pulp stem cells ameliorate lipopolysaccharide-induced inflammation in human dental pulp stem cells. Arch Oral Biol 2022; 138:105411. [DOI: 10.1016/j.archoralbio.2022.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/02/2022]
|
30
|
Wang D, Lyu Y, Yang Y, Zhang S, Chen G, Pan J, Tian W. Schwann cell-derived EVs facilitate dental pulp regeneration through endogenous stem cell recruitment via SDF-1/CXCR4 axis. Acta Biomater 2022; 140:610-624. [PMID: 34852303 DOI: 10.1016/j.actbio.2021.11.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 02/08/2023]
Abstract
The dental pulp is critical for physiological vitality of the tooth, and dental pulp regeneration has great potential for rebuilding live pulp tissue after pulp disease. Schwann cells (SCs) play a critical role in the support, maintenance, and regeneration of nerve fibers in dental pulp. Extracellular vesicles (EVs), which possess cell homing and tissue repair potential, derived from SCs (SC-EVs), can regulate dental mesenchymal stem cells (MSCs) proliferation, multipotency, and self-renewal. However, the role of SC-EVs in dental pulp tissue regeneration remains unclear. To address this question, we treated dental pulp stem cells (DPSCs) and bone marrow stem cells (BMSCs) with SC-EVs, and the results showed an obvious increase in the proliferation, migration, and osteogenic differentiation of both cell types. SC-EVs also promoted neurite outgrowth and neuron migration of rat dorsal root ganglia, as well as vessel formation in vitro. In an in vivo model of subcutaneous, SC-EVs enhanced the recruitment of endogenous vascular endothelioid-like cells and MSCs, and promoted the formation of a pulpo-dentinal complex-like structure. Finally, mass spectrometry analyses and western blot revealed that stromal cell-derived factor 1 (SDF-1, also known as CXCL12) plays a dominant role in SC-EVs. Together, these data suggest that SC-EVs successfully recruit endogenous stem cells to promote dental pulp regeneration. Our results provide a cell-free strategy for pulp regeneration that avoids the risks associated with stem cell transplantation. STATEMENT OF SIGNIFICANCE: Dental pulp is vulnerable to infections resulting from dental care, trauma, and multiple restorations, with such infections resulting in pulpitis and pulp necrosis. The current endodontic treatment of irreversible pulp disease cannot restore the function of dental pulp and tissue engineering strategies using cell-based approaches are limited by several disadvantages, including immune rejection and limited cell sources. In this study, we found that schwann cells-derived EVs facilitated dental pulp regeneration through endogenous stem cells recruitment via SDF-1/CXCR4 axis without exogenous cell transplantation. We believe that our study makes a significant contribution to describe a cell-free strategy to promote dental pulp regeneration.
Collapse
|
31
|
Diomede F, Fonticoli L, Marconi GD, Della Rocca Y, Rajan TS, Trubiani O, Murmura G, Pizzicannella J. Decellularized Dental Pulp, Extracellular Vesicles, and 5-Azacytidine: A New Tool for Endodontic Regeneration. Biomedicines 2022; 10:biomedicines10020403. [PMID: 35203612 PMCID: PMC8962372 DOI: 10.3390/biomedicines10020403] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 12/29/2022] Open
Abstract
Dental pulp is a major component of the dental body that serves to maintain the tooth life and function. The aim of the present work was to develop a system that functions as a growth-permissive microenvironment for dental pulp regeneration using a decellularized dental pulp (DDP) matrix, 5-Aza-2′-deoxycytidine (5-Aza), and Extracellular Vesicles (EVs) derived from human Dental Pulp Stem Cells (hDPSCs). Human dental pulps extracted from healthy teeth, scheduled to be removed for orthodontic purpose, were decellularized and then recellularized with hDPSCs. The hDPSCs were seeded on DDP and maintained under different culture conditions: basal medium (CTRL), EVs, 5-Aza, and EVs+-5-Aza. Immunofluorescence staining and Western blot analyses were performed to evaluate the proteins’ expression related to dentinogenesis, such as ALP, RUNX2, COL1A1, Vinculin, DMP1, and DSPP. Protein contents found in the DDP recellularized with hDPSCs were highly expressed in samples co-treated with EVs and 5-Aza compared to other culture conditions. This study developed a DDP matrix loaded by hDPSCs in co-treatment with EVs, which might enhance the dentinogenic differentiation with a high potentiality for endodontic regeneration.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (L.F.); (Y.D.R.)
