1
|
Dong L, Lu B, Luo W, Gu X, Wu C, Trotta L, Seppanen M, Zhang Y, Zavialov AV. Intracellular concentration of ADA2 is a marker for monocyte differentiation and activation. Front Med 2025:10.1007/s11684-024-1110-6. [PMID: 39832022 DOI: 10.1007/s11684-024-1110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/18/2024] [Indexed: 01/22/2025]
Abstract
Adenosine, a critical molecule regulating cellular function both inside and outside cells, is controlled by two human adenosine deaminases: ADA1 and ADA2. While ADA1 primarily resides in the cytoplasm, ADA2 can be transported to lysosomes within cells or secreted outside the cell. Patients with ADA2 deficiency (DADA2) often suffer from systemic vasculitis due to elevated levels of TNF-α in their blood. Monocytes from DADA2 patients exhibit excessive TNF-α secretion and differentiate into pro-inflammatory M1-type macrophages. Our findings demonstrate that ADA2 localizes to endolysosomes within macrophages, and its intracellular concentration decreases in cells secreting TNF-α. This suggests that ADA2 may function as a lysosomal adenosine deaminase, regulating TNF-α expression by the cells. Interestingly, pneumonia patients exhibit higher ADA2 concentrations in their bronchoalveolar lavage (BAL), correlating with elevated pro-inflammatory cytokine levels. Conversely, cord blood has low ADA2 levels, creating a more immunosuppressive environment. Additionally, secreted ADA2 can bind to apoptotic cells, activating immune cells by reducing extracellular adenosine levels. These findings imply that ADA2 release from monocytes during inflammation, triggered by growth factors, may be crucial for cell activation. Targeting intracellular and extracellular ADA2 activities could pave the way for novel therapies in inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Liang Dong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Bingtai Lu
- Department of Respiratory Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wenwen Luo
- International Center for Aging and Cancer (ICAC), Hainan Medical University, Haikou, 571199, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaoqiong Gu
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Chengxiang Wu
- Tulane National Primate Research Center, Covington, USA
| | - Luca Trotta
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Mikko Seppanen
- Adult Immunodeficiency Unit, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Rare Diseases Center, Hospital for Children and Adolescents, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Yuxia Zhang
- Department of Respiratory Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, China
| | - Andrey V Zavialov
- International Center for Aging and Cancer (ICAC), Hainan Medical University, Haikou, 571199, China.
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
- Turku Center for Biotechnology, Turku, Finland.
| |
Collapse
|
2
|
Yun YG, Yeo D, Shin SJ, Shin JS, Lee JH, Kim HW. Polydeoxyribonucleotide enhances the bioactivities of stem cells from human exfoliated deciduous teeth through Akt activation. Biochem Biophys Res Commun 2024; 739:150947. [PMID: 39550860 DOI: 10.1016/j.bbrc.2024.150947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/06/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
Although numerous approaches have emerged to address the challenges of critical limb ischemia (CLI), their clinical trials have proven elusive. Stem cell therapy has been utilized for CLI; however, its efficacy is limited, resulting in low survival rates in patients. Here, we investigated the impact of polydeoxyribonucleotide (PDRN) on the bioactivities of stem cells derived from human exfoliated deciduous teeth (SHED) against oxidative stress. PDRN treatment increased the proliferation, migration, antioxidant properties, and mitochondrial respiration of SHED. These beneficial effects were regulated by Akt activation. Through a murine hindlimb ischemia model, PDRN treatment demonstrated augmented the survival and proliferation of transplanted SHED at ischemic injury sites, whereas the inhibition of Akt suppressed these effects. Our findings revealed that PDRN promoted the therapeutic potential of SHED via Akt phosphorylation, suggesting PDRN-primed SHED as promising candidates for the development of novel stem cell therapeutics.
Collapse
Affiliation(s)
- Yeo Gyun Yun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Donghyeon Yeo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Seong-Jin Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Ji-Sun Shin
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea; Department of Pediatric Dentistry, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea.
