1
|
Liu Z, Tang R, Qi Q, Lin S, Liu P, Cai G, Zheng Z, Guo X, Gao X. Naringenin alleviates heat stress-induced liver injury in Ningdu yellow chickens by decreasing RIPK3 and PDC binding. J Nutr Biochem 2025; 140:109894. [PMID: 40054672 DOI: 10.1016/j.jnutbio.2025.109894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/08/2025] [Accepted: 03/03/2025] [Indexed: 03/30/2025]
Abstract
Naringenin, a flavonoid extract, possesses anti-inflammatory, antioxidant, hepatoprotective, antitumor, and antineurotoxic properties. This study investigated the antiheat stress effects in broilers by adding 200mg/kg naringenin to the diet of Ningdu yellow chicken under heat stress conditions. Heat stress conditions was controlled at 37±2°C (7:00 a.m.-7:00 p.m.) and 24±2°C (7:00 p.m.-7:00 a.m.) at humidity maintained at 60-65%. The results suggest that naringenin elevated the body weight and the ratio of liver mass to weight of Ningdu yellow chicken significantly. Additionally, naringenin significantly reduces heat stress level, improves liver function and antioxidant capacity. Meanwhile, the levels of necroptosis indexes (CYLD, RIPK1, RIPK3 and MLKL) and oxidative stress indexes (PDC, PYGL, GLUL and GLUD1) are downregulated by naringenin. Naringenin mitigated liver damage by decreasing inflammatory indexes caused by heat stress, including NF-κB, IL-1β, IL-18 and HMGB1. This anti-inflammatory effect arose through the downlink binding of the necroptosis index (RIPK3) and the oxidative stress index (PDC) as shown in results of fluorescence co-localization and co-immunoprecipitation. The use of naringenin in poultry may be a possible feed additive to address clinical heat stress.
Collapse
Affiliation(s)
- Zhenni Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Ruoyun Tang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Qiurong Qi
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Siting Lin
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Gaofeng Cai
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Zhanhong Zheng
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China.
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
2
|
Fernandez R, Colás-Ruiz NR, Lara-Martín PA, Fernández-Cisnal R, Hampel M. Proteomic analysis in the brain and liver of sea bream (Sparus aurata) exposed to the antibiotics ciprofloxacin, sulfadiazine, and trimethoprim. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124308. [PMID: 38844040 DOI: 10.1016/j.envpol.2024.124308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Antibiotics, frequently detected in aquatic ecosystems, can negatively impact the health of resident organisms. Although the study on the possible effects of antibiotics on these organisms has been increasing, there is still little information available on the molecular effects on exposed non-target organisms. In our study we used a label free proteomic approach and sea bream, Sparus aurata, to evaluate the effects of exposure to environmentally relevant concentrations of the antibiotic compounds ciprofloxacin (CIP), sulfadiazine (SULF) and trimethoprim (TRIM) produced at the protein level. Individuals of sea bream were exposed to single compounds at 5.2 ± 2.1 μg L-1 of CIP, 3.8 ± 2.7 μg L-1 of SULF and 25.7 ± 10.8 μg L-1 of TRIM for 21 days. After exposure, the number of differentially expressed proteins in the liver was 39, 73 and 4 for CIP, SULF and TRIM respectively. In the brain, there was no alteration of proteins after CIP and TRIM treatment, while 9 proteins were impacted after SULF treatment. The differentially expressed proteins were involved in cellular biological, metabolic, developmental, growth and biological regulatory processes. Overall, our study evidences the vulnerability of Sparus aurata, after exposure to environmentally relevant concentrations of the major antibiotics CIP, SULF and TRIM and that their chronic exposure could lead to a stress situation, altering the proteomic profile of key organs such as brain and liver.
Collapse
Affiliation(s)
- Ronield Fernandez
- Microbiology Research Laboratory, University Simon Bolivar, Carrera 59 No. 59-65, Barranquilla, Colombia; Center for Research and Innovation in Biodiversity and Climate Change (ADAPTIA), University Simón Bolívar, Barranquilla 59-65, Colombia.
| | - Nieves R Colás-Ruiz
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510, Puerto Real, Spain
| | - Pablo A Lara-Martín
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510, Puerto Real, Spain
| | - Ricardo Fernández-Cisnal
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus Universitario de Rabanales, 14071, Córdoba, Spain
| | - Miriam Hampel
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510, Puerto Real, Spain
| |
Collapse
|
3
|
Costanzo M, Cevenini A, Kollipara L, Caterino M, Bianco S, Pirozzi F, Scerra G, D'Agostino M, Pavone LM, Sickmann A, Ruoppolo M. Methylmalonic acidemia triggers lysosomal-autophagy dysfunctions. Cell Biosci 2024; 14:63. [PMID: 38760822 PMCID: PMC11102240 DOI: 10.1186/s13578-024-01245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Methylmalonic acidemia (MMA) is a rare inborn error of propionate metabolism caused by deficiency of the mitochondrial methylmalonyl-CoA mutase (MUT) enzyme. As matter of fact, MMA patients manifest impairment of the primary metabolic network with profound damages that involve several cell components, many of which have not been discovered yet. We employed cellular models and patients-derived fibroblasts to refine and uncover new pathologic mechanisms connected with MUT deficiency through the combination of multi-proteomics and bioinformatics approaches. RESULTS Our data show that MUT deficiency is connected with profound proteome dysregulations, revealing molecular actors involved in lysosome and autophagy functioning. To elucidate the effects of defective MUT on lysosomal and autophagy regulation, we analyzed the morphology and functionality of MMA-lysosomes that showed deep alterations, thus corroborating omics data. Lysosomes of MMA cells present as enlarged vacuoles with low degradative capabilities. Notwithstanding, treatment with an anti-propionigenic drug is capable of totally rescuing lysosomal morphology and functional activity in MUT-deficient cells. These results indicate a strict connection between MUT deficiency and lysosomal-autophagy dysfunction, providing promising therapeutic perspectives for MMA. CONCLUSIONS Defective homeostatic mechanisms in the regulation of autophagy and lysosome functions have been demonstrated in MUT-deficient cells. Our data prove that MMA triggers such dysfunctions impacting on autophagosome-lysosome fusion and lysosomal activity.
Collapse
Affiliation(s)
- Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy.
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
| | - Armando Cevenini
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | | | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Sabrina Bianco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Francesca Pirozzi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
- Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy.
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
| |
Collapse
|
4
|
Alves-Vale C, Capela AM, Tavares-Marcos C, Domingues-Silva B, Pereira B, Santos F, Gomes CP, Espadas G, Vitorino R, Sabidó E, Borralho P, Nóbrega-Pereira S, Bernardes de Jesus B. Expression of NORAD correlates with breast cancer aggressiveness and protects breast cancer cells from chemotherapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:910-924. [PMID: 37680988 PMCID: PMC10480464 DOI: 10.1016/j.omtn.2023.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023]
Abstract
The recently discovered human lncRNA NORAD is induced after DNA damage in a p53-dependent manner. It plays a critical role in the maintenance of genomic stability through interaction with Pumilio proteins, limiting the repression of their target mRNAs. Therefore, NORAD inactivation causes chromosomal instability and aneuploidy, which contributes to the accumulation of genetic abnormalities and tumorigenesis. NORAD has been detected in several types of cancer, including breast cancer, which is the most frequently diagnosed and the second-leading cause of cancer death in women. In the present study, we confirmed upregulated NORAD expression levels in a set of human epithelial breast cancer cell lines (MDA-MB-231, MDA-MB-436, and MDA-MB-468), which belong to the most aggressive subtypes (triple-negative breast cancer). These results are in line with previous data showing that high NORAD expression levels in basal-like tumors were associated with poor prognosis. Here, we demonstrate that NORAD downregulation sensitizes triple-negative breast cancer cells to chemotherapy, through a potential accumulation of genomic aberrations and an impaired capacity to signal DNA damage. These results show that NORAD may represent an unexploited neoadjuvant therapeutic target for chemotherapy-unresponsive breast cancer.