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (L.F.); (Y.D.R.)
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy;
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (L.F.); (Y.D.R.)
| | | | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (L.F.); (Y.D.R.)
- Correspondence: (O.T.); (G.M.)
| | - Giovanna Murmura
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (L.F.); (Y.D.R.)
- Correspondence: (O.T.); (G.M.)
| | | |
Collapse
|
32
|
Liao L, Tian W. Prospect on the application of mesenchymal stem cell-derived extracellular vesicles in the regeneration of dental and maxillofacial tissues. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2022; 40:7-13. [PMID: 38596987 PMCID: PMC8905259 DOI: 10.7518/hxkq.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 11/05/2021] [Indexed: 01/24/2023]
Abstract
Extracellular vesicles (EVs) are the essential mediators of communication between different cells or tissues. EVs participate in the development, homeostasis, repair, and regeneration of tissues. Mesenchymal stem cells(MSCs) secrete a range of bioactive factors, which are important in MSC-mediated tissue regeneration. Great progress has been made in the research of EVs derived from MSCs (MSC-EVs) in the regeneration of dental and maxillofacial tissues. Emerging evidence confirmed that MSC-EVs can efficiently modulate the proliferation, differentiation, survival, and migration of stem or progenitor cells and stimulate the regeneration of the neurovascular system. MSC-EVs have been used in regenerating dental pulp, periodontium, jawbone, temporomandibular joint, and maxillofacial soft tissues. Having the advantages of low immunogenicity, versatile function, and suitability for large-scale production, EVs have excellent clinical application prospect. Along with investigations on molecular mechanisms of action and development of standard manufactory and testing systems, therapies u-sing MSC-EVs are promising strategies for regenerating dental and maxillofacial tissues.
Collapse
Affiliation(s)
- Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine & Dept. of Traumatic and Plastic Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine & Dept. of Traumatic and Plastic Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
33
|
Munoz-Perez E, Gonzalez-Pujana A, Igartua M, Santos-Vizcaino E, Hernandez RM. Mesenchymal Stromal Cell Secretome for the Treatment of Immune-Mediated Inflammatory Diseases: Latest Trends in Isolation, Content Optimization and Delivery Avenues. Pharmaceutics 2021; 13:pharmaceutics13111802. [PMID: 34834217 PMCID: PMC8617629 DOI: 10.3390/pharmaceutics13111802] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Considering the high prevalence and the complex pharmacological management of immune-mediated inflammatory diseases (IMIDs), the search for new therapeutic approaches for their treatment is vital. Although the immunomodulatory and anti-inflammatory effects of mesenchymal stromal cells (MSCs) have been extensively studied as a potential therapy in this field, direct MSC implantation presents some limitations that could slow down the clinical translation. Since the beneficial effects of MSCs have been mainly attributed to their ability to secrete a plethora of bioactive factors, their secretome has been proposed as a new and promising pathway for the treatment of IMIDs. Formed from soluble factors and extracellular vesicles (EVs), the MSC-derived secretome has been proven to elicit immunomodulatory effects that control the inflammatory processes that occur in IMIDs. This article aims to review the available knowledge on the MSC secretome, evaluating the advances in this field in terms of its composition, production and application, as well as analyzing the pending challenges in the field. Moreover, the latest research involving secretome administration in IMIDs is discussed to provide an updated state-of-the-art for this field. Finally, novel secretome delivery alternatives are reviewed, paying special attention to hydrogel encapsulation as one of the most convenient and promising strategies.
Collapse
Affiliation(s)
- Elena Munoz-Perez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
| | - Ainhoa Gonzalez-Pujana
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (E.S.-V.); (R.M.H.)
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (E.S.-V.); (R.M.H.)
| |
Collapse
|
34
|
Cell-Based Transplantation versus Cell Homing Approaches for Pulp-Dentin Complex Regeneration. Stem Cells Int 2021; 2021:8483668. [PMID: 34646323 PMCID: PMC8505125 DOI: 10.1155/2021/8483668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/01/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Regenerative dentistry has paved the way for a new era for the replacement of damaged dental tissues. Whether the causative factor is dental caries, trauma, or chemical insult, the loss of the pulp vitality constitutes one of the major health problems worldwide. Two regenerative therapies were introduced for a fully functional pulp-dentin complex regeneration, namely, cell-based (cell transplantation) and cell homing (through revascularization or homing by injection of stem cells in situ or intravenously) therapies, with each demonstrating advantages as well as drawbacks, especially in clinical application. The present review is aimed at elaborating on these two techniques in the treatment of irreversibly inflamed or necrotic pulp, which is aimed at regenerating a fully functional pulp-dentin complex.