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
3
|
Pathak S. Induction of Apoptotic Signaling Pathways by 3' methyl ATP in Different Malignant Cells: in vitro Study. Asian Pac J Cancer Prev 2024; 25:2743-2750. [PMID: 39205572 PMCID: PMC11495442 DOI: 10.31557/apjcp.2024.25.8.2743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Indexed: 09/04/2024] Open
Abstract
Extracellular ATP is a dynamic signaling molecule that modulates myriad of cellular functions through P2 purinergic receptors activation and is cytotoxic to a variety of cells at high concentration. But the mechanism of this extracellular ATP/ATP analogs- elicited cytotoxicity is not fully understood. In this study we aim to investigate whether there is differential sensitivity towards induction of apoptosis by ATP analogs (2'-Me ATP and 3'-Me ATP) and its effect on receptor mediated or extrinsic and mitochondria mediated or intrinsic apoptotic signaling pathways. Our findings demonstrated that the IC50 values for 2'-Me ATP and 3'-Me ATP were 3mM and 2mM, respectively, in Hep2, and SiHa cells. The downregulation of anti-apoptotic proteins Bcl-2 and Bcl-xL, along with a significant increase in the expression of the pro-apoptotic protein Bax (p<0.05), indicated the involvement of both pro- and anti-apoptotic factors in HeP2 cells, whereas in SiHa cells, a downregulation of anti-apoptotic proteins Bcl-2 and Bcl-xL was observed, whereas the expression level of the pro-apoptotic protein Bax remained unaffected. Furthermore, an upregulation of p53 and apoptosis-inducing factor (AIF) was observed in HeP2 cells (p<0.05) whereas, an upregulation of p53 was observed while no change was seen on the level of apoptosis inducing factor (AIF) was observed in SiHa cells. Additionally, there was a notable rise in caspase-3 and -9 activities, PARP cleavage, and the release of cytochrome c (p<0.05) from the mitochondria to the cytosol in both cells. Collectively, our study suggests that 3'-Me ATP induces apoptosis in Hep2 and SiHa cells through the intrinsic mitochondrial pathway.
Collapse
Affiliation(s)
- Sujata Pathak
- Preventive Oncology, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
4
|
Wang H, Wei Y, Wang N. Purinergic pathways and their clinical use in the treatment of acute myeloid leukemia. Purinergic Signal 2024:10.1007/s11302-024-09997-8. [PMID: 38446337 DOI: 10.1007/s11302-024-09997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Despite the use of various therapies such as hematopoietic stem cell transplantation and chimeric antigen receptor T cell therapy (CAR-T), the prognosis of patients with acute myeloid leukemia (AML) is still generally poor. However, immunotherapy is currently a hot topic in the treatment of hematological tumors. Extracellular adenosine triphosphate (ATP) can be converted to adenosine diphosphate (ADP) via CD39, and ADP can be converted to adenosine via CD73, which can bind to P1 and P2 receptors to exert immunomodulatory effects. Research on the mechanism of the purinergic signaling pathway can provide a new direction for the treatment of AML, and inhibitors of this signaling pathway have been discovered by several researchers and gradually applied in the clinic. In this paper, the mechanism of the purinergic signaling pathway and its clinical application are described, revealing a new target for the treatment of AML and subsequent improvement in patient prognosis.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yujie Wei
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Na Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Xie D, Wang S, Jiang B, Li G, Wu G. The potential value of the Purinergic pathway in the prognostic assessment and clinical application of kidney renal clear cell carcinoma. Aging (Albany NY) 2024; 16:246-266. [PMID: 38180750 PMCID: PMC10817410 DOI: 10.18632/aging.205364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024]
Abstract
The Purinergic pathway is involved in a variety of important physiological processes in living organisms, and previous studies have shown that aberrant expression of the Purinergic pathway may contribute to the development of a variety of cancers, including kidney renal clear cell carcinoma (KIRC). The aim of this study was to delve into the Purinergic pathway in KIRC and to investigate its potential significance in prognostic assessment and clinical treatment. 33 genes associated with the Purinergic pathway were selected for pan-cancer analysis. Cluster analysis, targeted drug sensitivity analysis and immune cell infiltration analysis were applied to explore the mechanism of Purinergic pathway in KIRC. Using the machine learning process, we found that combining the Lasso+survivalSVM algorithm worked well for predicting survival accuracy in KIRC. We used LASSO regression to pinpoint nine Purinergic genes closely linked to KIRC, using them to create a survival model for KIRC. ROC survival curve was analyzed, and this survival model could effectively predict the survival rate of KIRC patients in the next 5, 7 and 10 years. Further univariate and multivariate Cox regression analyses revealed that age, grading, staging, and risk scores of KIRC patients were significantly associated with their prognostic survival and were identified as independent risk factors for prognosis. The nomogram tool developed through this study can help physicians accurately assess patient prognosis and provide guidance for developing treatment plans. The results of this study may bring new ideas for optimizing the prognostic assessment and therapeutic approaches for KIRC patients.