Collapse
Affiliation(s)
- Catarina Alves-Vale
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Hospital CUF Descobertas, CUF Oncologia, 1998-018 Lisbon, Portugal
| | - Ana Maria Capela
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlota Tavares-Marcos
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Beatriz Domingues-Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Bruno Pereira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Francisco Santos
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Pereira Gomes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Guadalupe Espadas
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Rui Vitorino
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduard Sabidó
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Paula Borralho
- Hospital CUF Descobertas, CUF Oncologia, 1998-018 Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sandrina Nóbrega-Pereira
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Zhou L, Bai X, Huang J, Tan Y, Yang Q. Vitamin B12 supplementation improves cognitive function in middle aged and elderly patients with cognitive impairment. NUTR HOSP 2023; 40:724-731. [PMID: 37334792 DOI: 10.20960/nh.04394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Introduction Objectives: to determine the effects of vitamin B12 supplementation on neuropsychological function and disease progression in middle aged and elderly patients with cognitive impairment. Methods: this was a prospective case-control study. From May 2020 to May 2021, 307 participants clinically diagnosed with cognitive impairment in the Department of Neurology of the First Affiliated Hospital of Chongqing Medical University were enrolled. A total of 115 patients were included in this study. Meanwhile, 115 participants with cognitive impairment were randomly assigned in equal proportions to two groups: vitamin B12 treatment group (n = 58, vitamin B12 500 mg/d intramuscularly for seven days, followed by cobamamide 0.25 mg/d and methylcobalamin 0.50 mg/d) and the control group (n = 57). Demographic characteristics and blood biochemical variables were obtained from all participants. Cognitive performance was measured using the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Cognitive performance was measured at baseline and after six months. Results: the vitamin B12 supplementation treatment patients who presented with cognitive impairment showed significant improvement, especially in attention, calculation (p < 0.01) and visual-constructional ability (p < 0.05), in their neuropsychological function compared to their matched group. Conclusion: vitamin B12 supplementation may improve frontal function in patients with cognitive decline. Vitamin B12 levels should be investigated in all patients with cognitive impairment.
Collapse
Affiliation(s)
- Li Zhou
- Department of Neurology. The First Affiliated Hospital of Chongqing Medical University
| | - Xue Bai
- Department of Neurology. The First People's Hospital of Neijiang
| | - Jiagui Huang
- Department of Neurology. The First Affiliated Hospital of Chongqing Medical University
| | - Yongjun Tan
- Department of Neurology. The First Affiliated Hospital of Chongqing Medical University
| | - Qin Yang
- Department of Neurology. The First Affiliated Hospital of Chongqing Medical University
| |
Collapse
|
6
|
Walter Bock K. Aryl hydrocarbon receptor (AHR): towards understanding intestinal microbial ligands including vitamin B12 and folic acid as natural antagonists. Biochem Pharmacol 2023:115658. [PMID: 37336251 DOI: 10.1016/j.bcp.2023.115658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
AHR has been identified as ligand-modulated transcription factor and environmental sensor. However, explanation of its multiple agonistic and antagonistic ligands is far from complete. Studies of AHR's role in host-microbiome interaction are currently a fruitful area of research. Microbial products and virulence factors have been identified as AHR agonists. In steady state they are involved in safeguarding intestinal barrier integrity. When virulence factors from pathogenic bacteria are identified by AHR of intestinal immune cells, anti-microbial defense mechanisms are activated by generating reactive oxygen species (ROS) in intestinal epithelial cells and recruited immune cells. ROS production has to be strictly controlled, and anti-inflammatory responses have to be initiated timely in the resolution phase of inflammation to avoid tissue damage and chronic inflammatory responses. Surprisingly, bacteria-generated vitamin B12/cobalamin and vitamin B9/folic acid have been identified as natural AHR antagonists, stimulating the interest of biochemists. Hints for AHR-cobalamin antagonism are pointing to cobalamin-dependent enzymes leading to alterations of TCA cycle intermediates, and TCDD-mediated loss of serum cobalamin. Although we are still at the beginning to understand mechanisms, it is likely that scientific efforts are on a rewarding path to understand novel AHR functions.
Collapse
Affiliation(s)
- Karl Walter Bock
- Institute of Experimental and Clinical Pharmacology, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|
7
|
Martinelli D, Catesini G, Greco B, Guarnera A, Parrillo C, Maines E, Longo D, Napolitano A, De Nictolis F, Cairoli S, Liccardo D, Caviglia S, Sidorina A, Olivieri G, Siri B, Bianchi R, Spagnoletti G, Dello Strologo L, Spada M, Dionisi-Vici C. Neurologic outcome following liver transplantation for methylmalonic aciduria. J Inherit Metab Dis 2023; 46:450-465. [PMID: 36861405 DOI: 10.1002/jimd.12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Liver and liver/kidney transplantation are increasingly used in methylmalonic aciduria, but little is known on their impact on CNS. The effect of transplantation on neurological outcome was prospectively assessed in six patients pre- and post-transplant by clinical evaluation and by measuring disease biomarkers in plasma and CSF, in combination with psychometric tests and brain MRI studies. Primary (methylmalonic- and methylcitric acid) and secondary biomarkers (glycine and glutamine) significantly improved in plasma, while they remained unchanged in CSF. Differently, biomarkers of mitochondrial dysfunction (lactate, alanine, and related ratios) significantly decreased in CSF. Neurocognitive evaluation documented significant higher post-transplant developmental/cognitive scores and maturation of executive functions corresponding to improvement of brain atrophy, cortical thickness, and white matter maturation indexes at MRI. Three patients presented post-transplantation reversible neurological events, which were differentiated, by means of biochemical and neuroradiological evaluations, into calcineurin inhibitor-induced neurotoxicity and metabolic stroke-like episode. Our study shows that transplantation has a beneficial impact on neurological outcome in methylmalonic aciduria. Early transplantation is recommended due to the high risk of long-term complications, high disease burden, and low quality of life.
Collapse
Affiliation(s)
- Diego Martinelli
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Giulio Catesini
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Benedetta Greco
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
- Clinical Psychology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessia Guarnera
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Parrillo
- Medical Physics Unit, Risk Management Enterprise, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Evelina Maines
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
- Pediatric Department, S.Chiara Hospital of Trento, Trento, Italy
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Napolitano
- Medical Physics Unit, Risk Management Enterprise, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca De Nictolis
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Sara Cairoli
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Daniela Liccardo
- Division of Hepatology, Gastroenterology and Nutrition, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefania Caviglia
- Clinical Psychology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Sidorina
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Giorgia Olivieri
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Barbara Siri
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Roberto Bianchi
- Department of Anesthesiology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gionata Spagnoletti
- Unit of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luca Dello Strologo
- Renal Transplant Unit, Bambino Gesù, Children's Hospital, IRCCS, Rome, Italy
| | - Marco Spada
- Unit of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
8
|
Santorelli L, Caterino M, Costanzo M. Dynamic Interactomics by Cross-Linking Mass Spectrometry: Mapping the Daily Cell Life in Postgenomic Era. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:633-649. [PMID: 36445175 DOI: 10.1089/omi.2022.0137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The majority of processes that occur in daily cell life are modulated by hundreds to thousands of dynamic protein-protein interactions (PPI). The resulting protein complexes constitute a tangled network that, with its continuous remodeling, builds up highly organized functional units. Thus, defining the dynamic interactome of one or more proteins allows determining the full range of biological activities these proteins are capable of. This conceptual approach is poised to gain further traction and significance in the current postgenomic era wherein the treatment of severe diseases needs to be tackled at both genomic and PPI levels. This also holds true for COVID-19, a multisystemic disease affecting biological networks across the biological hierarchy from genome to proteome to metabolome. In this overarching context and the current historical moment of the COVID-19 pandemic where systems biology increasingly comes to the fore, cross-linking mass spectrometry (XL-MS) has become highly relevant, emerging as a powerful tool for PPI discovery and characterization. This expert review highlights the advanced XL-MS approaches that provide in vivo insights into the three-dimensional protein complexes, overcoming the static nature of common interactomics data and embracing the dynamics of the cell proteome landscape. Many XL-MS applications based on the use of diverse cross-linkers, MS detection methods, and predictive bioinformatic tools for single proteins or proteome-wide interactions were shown. We conclude with a future outlook on XL-MS applications in the field of structural proteomics and ways to sustain the remarkable flexibility of XL-MS for dynamic interactomics and structural studies in systems biology and planetary health.