Collapse
|
35
|
Shoushrah SH, Transfeld JL, Tonk CH, Büchner D, Witzleben S, Sieber MA, Schulze M, Tobiasch E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int J Mol Sci 2021; 22:6387. [PMID: 34203719 PMCID: PMC8232184 DOI: 10.3390/ijms22126387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig- Strasse. 20, 53359 Rheinbach, Germany; (S.H.S.); (J.L.T.); (C.H.T.); (D.B.); (S.W.); (M.A.S.); (M.S.)
| |
Collapse
|
36
|
Characteristics, Classification, and Application of Stem Cells Derived from Human Teeth. Stem Cells Int 2021; 2021:8886854. [PMID: 34194509 PMCID: PMC8184333 DOI: 10.1155/2021/8886854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/12/2021] [Accepted: 05/07/2021] [Indexed: 12/31/2022] Open
Abstract
Since mesenchymal stem cells derived from human teeth are characterized as having the properties of excellent proliferation, multilineage differentiation, and immune regulation. Dental stem cells exhibit fibroblast-like microscopic appearance and express mesenchymal markers, embryonic markers, and vascular markers but do not express hematopoietic markers. Dental stem cells are a mixed population with different sensitive markers, characteristics, and therapeutic effects. Single or combined surface markers are not only helpful for understanding the subpopulation of mixed stem cell populations according to cell function but also for improving the stable treatment effect of dental stem cells. Focusing on the discovery and characterization of stem cells isolated from human teeth over the past 20 years, this review outlines the effect of marker sorting on cell proliferation and differentiation ability and the assessment of the clinical application potential. Classified dental stem cells from markers and functional molecules can solve the problem of heterogeneity and ensure the efficacy of cell therapy strategies including dentistry, neurologic diseases, bone repair, and tissue engineering.
Collapse
|
37
|
Huang X, Li Z, Liu A, Liu X, Guo H, Wu M, Yang X, Han B, Xuan K. Microenvironment Influences Odontogenic Mesenchymal Stem Cells Mediated Dental Pulp Regeneration. Front Physiol 2021; 12:656588. [PMID: 33967826 PMCID: PMC8100342 DOI: 10.3389/fphys.2021.656588] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Dental pulp as a source of nutrition for the whole tooth is vulnerable to trauma and bacterial invasion, which causes irreversible pulpitis and pulp necrosis. Dental pulp regeneration is a valuable method of restoring the viability of the dental pulp and even the whole tooth. Odontogenic mesenchymal stem cells (MSCs) residing in the dental pulp environment have been widely used in dental pulp regeneration because of their immense potential to regenerate pulp-like tissue. Furthermore, the regenerative abilities of odontogenic MSCs are easily affected by the microenvironment in which they reside. The natural environment of the dental pulp has been proven to be capable of regulating odontogenic MSC homeostasis, proliferation, and differentiation. Therefore, various approaches have been applied to mimic the natural dental pulp environment to optimize the efficacy of pulp regeneration. In addition, odontogenic MSC aggregates/spheroids similar to the natural dental pulp environment have been shown to regenerate well-organized dental pulp both in preclinical and clinical trials. In this review, we summarize recent progress in odontogenic MSC-mediated pulp regeneration and focus on the effect of the microenvironment surrounding odontogenic MSCs in the achievement of dental pulp regeneration.