Collapse
Affiliation(s)
- Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Guandu Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| |
Collapse
|
6
|
Li Y, Liang ZY, Wang HL. N6-methyl-2'-deoxyadenosine promotes self-renewal of BFU-E progenitor in erythropoiesis. iScience 2023; 26:106924. [PMID: 37283807 PMCID: PMC10239700 DOI: 10.1016/j.isci.2023.106924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/08/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
Red blood cells supply the oxygen required for all human cells and are in demand for emerging blood-loss therapy. Here we identified N6-methyl-2'-deoxyadenosine (6mdA) as an agonist that promotes the hyperproliferation of burst-forming unit erythroid (BFU-E) progenitor cells. In addition, 6mdA represses the apoptosis of erythroid progenitor cells (EPCs). Combined use of with SCF and EPO enabled cultures of isolated BFU-E to be expanded up to 5,000-fold. Transcriptome analysis showed that 6mdA upregulates the expression of the EPC-associated factors c-Kit, Myb, and Gata2 and downregulates that of the erythroid maturation-related transcription factors Gata1, Spi1, and Klf1. Mechanistic studies suggested that 6mdA enhances and prolongs the activation of erythropoiesis-associated master gene c-Kit and its downstream signaling, leading to expansion and accumulation of EPCs. Collectively, we demonstrate that 6mdA can efficiently stimulate the EPC hyperproliferation and provide a new regenerative medicine recipe to improve ex vivo generation of red blood cells.
Collapse
Affiliation(s)
- Yao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Yu Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Lin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| |
Collapse
|
7
|
Zhu N, Liu R, Xu MH, Li Y. Neuroprotective Actions of Different Exogenous Nucleotides in H 2O 2-Induced Cell Death in PC-12 Cells. Molecules 2023; 28:molecules28031226. [PMID: 36770893 PMCID: PMC9920452 DOI: 10.3390/molecules28031226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Exogenous nucleotides (NTs) are considered conditionally essential nutrients, and the brain cannot synthesize NTs de novo. Therefore, the external supplementation of exogenous NTs is of great significance for maintaining normal neuronal metabolism and function under certain conditions, such as brain aging. This study, therefore, sets out to assess the neuroprotective effect of four kinds of single exogenous NTs and a mixture of the NTs, and to elucidate the potential mechanism. A rat pheochromocytoma cell line PC-12 was treated with different concentrations of exogenous NTs after 4 h of exposure to 200 µM H2O2. We found that the exogenous NTs exerted significant neuroprotection through decreasing neuron apoptosis and DNA damage, ameliorating inflammation and mitochondrial dysfunction, promoting cell viability, and augmenting antioxidant activity, and that they tended to up-regulate the NAD+/SIRTI/PGC-1α pathway involved in mitochondrial biogenesis. Among the different NTs, the neuroprotective effect of AMP seemed to be more prominent, followed by the NT mixture, NMN, and CMP. AMP also exhibited the strongest antioxidant activity in H2O2-treated PC-12 cells. UMP was excellent at inhibiting neuronal inflammation and improving mitochondrial function, while GMP offered major advantages in stabilizing mitochondrial membrane potential. The mixture of NTs had a slightly better performance than NMN, especially in up-modulating the NAD+/SIRTI/PGC-1α pathway, which regulates mitochondrial biogenesis. These results suggest that antioxidant activity, anti-inflammatory activity, and protection of mitochondrial function are possible mechanisms of the neuroprotective actions of exogenous NTs, and that the optimization of the mixture ratio and the concentration of NTs may achieve a better outcome.