Collapse
Affiliation(s)
- Lucia Santorelli
- Department of Oncology and Hematology-Oncology, University of Milano, Milan, Italy.,IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| |
Collapse
|
9
|
Unsal Y, Yurdakok M, Yigit S, Celik HT, Dursun A, Sivri HS, Tokatli A, Coskun T. Organic acidemias in the neonatal period: 30 years of experience in a referral center for inborn errors of metabolism. J Pediatr Endocrinol Metab 2022; 35:1345-1356. [PMID: 36203204 DOI: 10.1515/jpem-2021-0780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 09/15/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Neonatal-onset organic acidemias (OAs) account for 80% of neonatal intensive care unit (NICU) admissions due to inborn errors of metabolism. The aim of this study is to analyze clinical features and follow-up of neonates diagnosed with OAs in a metabolic referral center, focusing on perinatal characteristics and the impact of first the metabolic crisis on long-term outcome. METHODS Perinatal features, clinical and laboratory characteristics on admission and follow-up of 108 neonates diagnosed with OAs were retrospectively analyzed. Global developmental delay, abnormal electroencephalogram (EEG) or brain magnetic resonance imaging (MRI), chronic complications, and overall mortality. Associations between clinical findings on admission and outcome measures were evaluated. RESULTS Most prevalent OA was maple syrup urine disease (MSUD) (34.3%). Neonates with methylmalonic acidemia (MMA) had significantly lower birth weight (p<0.001). Metabolic acidosis with increased anion gap was more frequent in MMA and propionic acidemia (PA) (p=0.003). 89.1% of OAs were admitted for recurrent metabolic crisis. 46% had chronic non-neurologic complications; 19.3% of MMA had chronic kidney disease. Abnormal findings were present in 26/34 of EEG, 19/29 of MRI studies, and 32/33 of developmental screening tests. Metabolic acidosis on admission was associated with increased incidence of abnormal EEG (p=0.005) and overall mortality (p<0.001). Severe hyperammonemia in MMA was associated with overall mortality (33.3%) (p=0.047). Patients diagnosed between 2007-2017 had lower overall mortality compared to earlier years (p<0.001). CONCLUSIONS Metabolic acidosis and hyperammonemia are emerging predictors of poor outcome and mortality. Based on a large number of infants from a single center, survival in neonatal-onset OA has increased over the course of 30 years, but long-term complications and neurodevelopmental results remain similar. While prompt onset of more effective treatment may improve survival, newer treatment modalities are urgently needed for prevention and treatment of chronic complications.
Collapse
Affiliation(s)
- Yagmur Unsal
- Division of Pediatric Endocrinology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Murat Yurdakok
- Division of Neonatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sule Yigit
- Division of Neonatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Hasan Tolga Celik
- Division of Neonatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ali Dursun
- Division of Pediatric Metabolism, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Hatice Serap Sivri
- Division of Pediatric Metabolism, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Aysegul Tokatli
- Division of Pediatric Metabolism, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Turgay Coskun
- Division of Pediatric Metabolism, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
10
|
Ramon C, Traversi F, Bürer C, Froese DS, Stelling J. Cellular and computational models reveal environmental and metabolic interactions in MMUT-type methylmalonic aciduria. J Inherit Metab Dis 2022; 46:421-435. [PMID: 36371683 DOI: 10.1002/jimd.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022]
Abstract
Methylmalonyl-coenzyme A (CoA) mutase (MMUT)-type methylmalonic aciduria is a rare inherited metabolic disease caused by the loss of function of the MMUT enzyme. Patients develop symptoms resembling those of primary mitochondrial disorders, but the underlying causes of mitochondrial dysfunction remain unclear. Here, we examined environmental and genetic interactions in MMUT deficiency using a combination of computational modeling and cellular models to decipher pathways interacting with MMUT. Immortalized fibroblast (hTERT BJ5ta) MMUT-KO (MUTKO) clones displayed a mild mitochondrial impairment in standard glucose-based medium, but they did not to show increased reliance on respiratory metabolism nor reduced growth or viability. Consistently, our modeling predicted MUTKO specific growth phenotypes only for lower extracellular glutamine concentrations. Indeed, two of three MMUT-deficient BJ5ta cell lines showed a reduced viability in glutamine-free medium. Further, growth on 183 different carbon and nitrogen substrates identified increased NADH (nicotinamide adenine dinucleotide) metabolism of BJ5ta and HEK293 MUTKO cells compared with controls on purine- and glutamine-based substrates. With this knowledge, our modeling predicted 13 reactions interacting with MMUT that potentiate an effect on growth, primarily those of secondary oxidation of propionyl-CoA, oxidative phosphorylation and oxygen diffusion. Of these, we validated 3-hydroxyisobutytyl-CoA hydrolase (HIBCH) in the secondary propionyl-CoA oxidation pathway. Altogether, these results suggest compensation for the loss of MMUT function by increasing anaplerosis through glutamine or by diverting flux away from MMUT through the secondary propionyl-CoA oxidation pathway, which may have therapeutic relevance.
Collapse
Affiliation(s)
- Charlotte Ramon
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| | - Florian Traversi
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Céline Bürer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| |
Collapse
|
11
|
Multi-Omics Studies Unveil Extraciliary Functions of BBS10 and Show Metabolic Aberrations Underlying Renal Disease in Bardet-Biedl Syndrome. Int J Mol Sci 2022; 23:ijms23169420. [PMID: 36012682 PMCID: PMC9409368 DOI: 10.3390/ijms23169420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/13/2022] Open
Abstract
Bardet–Biedl syndrome (BBS) is a rare autosomal recessive ciliopathy resulting in multiple organ dysfunctions, including chronic kidney disease (CKD). Despite the recent progress in the ’ciliopathy’ field, there is still little information on the mechanisms underlying renal disease. To elucidate these pathomechanisms, we conducted a translational study, including (i) the characterization of the urine metabolomic pattern of BBS patients and controls in a pilot and confirmation study and (ii) the proteomic analysis of the BBS10 interactome, one of the major mutated BBS genes in patients, in a renal-epithelial-derived cell culture model. The urine metabolomic fingerprinting of BBS patients differed from controls in both pilot and confirmation studies, demonstrating an increased urinary excretion of several monocarboxylates, including lactic acid (LA), at both early and late CKD stages. Increased urine LA was detected in the absence of both increased plasmatic LA levels and generalized proximal tubular dysfunction, suggesting a possible renal-specific defective handling. The inner medulla renal epithelial (IMCD3) cell line, where Bbs10 was stably invalidated, displayed an increased proliferative rate, increased ATP production, and an up-regulation of aerobic glycolysis. A mass spectrometry-based analysis detected several putative BBS10 interactors in vitro, indicating a potential role of BBS10 in several biological processes, including renal metabolism, RNA processing, and cell proliferation. The present study suggests that the urine metabolomic pattern of BBS patients may reflect intra-renal metabolic aberrations. The analysis of BBS10 interactors unveils possible novel functions, including cell metabolism.