Collapse
Affiliation(s)
- Xiaoyao Huang
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Zihan Li
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Anqi Liu
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xuemei Liu
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Hao Guo
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Meiling Wu
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xiaoxue Yang
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Bing Han
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
38
|
Pańczyszyn E, Jaśko M, Miłek O, Niedziela M, Męcik-Kronenberg T, Hoang-Bujnowicz A, Zięba M, Adamus G, Kowalczuk M, Osyczka AM, Tylko G. Gellan gum hydrogels cross-linked with carbodiimide stimulates vacuolation of human tooth-derived stem cells in vitro. Toxicol In Vitro 2021; 73:105111. [PMID: 33588021 DOI: 10.1016/j.tiv.2021.105111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/18/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
The natural polysaccharides are promising compounds for applications in regenerative medicine. Gellan gum (GG) is the bacteria-derived polysaccharide widely used in food industry. Simple modifications of its chemical properties make GG superior for the development of biocompatible hydrogels. Beside reversible cationic integration of GG chains, more efficient binding is accomplished with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). However, the side-products of polymer cross-linking might affect viability and differentiation of stem cells introduced into the hydrogels. We found that O-acylisourea (EDU) stimulates autophagy-based vacuolation in both periodontal ligament and dental pulp stem cells. 24-h treatment of cells with GG extracts cross-linked with 15 mM EDC developed large cytoplasmic vacuoles. Freshly prepared EDU (2-6 mM) but not 15 mM EDC solutions initiated vacuole development with concomitant reduction of cell viability/metabolism. Most of the vacuoles stained with acridine orange displayed highly acidic environment further confirmed by flow cytometric analysis. Western blot of the LC3 autophagy marker followed by a transmission electron microscopy indicated the process is autophagy-dependent. We propose that the high reactivity of EDU with intracellular components initiates autophagy, although the targets of EDU remain unknown. Nevertheless, a burst release of EDU from GG hydrogels might modulate negatively cellular processes and final effectiveness of tissue regeneration.
Collapse
Affiliation(s)
- Elżbieta Pańczyszyn
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Marta Jaśko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Oliwia Miłek
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Matylda Niedziela
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Tomasz Męcik-Kronenberg
- Department of Pathomorphology, Faculty of Medical Sciences, Medical University of Silesia, 3 Maja 13, 41-800 Zabrze, Poland.
| | - Agnieszka Hoang-Bujnowicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Magdalena Zięba
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowskiej 34, 41-819 Zabrze, Poland.
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowskiej 34, 41-819 Zabrze, Poland.
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowskiej 34, 41-819 Zabrze, Poland.
| | - Anna M Osyczka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
39
|
Abbass MMS, El-Rashidy AA, Sadek KM, Moshy SE, Radwan IA, Rady D, Dörfer CE, Fawzy El-Sayed KM. Hydrogels and Dentin-Pulp Complex Regeneration: From the Benchtop to Clinical Translation. Polymers (Basel) 2020; 12:E2935. [PMID: 33316886 PMCID: PMC7763835 DOI: 10.3390/polym12122935] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Dentin-pulp complex is a term which refers to the dental pulp (DP) surrounded by dentin along its peripheries. Dentin and dental pulp are highly specialized tissues, which can be affected by various insults, primarily by dental caries. Regeneration of the dentin-pulp complex is of paramount importance to regain tooth vitality. The regenerative endodontic procedure (REP) is a relatively current approach, which aims to regenerate the dentin-pulp complex through stimulating the differentiation of resident or transplanted stem/progenitor cells. Hydrogel-based scaffolds are a unique category of three dimensional polymeric networks with high water content. They are hydrophilic, biocompatible, with tunable degradation patterns and mechanical properties, in addition to the ability to be loaded with various bioactive molecules. Furthermore, hydrogels have a considerable degree of flexibility and elasticity, mimicking the cell extracellular matrix (ECM), particularly that of the DP. The current review presents how for dentin-pulp complex regeneration, the application of injectable hydrogels combined with stem/progenitor cells could represent a promising approach. According to the source of the polymeric chain forming the hydrogel, they can be classified into natural, synthetic or hybrid hydrogels, combining natural and synthetic ones. Natural polymers are bioactive, highly biocompatible, and biodegradable by naturally occurring enzymes or via hydrolysis. On the other hand, synthetic polymers offer tunable mechanical properties, thermostability and durability as compared to natural hydrogels. Hybrid hydrogels combine the benefits of synthetic and natural polymers. Hydrogels can be biofunctionalized with cell-binding sequences as arginine-glycine-aspartic acid (RGD), can be used for local delivery of bioactive molecules and cellularized with stem cells for dentin-pulp regeneration. Formulating a hydrogel scaffold material fulfilling the required criteria in regenerative endodontics is still an area of active research, which shows promising potential for replacing conventional endodontic treatments in the near future.
Collapse
Affiliation(s)
- Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Aiah A. El-Rashidy
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Khadiga M. Sadek
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Sara El Moshy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Israa Ahmed Radwan
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Dina Rady
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| |
Collapse
|