Collapse
Affiliation(s)
- Na Zhu
- Department of Nutrition and Food Hygiene, College of Public Health, Inner Mongolia Medical University, Hohhot 010059, China
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Riu Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Mei-Hong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
- Correspondence: ; Tel.: +86-10-8280-1177
| |
Collapse
|
8
|
Kaur J, Dora S. Purinergic signaling: Diverse effects and therapeutic potential in cancer. Front Oncol 2023; 13:1058371. [PMID: 36741002 PMCID: PMC9889871 DOI: 10.3389/fonc.2023.1058371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Regardless of improved biological insights and therapeutic advances, cancer is consuming multiple lives worldwide. Cancer is a complex disease with diverse cellular, metabolic, and physiological parameters as its hallmarks. This instigates a need to uncover the latest therapeutic targets to advance the treatment of cancer patients. Purines are building blocks of nucleic acids but also function as metabolic intermediates and messengers, as part of a signaling pathway known as purinergic signaling. Purinergic signaling comprises primarily adenosine triphosphate (ATP) and adenosine (ADO), their analogous membrane receptors, and a set of ectonucleotidases, and has both short- and long-term (trophic) effects. Cells release ATP and ADO to modulate cellular function in an autocrine or paracrine manner by activating membrane-localized purinergic receptors (purinoceptors, P1 and P2). P1 receptors are selective for ADO and have four recognized subtypes-A1, A2A, A2B, and A3. Purines and pyrimidines activate P2 receptors, and the P2X subtype is ligand-gated ion channel receptors. P2X has seven subtypes (P2X1-7) and forms homo- and heterotrimers. The P2Y subtype is a G protein-coupled receptor with eight subtypes (P2Y1/2/4/6/11/12/13/14). ATP, its derivatives, and purinoceptors are widely distributed in all cell types for cellular communication, and any imbalance compromises the homeostasis of the cell. Neurotransmission, neuromodulation, and secretion employ fast purinergic signaling, while trophic purinergic signaling regulates cell metabolism, proliferation, differentiation, survival, migration, invasion, and immune response during tumor progression. Thus, purinergic signaling is a prospective therapeutic target in cancer and therapy resistance.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanchit Dora
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
9
|
Brum da Silva Nunes V, Kehl Dias C, Nathali Scholl J, Nedel Sant'Ana A, de Fraga Dias A, Granero Farias M, Alegretti AP, Sosnoski M, Esteves Daudt L, Bohns Michalowski M, Oliveira Battastini AM, Paz AA, Figueiró F. Lymphocytes from B-acute lymphoblastic leukemia patients present differential regulation of the adenosinergic axis depending on risk stratification. Discov Oncol 2022; 13:143. [PMID: 36581667 PMCID: PMC9800668 DOI: 10.1007/s12672-022-00602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Although risk-stratified chemotherapy regimens improve B-cell acute lymphoblastic leukemia (B-ALL) clinical outcome, relapse occurs in a significant number of cases. The identification of new therapeutic targets as well as prognostic and diagnostic biomarkers can improve B-ALL patients' clinical outcomes. Purinergic signaling is an important pathway in cancer progression, however the expression of ectonucleotidases and their impact on immune cells in B-ALL lacks exploration. We aimed to analyze the expression of ectonucleotidases in B-ALL patients' lymphocyte subpopulations. METHODS Peripheral blood samples from 15 patients diagnosed with B-ALL were analyzed. Flow cytometry was used to analyze cellularity, expression level of CD38, CD39, and CD73, and frequency of [Formula: see text], and [Formula: see text] in lymphocyte subpopulations. Plasma was used for cytokines (by CBA kit) and adenine nucleosides/nucleotides detection (by HPLC). RESULTS Comparing B-ALL patients to health donors, we observed an increase of CD4 + and CD8 + T-cells. In addition, a decrease in CD38 expression in B and Treg subpopulations and an increase in CD39+ CD73+ frequency in Breg and CD8+ T-cells. Analyzing cytokines and adenine nucleosides/nucleotides, we found a decrease in TNF, IL-1β, and ADO concentrations, together with an increase in AMP in B-ALL patients' plasma. CONCLUSION As immunomodulators, the expression of ectonucleotidases might be associated with activation states, as well as the abundance of different cellular subsets. We observed a pro-tumor immunity expression profile in B-ALL patients at diagnosis, being associated with cell exhaustion and immune evasion in B-ALL.