Collapse
|
12
|
Duong VA, Park JM, Lee H. A review of suspension trapping digestion method in bottom-up proteomics. J Sep Sci 2022; 45:3150-3168. [PMID: 35770343 DOI: 10.1002/jssc.202200297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/05/2022]
Abstract
The standard bottom-up proteomic workflow is comprised of sample preparation, data acquisition, and data analysis. While the latter two parts have made considerable advances in the last decade, sample preparation has remained an important challenge within the workflow due to the multi-step nature of complex biological samples, and still requires much development. Several sample preparation methods have been developed and used in the last two decades, including in-gel, in-solution, on-bead, filter-aided sample preparation, and suspension trapping, to improve reproducibility, efficiency, scalability, and reduce handling time of this process. One of the most recent methods developed and applied in proteomics studies in recent years is suspension trapping, which combines rapid detergent removal, reactor-type protein digestion, and peptide clean-up in a tip or spin column. Suspension trapping is a simple, rapid, and reproducible digestion method that can effectively handle proteins in low microgram or sub-microgram amounts. This review discusses the benefits of the suspension trapping digestion method in relation to its development and application in bottom-up proteomics studies. We also discuss recent applications of suspension trapping digestion to different sample types and the features of the suspension trapping digestion method compared with other sample preparation methods. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Van-An Duong
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| | - Jong-Moon Park
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| | - Hookeun Lee
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| |
Collapse
|
13
|
Costanzo M, Caterino M, Sotgiu G, Ruoppolo M, Franconi F, Campesi I. Sex differences in the human metabolome. Biol Sex Differ 2022; 13:30. [PMID: 35706042 PMCID: PMC9199320 DOI: 10.1186/s13293-022-00440-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/02/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The sexual dimorphism represents one of the triggers of the metabolic disparities between the organisms, advising about wild implications in research or diagnostics contexts. Despite the mounting recognition of the importance of sex consideration in the biomedical fields, the identification of male- and female-specific metabolic signatures has not been achieved. MAIN BODY This review pointed the focus on the metabolic differences related to the sex, evidenced by metabolomics studies performed on healthy populations, with the leading aim of understanding how the sex influences the baseline metabolome. The main shared signatures and the apparent dissimilarities between males and females were extracted and highlighted from the metabolome of the most commonly analyzed biological fluids, such as serum, plasma, and urine. Furthermore, the influence of age and the significant interactions between sex and age have been taken into account. CONCLUSIONS The recognition of sex patterns in human metabolomics has been defined in diverse biofluids. The detection of sex- and age-related differences in the metabolome of healthy individuals are helpful for translational applications from the bench to the bedside to set targeted diagnostic and prevention approaches in the context of personalized medicine.
Collapse
Affiliation(s)
- Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
- CEINGE – Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
- CEINGE – Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
- CEINGE – Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy
| | - Flavia Franconi
- Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy
| | - Ilaria Campesi
- Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
14
|
Lee N, Kim D. Toxic Metabolites and Inborn Errors of Amino Acid Metabolism: What One Informs about the Other. Metabolites 2022; 12:metabo12060527. [PMID: 35736461 PMCID: PMC9231173 DOI: 10.3390/metabo12060527] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Abstract
In inborn errors of metabolism, such as amino acid breakdown disorders, loss of function mutations in metabolic enzymes within the catabolism pathway lead to an accumulation of the catabolic intermediate that is the substrate of the mutated enzyme. In patients of such disorders, dietarily restricting the amino acid(s) to prevent the formation of these catabolic intermediates has a therapeutic or even entirely preventative effect. This demonstrates that the pathology is due to a toxic accumulation of enzyme substrates rather than the loss of downstream products. Here, we provide an overview of amino acid metabolic disorders from the perspective of the ‘toxic metabolites’ themselves, including their mechanism of toxicity and whether they are involved in the pathology of other disease contexts as well. In the research literature, there is often evidence that such metabolites play a contributing role in multiple other nonhereditary (and more common) disease conditions, and these studies can provide important mechanistic insights into understanding the metabolite-induced pathology of the inborn disorder. Furthermore, therapeutic strategies developed for the inborn disorder may be applicable to these nonhereditary disease conditions, as they involve the same toxic metabolite. We provide an in-depth illustration of this cross-informing concept in two metabolic disorders, methylmalonic acidemia and hyperammonemia, where the pathological metabolites methylmalonic acid and ammonia are implicated in other disease contexts, such as aging, neurodegeneration, and cancer, and thus there are opportunities to apply mechanistic or therapeutic insights from one disease context towards the other. Additionally, we expand our scope to other metabolic disorders, such as homocystinuria and nonketotic hyperglycinemia, to propose how these concepts can be applied broadly across different inborn errors of metabolism and various nonhereditary disease conditions.
Collapse
|
15
|
Drongitis D, Caterino M, Verrillo L, Santonicola P, Costanzo M, Poeta L, Attianese B, Barra A, Terrone G, Lioi MB, Paladino S, Di Schiavi E, Costa V, Ruoppolo M, Miano MG. Deregulation of microtubule organization and RNA metabolism in Arx models for lissencephaly and developmental epileptic encephalopathy. Hum Mol Genet 2022; 31:1884-1908. [PMID: 35094084 PMCID: PMC9169459 DOI: 10.1093/hmg/ddac028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
X-linked lissencephaly with abnormal genitalia (XLAG) and developmental epileptic encephalopathy-1 (DEE1) are caused by mutations in the Aristaless-related homeobox (ARX) gene, which encodes a transcription factor responsible for brain development. It has been unknown whether the phenotypically diverse XLAG and DEE1 phenotypes may converge on shared pathways. To address this question, a label-free quantitative proteomic approach was applied to the neonatal brain of Arx knockout (ArxKO/Y) and knock-in polyalanine (Arx(GCG)7/Y) mice that are respectively models for XLAG and DEE1. Gene ontology and protein-protein interaction analysis revealed that cytoskeleton, protein synthesis and splicing control are deregulated in an allelic-dependent manner. Decreased α-tubulin content was observed both in Arx mice and Arx/alr-1(KO) Caenorhabditis elegans ,and a disorganized neurite network in murine primary neurons was consistent with an allelic-dependent secondary tubulinopathy. As distinct features of Arx(GCG)7/Y mice, we detected eIF4A2 overexpression and translational suppression in cortex and primary neurons. Allelic-dependent differences were also established in alternative splicing (AS) regulated by PUF60 and SAM68. Abnormal AS repertoires in Neurexin-1, a gene encoding multiple pre-synaptic organizers implicated in synaptic remodelling, were detected in Arx/alr-1(KO) animals and in Arx(GCG)7/Y epileptogenic brain areas and depolarized cortical neurons. Consistent with a conserved role of ARX in modulating AS, we propose that the allelic-dependent secondary synaptopathy results from an aberrant Neurexin-1 repertoire. Overall, our data reveal alterations mirroring the overlapping and variant effects caused by null and polyalanine expanded mutations in ARX. The identification of these effects can aid in the design of pathway-guided therapy for ARX endophenotypes and NDDs with overlapping comorbidities.
Collapse
Affiliation(s)
- Denise Drongitis
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Lucia Verrillo
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Pamela Santonicola
- Institute of Biosciences and BioResources, National Research Council of Italy, 80131, Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Loredana Poeta
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Benedetta Attianese
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Adriano Barra
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Gaetano Terrone
- Department of Translational Medicine, Child Neurology Unit, University of Naples “Federico II”, 80131 Naples, Italy
| | | | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council of Italy, 80131, Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| |
Collapse
|
16
|
Waisbren SE. Review of neuropsychological outcomes in isolated methylmalonic acidemia: recommendations for assessing impact of treatments. Metab Brain Dis 2022; 37:1317-1335. [PMID: 35348993 DOI: 10.1007/s11011-022-00954-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/09/2022] [Indexed: 11/29/2022]
Abstract
Methylmalonic acidemia (MMA) due to methylmalonyl-CoA mutase deficiency (OMIM #251,000) is an autosomal recessive disorder of organic acid metabolism associated with life-threatening acute metabolic decompensations and significant neuropsychological deficits. "Isolated" MMA refers to the presence of excess methylmalonic acid without homocysteine elevation. Belonging to this class of disorders are those that involve complete deficiency (mut0) and partial deficiency (mut-) of the methylmalonyl-CoA mutase enzyme and other disorders causing excess methylmalonic acid excretion. These other disorders include enzymatic subtypes related to cobalamin A defect (cblA) (OMIM #25,110), cobalamin B defect (cblB) (OMIM #251,110) and related conditions. Neuropsychological attributes associated with isolated MMA have become more relevant as survival rates increased following improved diagnostic and treatment strategies. Children with this disorder still are at risk for developmental delay, cognitive difficulties and progressive declines in functioning. Mean IQ for all types apart from cblA defect enzymatic subtype is rarely above 85 and much lower for mut0 enzymatic subtype. Identifying psychological domains responsive to improvements in biochemical status is important. This review suggests that processing speed, working memory, language, attention, and quality of life may be sensitive to fluctuations in metabolite levels while IQ and motor skills may be less amenable to change. Due to slower developmental trajectories, Growth Scale Values, Projected Retained Ability Scores and other indices of change need to be incorporated into clinical trial study protocols. Neuropsychologists are uniquely qualified to provide a differentiated picture of cognitive, behavioral and emotional consequences of MMA and analyze benefits or shortcomings of novel treatments.