Collapse
Affiliation(s)
- Vitória Brum da Silva Nunes
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Camila Kehl Dias
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Juliete Nathali Scholl
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Alexia Nedel Sant'Ana
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Amanda de Fraga Dias
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | | | - Ana Paula Alegretti
- Hospital de Clínicas de Porto Alegre/HCPA, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Monalisa Sosnoski
- Hospital de Clínicas de Porto Alegre/HCPA, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Liane Esteves Daudt
- Hospital de Clínicas de Porto Alegre/HCPA, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Mariana Bohns Michalowski
- Hospital de Clínicas de Porto Alegre/HCPA, Porto Alegre, RS, CEP 90035-903, Brazil
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, UFRGS, Porto Alegre, RS, 90035-003, Brazil
| | - Ana Maria Oliveira Battastini
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | | | - Fabrício Figueiró
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil.
| |
Collapse
|
10
|
Ye M, Chen Y, Wang Y, Xiao L, Lin Q, Lin H, Duan Z, Feng S, Cao Y, Zhang J, Li J, Hu J. Subtype discrimination of acute myeloid leukemia based on plasma SERS technique. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120865. [PMID: 35063821 DOI: 10.1016/j.saa.2022.120865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Acute myeloid leukemia (AML) is a common hematologic malignancy. To this day, diagnose of AML and its genetic mutation still rely on invasive and time-consuming methods. In this study, 222 plasma samples were collected to discuss the performance of surface-enhanced Raman spectroscopy (SERS) to discriminate AML subtype acute promyelocytic leukemia and acute monocytic leukemia based on plasma. The Ag nanoparticles-based SERS technique was used to explore the biochemical differences among different AML subtypes. With the help of powerful supervised and unsupervised algorithms, the performance using the whole spectra and band intensities was confirmed to identify different subtypes of AML. The results demonstrated the intensities of several bands and band-intensity ratios were significantly different between groups, thus related to the discrimination of several AML subtypes and control. Combining indexes of band-intensity ratios, the result of multi-indexes ROC has excellent performance in differentiating AML patient with healthy control. Our work demonstrated the great potential of SERS technique as a rapid and micro detection method in clinical laboratory field, it's a new and powerful tool for analyzing human blood plasma.