Collapse
Affiliation(s)
- Susan E Waisbren
- Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Briso-Montiano Á, Vilas A, Richard E, Ruiz-Sala P, Morato E, Desviat LR, Ugarte M, Rodríguez-Pombo P, Pérez B. Hepatocyte-like cells differentiated from methylmalonic aciduria cblB type induced pluripotent stem cells: A platform for the evaluation of pharmacochaperoning. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166433. [PMID: 35569737 DOI: 10.1016/j.bbadis.2022.166433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022]
Abstract
Methylmalonic aciduria cblB type (MMA cblB type, MMAB OMIM #251110), caused by a deficiency in the enzyme ATP:cob(I)alamin adenosyltransferase (ATR, E.C_2. 5.1.17), is a severe metabolic disorder with a poor prognosis despite treatment. We recently described the potential therapeutic use of pharmacological chaperones (PCs) after increasing the residual activity of ATR in patient-derived fibroblasts. The present work reports the successful generation of hepatocyte-like cells (HLCs) differentiated from two healthy and two MMAB induced pluripotent stem cell (iPSC) lines, and the use of this platform for testing the effects of PCs. The MMAB cells produced little ATR, showed reduced residual ATR activity, and had higher concentrations of methylmalonic acid compared to healthy HLCs. Differential proteome analysis revealed the two MMAB HCLs to show reproducible differentiation, but this was not so for the healthy HLCs. Interestingly, PC treatment in combination with vitamin B12 increased the amount of ATR available, and subsequently ATR activity, in both MMAB HLCs. More importantly, the treatment significantly reduced the methylmalonic acid content of both. In summary, the HLC model would appear to be an excellent candidate for the pharmacological testing of the described PCs, for analyzing the effects of new drugs, and investigating the repurposing of older drugs, before testing in animal models.
Collapse
Affiliation(s)
- Á Briso-Montiano
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Biología Molecular "Severo Ochoa" UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), ISCIII, Madrid, Spain.
| | - A Vilas
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Biología Molecular "Severo Ochoa" UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), ISCIII, Madrid, Spain.
| | - E Richard
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Biología Molecular "Severo Ochoa" UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), ISCIII, Madrid, Spain.
| | - P Ruiz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Biología Molecular "Severo Ochoa" UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), ISCIII, Madrid, Spain.
| | - E Morato
- Centro de Biología Molecular "Severo Ochoa" UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - L R Desviat
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Biología Molecular "Severo Ochoa" UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), ISCIII, Madrid, Spain.
| | - M Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Biología Molecular "Severo Ochoa" UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), ISCIII, Madrid, Spain.
| | - P Rodríguez-Pombo
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Biología Molecular "Severo Ochoa" UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), ISCIII, Madrid, Spain.
| | - B Pérez
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Biología Molecular "Severo Ochoa" UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), ISCIII, Madrid, Spain.
| |
Collapse
|
18
|
Abstract
Fluorescence microscopy has represented a crucial technique to explore the cellular and molecular mechanisms in the field of biomedicine. However, the conventional one-photon microscopy exhibits many limitations when living samples are imaged. The new technologies, including two-photon microscopy (2PM), have considerably improved the in vivo study of pathophysiological processes, allowing the investigators to overcome the limits displayed by previous techniques. 2PM enables the real-time intravital imaging of the biological functions in different organs at cellular and subcellular resolution thanks to its improved laser penetration and less phototoxicity. The development of more sensitive detectors and long-wavelength fluorescent dyes as well as the implementation of semi-automatic software for data analysis allowed to gain insights in essential physiological functions, expanding the frontiers of cellular and molecular imaging. The future applications of 2PM are promising to push the intravital microscopy beyond the existing limits. In this review, we provide an overview of the current state-of-the-art methods of intravital microscopy, focusing on the most recent applications of 2PM in kidney physiology.
Collapse
|
19
|
Costanzo M, Caterino M, Salvatori I, Manganelli V, Ferri A, Misasi R, Ruoppolo M. Proteome data of neuroblastoma cells overexpressing Neuroglobin. Data Brief 2022; 41:107843. [PMID: 35128003 PMCID: PMC8800053 DOI: 10.1016/j.dib.2022.107843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
In this article, we present data on the proteome of human neuroblastoma cells stably overexpressing Neuroglobin (NGB). The neuroprotective role of NGB is clearly established, nevertheless the related mechanistic processes, which are dependent on NGB overexpression, are not known. To address this question, we performed shotgun label-free quantification (LFQ) proteomics using an SH-SY5Y cell model of neuroblastoma that overexpresses an NGB-FLAG construct, and wild type cells transfected with an empty vector as control (CTRL). The proteomes from six biological samples per condition were digested using the S-Trap sample preparation followed by LC-MS/MS analysis with a LTQ-Orbitrap XL mass spectrometer. The quantitative analysis was performed using the LFQ algorithm of MaxQuant, leading to 1654 correctly quantified proteins over 2580 identified proteins. Finally, the statistic comparison of the two analyzed groups within Perseus platform identified 178 differential proteins (107 up- and 71 down-regulated). In addition, multivariate statistical analysis was carried out using MetaboAnalyst 5.0 software. MS proteomics data are available via ProteomeXchange with the dataset identifier PXD029012.
Collapse
Affiliation(s)
- Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
- CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples 80145, Italy
- Corresponding author at: Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy.
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
- CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples 80145, Italy
| | | | - Valeria Manganelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome 00161, Italy
| | - Alberto Ferri
- Fondazione Santa Lucia IRCCS, c/o CERC, Rome 00143, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome 00161, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
- CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples 80145, Italy
| |
Collapse
|
20
|
Costanzo M, Caterino M, Fedele R, Cevenini A, Pontillo M, Barra L, Ruoppolo M. COVIDomics: The Proteomic and Metabolomic Signatures of COVID-19. Int J Mol Sci 2022; 23:ijms23052414. [PMID: 35269564 PMCID: PMC8910221 DOI: 10.3390/ijms23052414] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Omics-based technologies have been largely adopted during this unprecedented global COVID-19 pandemic, allowing the scientific community to perform research on a large scale to understand the pathobiology of the SARS-CoV-2 infection and its replication into human cells. The application of omics techniques has been addressed to every level of application, from the detection of mutations, methods of diagnosis or monitoring, drug target discovery, and vaccine generation, to the basic definition of the pathophysiological processes and the biochemical mechanisms behind the infection and spread of SARS-CoV-2. Thus, the term COVIDomics wants to include those efforts provided by omics-scale investigations with application to the current COVID-19 research. This review summarizes the diverse pieces of knowledge acquired with the application of COVIDomics techniques, with the main focus on proteomics and metabolomics studies, in order to capture a common signature in terms of proteins, metabolites, and pathways dysregulated in COVID-19 disease. Exploring the multiomics perspective and the concurrent data integration may provide new suitable therapeutic solutions to combat the COVID-19 pandemic.
Collapse
Affiliation(s)
- Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.C.); (M.C.); (A.C.)
- CEINGE–Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy; (R.F.); (M.P.); (L.B.)
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.C.); (M.C.); (A.C.)
- CEINGE–Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy; (R.F.); (M.P.); (L.B.)
| | - Roberta Fedele
- CEINGE–Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy; (R.F.); (M.P.); (L.B.)
| | - Armando Cevenini
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.C.); (M.C.); (A.C.)
- CEINGE–Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy; (R.F.); (M.P.); (L.B.)
| | - Mariarca Pontillo
- CEINGE–Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy; (R.F.); (M.P.); (L.B.)
| | - Lucia Barra
- CEINGE–Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy; (R.F.); (M.P.); (L.B.)
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.C.); (M.C.); (A.C.)
- CEINGE–Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy; (R.F.); (M.P.); (L.B.)