Collapse
Affiliation(s)
- Minlu Ye
- Department of Laboratory Medicine, the School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350004, China
| | - Yang Chen
- Department of Laboratory Medicine, the School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350004, China; Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Yuting Wang
- Department of Laboratory Medicine, the School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350004, China
| | - Lijing Xiao
- Department of Laboratory Medicine, the School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350004, China
| | - Qiu Lin
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Hongyue Lin
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Zhengwei Duan
- Department of Laboratory Medicine, the School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350004, China
| | - Shangyuan Feng
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| | - Jingxi Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Jinggang Li
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Jianda Hu
- Department of Laboratory Medicine, the School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350004, China; Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
11
|
Gentile C, Finizio A, Froechlich G, D’Alise AM, Cotugno G, Amiranda S, Nicosia A, Scarselli E, Zambrano N, Sasso E. Generation of a Retargeted Oncolytic Herpes Virus Encoding Adenosine Deaminase for Tumor Adenosine Clearance. Int J Mol Sci 2021; 22:ijms222413521. [PMID: 34948316 PMCID: PMC8705735 DOI: 10.3390/ijms222413521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Oncolytic viruses are immunotherapeutic agents that can be engineered to encode payloads of interest within the tumor microenvironment to enhance therapeutic efficacy. Their therapeutic potential could be limited by many avenues for immune evasion exerted by the tumor. One such is mediated by adenosine, which induces pleiotropic immunosuppression by inhibiting antitumor immune populations as well as activating tolerogenic stimuli. Adenosine is produced starting from the highly immunostimulatory ATP, which is progressively hydrolyzed to ADP and adenosine by CD39 and CD73. Cancer cells express high levels of CD39 and CD73 ectoenzymes, thus converting immunostimulatory purinergic signal of ATP into an immunosuppressive signal. For this reason, CD39, CD73 and adenosine receptors are currently investigated in clinical trials as targets for metabolic cancer immunotherapy. This is of particular relevance in the context of oncovirotherapy, as immunogenic cell death induced by oncolytic viruses causes the secretion of a high amount of ATP which is available to be quickly converted into adenosine. Methods: Here, we took advantage of adenosine deaminase enzyme that naturally converts adenosine into the corresponding inosine derivative, devoid of immunoregulatory function. We encoded ADA into an oncolytic targeted herpes virus redirected to human HER2. An engineered ADA with an ectopic signal peptide was also generated to improve enzyme secretion (ADA-SP). Results: Insertion of the expression cassette was not detrimental for viral yield and cancer cell cytotoxicity. The THV_ADA and THV_ADA-SP successfully mediated the secretion of functional ADA enzyme. In in vitro model of human monocytes THP1, this ability of THV_ADA and THV_ADA-SP resulted in the retrieval of eADO-exposed monocytes replication rate, suggesting the proficiency of the viruses in rescuing the immune function. Conclusions: Encoding ADA into oncolytic viruses revealed promising properties for preclinical exploitation.
Collapse
Affiliation(s)
- Chiara Gentile
- CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145 Naples, Italy; (C.G.); (A.F.); (G.F.); (S.A.); (A.N.); (N.Z.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Arianna Finizio
- CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145 Naples, Italy; (C.G.); (A.F.); (G.F.); (S.A.); (A.N.); (N.Z.)
| | - Guendalina Froechlich
- CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145 Naples, Italy; (C.G.); (A.F.); (G.F.); (S.A.); (A.N.); (N.Z.)
| | - Anna Morena D’Alise
- Nouscom S.R.L., Via di Castel Romano 100, 00128 Rome, Italy; (A.M.D.); (G.C.); (E.S.)
| | - Gabriella Cotugno
- Nouscom S.R.L., Via di Castel Romano 100, 00128 Rome, Italy; (A.M.D.); (G.C.); (E.S.)
| | - Sara Amiranda
- CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145 Naples, Italy; (C.G.); (A.F.); (G.F.); (S.A.); (A.N.); (N.Z.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Alfredo Nicosia
- CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145 Naples, Italy; (C.G.); (A.F.); (G.F.); (S.A.); (A.N.); (N.Z.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Elisa Scarselli
- Nouscom S.R.L., Via di Castel Romano 100, 00128 Rome, Italy; (A.M.D.); (G.C.); (E.S.)
| | - Nicola Zambrano
- CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145 Naples, Italy; (C.G.); (A.F.); (G.F.); (S.A.); (A.N.); (N.Z.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Emanuele Sasso
- CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145 Naples, Italy; (C.G.); (A.F.); (G.F.); (S.A.); (A.N.); (N.Z.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|