- Correspondence:
| |
Collapse
|
21
|
Tolou-Ghamari Z, Palizban AA. Biomarkers, Biocatalysts, or Pathology Conditions to Evaluate Potential History of Liver Disease such as Cancer. CLINICAL CANCER INVESTIGATION JOURNAL 2022. [DOI: 10.51847/cagjahyb9e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Overexpression of Neuroglobin Promotes Energy Metabolism and Autophagy Induction in Human Neuroblastoma SH-SY5Y Cells. Cells 2021; 10:cells10123394. [PMID: 34943907 PMCID: PMC8699457 DOI: 10.3390/cells10123394] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023] Open
Abstract
Neuroglobin (NGB) is an O2-binding globin mainly expressed in the central and peripheral nervous systems and cerebrospinal fluid. Previously, it was demonstrated that NGB overexpression protects cells from hypoxia-induced death. To investigate processes promoted by NGB overexpression, we used a cellular model of neuroblastoma stably overexpressing an NGB-FLAG construct. We used a proteomic approach to identify the specific profile following NGB overexpression. To evaluate the role of NGB overexpression in increasing energetic metabolism, we measured oxygen consumption rate (OCR) and the extracellular acidification rate through Seahorse XF technology. The effect on autophagy induction was evaluated by analyzing SQSTM1/p62 and LC3-II expression. Proteomic analysis revealed several differentially regulated proteins, involved in oxidative phosphorylation and integral mitochondrial proteins linked to energy metabolism. The analysis of mitochondrial metabolism demonstrated that NGB overexpression increases mitochondrial ATP production. Indeed, NGB overexpression enhances bioenergetic metabolism, increasing OCR and oxygen consumption. Analysis of autophagy induction revealed an increase of LC3-II together with a significant decrease of SQSTM1/p62, and NGB-LC3-II association during autophagosome formation. These results highlight the active participation of NGB in several cellular processes that can be upregulated in response to NGB overexpression, playing a role in the adaptive response to stress in neuroblastoma cells.
Collapse
|
23
|
Single-Cell Multiomics Analysis for Drug Discovery. Metabolites 2021; 11:metabo11110729. [PMID: 34822387 PMCID: PMC8623556 DOI: 10.3390/metabo11110729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 02/02/2023] Open
Abstract
Given the heterogeneity seen in cell populations within biological systems, analysis of single cells is necessary for studying mechanisms that cannot be identified on a bulk population level. There are significant variations in the biological and physiological function of cell populations due to the functional differences within, as well as between, single species as a result of the specific proteome, transcriptome, and metabolome that are unique to each individual cell. Single-cell analysis proves crucial in providing a comprehensive understanding of the biological and physiological properties underlying human health and disease. Omics technologies can help to examine proteins (proteomics), RNA molecules (transcriptomics), and the chemical processes involving metabolites (metabolomics) in cells, in addition to genomes. In this review, we discuss the value of multiomics in drug discovery and the importance of single-cell multiomics measurements. We will provide examples of the benefits of applying single-cell omics technologies in drug discovery and development. Moreover, we intend to show how multiomics offers the opportunity to understand the detailed events which produce or prevent disease, and ways in which the separate omics disciplines complement each other to build a broader, deeper knowledge base.
Collapse
|
24
|
Supruniuk E, Żebrowska E, Chabowski A. Branched chain amino acids-friend or foe in the control of energy substrate turnover and insulin sensitivity? Crit Rev Food Sci Nutr 2021; 63:2559-2597. [PMID: 34542351 DOI: 10.1080/10408398.2021.1977910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Branched chain amino acids (BCAA) and their derivatives are bioactive molecules with pleiotropic functions in the human body. Elevated fasting blood BCAA concentrations are considered as a metabolic hallmark of obesity, insulin resistance, dyslipidaemia, nonalcoholic fatty liver disease, type 2 diabetes and cardiovascular disease. However, since increased BCAA amount is observed both in metabolically healthy and obese subjects, a question whether BCAA are mechanistic drivers of insulin resistance and its morbidities or only markers of metabolic dysregulation, still remains open. The beneficial effects of BCAA on body weight and composition, aerobic capacity, insulin secretion and sensitivity demand high catabolic potential toward amino acids and/or adequate BCAA intake. On the opposite, BCAA-related inhibition of lipogenesis and lipolysis enhancement may preclude impairment in insulin sensitivity. Thereby, the following review addresses various strategies pertaining to the modulation of BCAA catabolism and the possible roles of BCAA in energy homeostasis. We also aim to elucidate mechanisms behind the heterogeneity of ramifications associated with BCAA modulation.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
25
|
Caterino M, Costanzo M, Fedele R, Cevenini A, Gelzo M, Di Minno A, Andolfo I, Capasso M, Russo R, Annunziata A, Calabrese C, Fiorentino G, D’Abbraccio M, Dell’Isola C, Fusco FM, Parrella R, Fabbrocini G, Gentile I, Castaldo G, Ruoppolo M. The Serum Metabolome of Moderate and Severe COVID-19 Patients Reflects Possible Liver Alterations Involving Carbon and Nitrogen Metabolism. Int J Mol Sci 2021; 22:9548. [PMID: 34502454 PMCID: PMC8431319 DOI: 10.3390/ijms22179548] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is a global threat that has spread since the end of 2019, causing severe clinical sequelae and deaths, in the context of a world pandemic. The infection of the highly pathogenetic and infectious SARS-CoV-2 coronavirus has been proven to exert systemic effects impacting the metabolism. Yet, the metabolic pathways involved in the pathophysiology and progression of COVID-19 are still unclear. Here, we present the results of a mass spectrometry-based targeted metabolomic analysis on a cohort of 52 hospitalized COVID-19 patients, classified according to disease severity as mild, moderate, and severe. Our analysis defines a clear signature of COVID-19 that includes increased serum levels of lactic acid in all the forms of the disease. Pathway analysis revealed dysregulation of energy production and amino acid metabolism. Globally, the variations found in the serum metabolome of COVID-19 patients may reflect a more complex systemic perturbation induced by SARS-CoV-2, possibly affecting carbon and nitrogen liver metabolism.
Collapse
Affiliation(s)
- Marianna Caterino
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Michele Costanzo
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Roberta Fedele
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
| | - Armando Cevenini
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Monica Gelzo
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Alessandro Di Minno
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
- Dipartimento di Farmacia, Università Degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Immacolata Andolfo
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Mario Capasso
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Roberta Russo
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Anna Annunziata
- Fisiopatologia e Riabilitazione Respiratoria-1 Utsir COVID, Azienda Ospedaliera Specialistica dei Colli-Napoli, 80137 Napoli, Italy; (A.A.); (G.F.)
| | - Cecilia Calabrese
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Napoli, Italy;
| | - Giuseppe Fiorentino
- Fisiopatologia e Riabilitazione Respiratoria-1 Utsir COVID, Azienda Ospedaliera Specialistica dei Colli-Napoli, 80137 Napoli, Italy; (A.A.); (G.F.)
| | - Maurizio D’Abbraccio
- COVID Unit—Azienda Ospedaliera Specialistica dei Colli—Napoli, Dipartimento di Malattie Infettive ed Urgenze Infettivologiche, 80137 Napoli, Italy; (M.D.); (C.D.); (F.M.F.); (R.P.)
| | - Chiara Dell’Isola
- COVID Unit—Azienda Ospedaliera Specialistica dei Colli—Napoli, Dipartimento di Malattie Infettive ed Urgenze Infettivologiche, 80137 Napoli, Italy; (M.D.); (C.D.); (F.M.F.); (R.P.)
| | - Francesco Maria Fusco
- COVID Unit—Azienda Ospedaliera Specialistica dei Colli—Napoli, Dipartimento di Malattie Infettive ed Urgenze Infettivologiche, 80137 Napoli, Italy; (M.D.); (C.D.); (F.M.F.); (R.P.)
| | - Roberto Parrella
- COVID Unit—Azienda Ospedaliera Specialistica dei Colli—Napoli, Dipartimento di Malattie Infettive ed Urgenze Infettivologiche, 80137 Napoli, Italy; (M.D.); (C.D.); (F.M.F.); (R.P.)
| | - Gabriella Fabbrocini
- Dipartimento di Medicina Clinica e Chirurgica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (G.F.); (I.G.)
| | - Ivan Gentile
- Dipartimento di Medicina Clinica e Chirurgica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (G.F.); (I.G.)
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Margherita Ruoppolo
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Napoli, Italy; (M.C.); (M.C.); (R.F.); (A.C.); (M.G.); (A.D.M.); (I.A.); (M.C.); (R.R.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| |
Collapse
|
26
|
da Costa RT, dos Santos MB, Silva ICS, de Almeida RP, Teruel MS, Carrettiero DC, Ribeiro CAJ. Methylmalonic Acid Compromises Respiration and Reduces the Expression of Differentiation Markers of SH-SY5Y Human Neuroblastoma Cells. ACS Chem Neurosci 2021; 12:2608-2618. [PMID: 34191487 DOI: 10.1021/acschemneuro.1c00119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Methylmalonic acidemia is a rare metabolic disorder caused by the deficient activity of l-methylmalonyl-CoA mutase or its cofactor 5-deoxyadenosylcobalamin and is characterized by accumulation of methylmalonic acid (MMA) and alternative metabolites. The brain is one of the most affected tissues and neurologic symptoms, characterized by seizures, mental retardation, psychomotor abnormalities, and coma, commonly appear in newborns. The molecular mechanisms of neuropathogenesis in methylmalonic acidemia are still poorly understood, specifically regarding the impairments in neuronal development, maturation, and differentiation. In this study, we investigated the effects of MMA in both undifferentiated and differentiated phenotypes of SH-SY5Y human neuroblastoma cells. We observed an increase in glucose consumption and reduction in respiratory parameters of both undifferentiated and differentiated cells after exposition to MMA, suggesting that differentiated cells are slightly more prone to perturbations in respiratory parameters by MMA than undifferentiated cells. Next, we performed qPCR of mature neuronal-specific gene markers and measured mitochondrial functioning to evaluate the role of MMA during differentiation. Our results showed that MMA impairs the respiratory parameters only at the late stage of differentiation and downregulates the transcriptional gene profile of mature neuronal markers neuron-specific enolase (ENO2) and synaptophysin (SYP). Altogether, our findings point out important changes observed during neuronal maturation and energetic stress vulnerability that can play a role in the neurological clinical symptoms at the newborn period and reveal important molecular mechanisms that could help the screening of targets to new approaches in the therapies of this disease.
Collapse
Affiliation(s)
- Renata T. da Costa
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - Marcella B. dos Santos
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - Izabel C. S. Silva
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - Raquel P. de Almeida
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - Marcela S. Teruel
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - Daniel C. Carrettiero
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - César A. J. Ribeiro
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| |
Collapse
|
27
|
Gonzalez Melo M, Remacle N, Cudré-Cung HP, Roux C, Poms M, Cudalbu C, Barroso M, Gersting SW, Feichtinger RG, Mayr JA, Costanzo M, Caterino M, Ruoppolo M, Rüfenacht V, Häberle J, Braissant O, Ballhausen D. The first knock-in rat model for glutaric aciduria type I allows further insights into pathophysiology in brain and periphery. Mol Genet Metab 2021; 133:157-181. [PMID: 33965309 DOI: 10.1016/j.ymgme.2021.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023]
Abstract
Glutaric aciduria type I (GA-I, OMIM # 231670) is an inborn error of metabolism caused by a deficiency of glutaryl-CoA dehydrogenase (GCDH). Patients develop acute encephalopathic crises (AEC) with striatal injury most often triggered by catabolic stress. The pathophysiology of GA-I, particularly in brain, is still not fully understood. We generated the first knock-in rat model for GA-I by introduction of the mutation p.R411W, the rat sequence homologue of the most common Caucasian mutation p.R402W, into the Gcdh gene of Sprague Dawley rats by CRISPR/CAS9 technology. Homozygous Gcdhki/ki rats revealed a high excretor phenotype, but did not present any signs of AEC under normal diet (ND). Exposure to a high lysine diet (HLD, 4.7%) after weaning resulted in clinical and biochemical signs of AEC. A significant increase of plasmatic ammonium concentrations was found in Gcdhki/ki rats under HLD, accompanied by a decrease of urea concentrations and a concomitant increase of arginine excretion. This might indicate an inhibition of the urea cycle. Gcdhki/ki rats exposed to HLD showed highly diminished food intake resulting in severely decreased weight gain and moderate reduction of body mass index (BMI). This constellation suggests a loss of appetite. Under HLD, pipecolic acid increased significantly in cerebral and extra-cerebral liquids and tissues of Gcdhki/ki rats, but not in WT rats. It seems that Gcdhki/ki rats under HLD activate the pipecolate pathway for lysine degradation. Gcdhki/ki rat brains revealed depletion of free carnitine, microglial activation, astroglyosis, astrocytic death by apoptosis, increased vacuole numbers, impaired OXPHOS activities and neuronal damage. Under HLD, Gcdhki/ki rats showed imbalance of intra- and extracellular creatine concentrations and indirect signs of an intracerebral ammonium accumulation. We successfully created the first rat model for GA-I. Characterization of this Gcdhki/ki strain confirmed that it is a suitable model not only for the study of pathophysiological processes, but also for the development of new therapeutic interventions. We further brought up interesting new insights into the pathophysiology of GA-I in brain and periphery.
Collapse
Affiliation(s)
- Mary Gonzalez Melo
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Noémie Remacle
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland
| | - Hong-Phuc Cudré-Cung
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland
| | - Clothilde Roux
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Martin Poms
- Klinische Chemie und Biochemie Universitäts-Kinderspital Zürich, Switzerland.
| | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Madalena Barroso
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Søren Waldemar Gersting
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - René Günther Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Johannes Adalbert Mayr
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Véronique Rüfenacht
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| | - Olivier Braissant
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Diana Ballhausen
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland.
| |
Collapse
|
28
|
Costanzo M, De Giglio MAR, Roviello GN. Anti-Coronavirus Vaccines: Past Investigations on SARS-CoV-1 and MERS-CoV, the Approved Vaccines from BioNTech/Pfizer, Moderna, Oxford/AstraZeneca and others under Development Against SARS-CoV-2 Infection. Curr Med Chem 2021; 29:4-18. [PMID: 34355678 DOI: 10.2174/0929867328666210521164809] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 11/22/2022]
Abstract
The aim of this review article is to summarize the knowledge available to date on prophylaxis achievements to fight against Coronavirus. This work will give an overview of what is reported in the most recent literature on vaccines (under investigation or already developed like BNT162b2, mRNA-1273, and ChAdOx1-S) effective against the most pathogenic Coronaviruses (SARS-CoV-1, MERS-CoV-1, and SARS-CoV-2), with of course particular attention paid to those under development or already in use to combat the current COVID-19 (COronaVIrus Disease 19) pandemic. Our main objective is to make a contribution to the comprehension, additionally at a molecular level, of what is currently ready for anti-SARS-CoV-2 prophylactic intervention, as well as to provide the reader with an overall picture of the most innovative approaches for the development of vaccines that could be of general utility in the fight against the most pathogenic Coronaviruses.
Collapse
Affiliation(s)
- Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples 'Federico II', Via S. Pansini 5, I-80131 Naples, Italy
| | | | - Giovanni N Roviello
- Istituto di Biostrutture e Bioimmagini IBB - CNR, Via Mezzocannone 16; I-80134 Naples, Italy
| |
Collapse
|
29
|
Costanzo M, Fiocchetti M, Ascenzi P, Marino M, Caterino M, Ruoppolo M. Proteomic and Bioinformatic Investigation of Altered Pathways in Neuroglobin-Deficient Breast Cancer Cells. Molecules 2021; 26:molecules26082397. [PMID: 33924212 PMCID: PMC8074618 DOI: 10.3390/molecules26082397] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/18/2022] Open
Abstract
Neuroglobin (NGB) is a myoglobin-like monomeric globin that is involved in several processes, displaying a pivotal redox-dependent protective role in neuronal and extra-neuronal cells. NGB remarkably exerts its function upon upregulation by NGB inducers, such as 17β-estradiol (E2) and H2O2. However, the molecular bases of NGB’s functions remain undefined, mainly in non-neuronal cancer cells. Human MCF-7 breast cancer cells with a knocked-out (KO) NGB gene obtained using CRISPR/Cas9 technology were analyzed using shotgun label-free quantitative proteomics in comparison with control cells. The differential proteomics experiments were also performed after treatment with E2, H2O2, and E2 + H2O2. All the runs acquired using liquid chromatography–tandem mass spectrometry were elaborated within the same MaxQuant analysis, leading to the quantification of 1872 proteins in the global proteomic dataset. Then, a differentially regulated protein dataset was obtained for each specific treatment. After the proteomic study, multiple bioinformatics analyses were performed to highlight unbalanced pathways and processes. Here, we report the proteomic and bioinformatic investigations concerning the effects on cellular processes of NGB deficiency and cell treatments. Globally, the main processes that were affected were related to the response to stress, cytoskeleton dynamics, apoptosis, and mitochondria-driven pathways.
Collapse
Affiliation(s)
- Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
- CEINGE—Biotecnologie Avanzate S.C.Ar.L., 80145 Naples, Italy
| | - Marco Fiocchetti
- Department of Science, University Roma Tre, 00146 Rome, Italy; (M.F.); (P.A.); (M.M.)
| | - Paolo Ascenzi
- Department of Science, University Roma Tre, 00146 Rome, Italy; (M.F.); (P.A.); (M.M.)
| | - Maria Marino
- Department of Science, University Roma Tre, 00146 Rome, Italy; (M.F.); (P.A.); (M.M.)
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
- CEINGE—Biotecnologie Avanzate S.C.Ar.L., 80145 Naples, Italy
- Correspondence: (M.C.); (M.R.)
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
- CEINGE—Biotecnologie Avanzate S.C.Ar.L., 80145 Naples, Italy
- Correspondence: (M.C.); (M.R.)
| |
Collapse
|
30
|
Sex Affects Human Premature Neonates' Blood Metabolome According to Gestational Age, Parenteral Nutrition, and Caffeine Treatment. Metabolites 2021; 11:metabo11030158. [PMID: 33803435 PMCID: PMC8000935 DOI: 10.3390/metabo11030158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Prematurity is the leading cause of neonatal deaths and high economic costs; it depends on numerous biological and social factors, and is highly prevalent in males. Several factors can affect the metabolome of premature infants. Accordingly, the aim of the present study was to analyze the role played by gestational age (GA), parenteral nutrition (PN), and caffeine treatment in sex-related differences of blood metabolome of premature neonates through a MS/MS-based targeted metabolomic approach for the detection of amino acids and acylcarnitines in dried blood spots. GA affected the blood metabolome of premature neonates: male and female very premature infants (VPI) diverged in amino acids but not in acylcarnitines, whereas the opposite was observed in moderate or late preterm infants (MLPI). Moreover, an important reduction of metabolites was observed in female VPI fed with PN, suggesting that PN might not satisfy an infant's nutritional needs. Caffeine showed the highest significant impact on metabolite levels of male MLPI. This study proves the presence of a sex-dependent metabolome in premature infants, which is affected by GA and pharmacological treatment (e.g., caffeine). Furthermore, it describes an integrated relationship among several features of physiology and health.
Collapse
|
31
|
Caterino M, Gelzo M, Sol S, Fedele R, Annunziata A, Calabrese C, Fiorentino G, D'Abbraccio M, Dell'Isola C, Fusco FM, Parrella R, Fabbrocini G, Gentile I, Andolfo I, Capasso M, Costanzo M, Daniele A, Marchese E, Polito R, Russo R, Missero C, Ruoppolo M, Castaldo G. Dysregulation of lipid metabolism and pathological inflammation in patients with COVID-19. Sci Rep 2021; 11:2941. [PMID: 33536486 PMCID: PMC7859398 DOI: 10.1038/s41598-021-82426-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
In recent months, Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread throughout the world. COVID-19 patients show mild, moderate or severe symptoms with the latter ones requiring access to specialized intensive care. SARS-CoV-2 infections, pathogenesis and progression have not been clearly elucidated yet, thus forcing the development of many complementary approaches to identify candidate cellular pathways involved in disease progression. Host lipids play a critical role in the virus life, being the double-membrane vesicles a key factor in coronavirus replication. Moreover, lipid biogenesis pathways affect receptor-mediated virus entry at the endosomal cell surface and modulate virus propagation. In this study, targeted lipidomic analysis coupled with proinflammatory cytokines and alarmins measurement were carried out in serum of COVID-19 patients characterized by different severity degree. Serum IL-26, a cytokine involved in IL-17 pathway, TSLP and adiponectin were measured and correlated to lipid COVID-19 patient profiles. These results could be important for the classification of the COVID-19 disease and the identification of therapeutic targets.
Collapse
Affiliation(s)
- Marianna Caterino
- CEINGE - Biotecnologie Avanzate s.c.ar.l., Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131, Naples, Italy
| | - Monica Gelzo
- CEINGE - Biotecnologie Avanzate s.c.ar.l., Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131, Naples, Italy
| | - Stefano Sol
- CEINGE - Biotecnologie Avanzate s.c.ar.l., Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", 80126, Naples, Italy
| | - Roberta Fedele
- CEINGE - Biotecnologie Avanzate s.c.ar.l., Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Anna Annunziata
- Fisiopatologia e Riabilitazione Respiratoria-1 utsir COVID, Azienda Ospedaliera Specialistica dei Colli, Naples, Italy
| | - Cecilia Calabrese
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi della Campania "Luigi Vanvitelli", 81100, Naples, Italy
| | - Giuseppe Fiorentino
- Fisiopatologia e Riabilitazione Respiratoria-1 utsir COVID, Azienda Ospedaliera Specialistica dei Colli, Naples, Italy
| | - Maurizio D'Abbraccio
- Dipartimento di malattie infettive ed urgenze infettivologiche, COVID Unit, Azienda Ospedaliera Specialistica dei Colli, Naples, Italy
| | - Chiara Dell'Isola
- Dipartimento di malattie infettive ed urgenze infettivologiche, COVID Unit, Azienda Ospedaliera Specialistica dei Colli, Naples, Italy
| | - Francesco Maria Fusco
- Dipartimento di malattie infettive ed urgenze infettivologiche, COVID Unit, Azienda Ospedaliera Specialistica dei Colli, Naples, Italy
| | - Roberto Parrella
- Dipartimento di malattie infettive ed urgenze infettivologiche, COVID Unit, Azienda Ospedaliera Specialistica dei Colli, Naples, Italy
| | - Gabriella Fabbrocini
- Dipartimento di Medicina Clinica e Chirurgica, Università degli Studi di Napoli, "Federico II", 80131, Naples, Italy
| | - Ivan Gentile
- Dipartimento di Medicina Clinica e Chirurgica, Università degli Studi di Napoli, "Federico II", 80131, Naples, Italy
| | - Immacolata Andolfo
- CEINGE - Biotecnologie Avanzate s.c.ar.l., Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131, Naples, Italy
| | - Mario Capasso
- CEINGE - Biotecnologie Avanzate s.c.ar.l., Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131, Naples, Italy
| | - Michele Costanzo
- CEINGE - Biotecnologie Avanzate s.c.ar.l., Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131, Naples, Italy
| | - Aurora Daniele
- CEINGE - Biotecnologie Avanzate s.c.ar.l., Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", 81100, Naples, Italy
| | - Emanuela Marchese
- CEINGE - Biotecnologie Avanzate s.c.ar.l., Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Salute Mentale e Fisica e Medicina Preventiva, Università degli Studi della Campania "Luigi Vanvitelli", 81100, Naples, Italy
| | - Rita Polito
- CEINGE - Biotecnologie Avanzate s.c.ar.l., Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Sanità Pubblica, Università degli Studi di Napoli, Federico II, 80131, Naples, Italy
| | - Roberta Russo
- CEINGE - Biotecnologie Avanzate s.c.ar.l., Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131, Naples, Italy
| | - Caterina Missero
- CEINGE - Biotecnologie Avanzate s.c.ar.l., Via Gaetano Salvatore, 486, 80145, Naples, Italy. .,Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", 80126, Naples, Italy.
| | - Margherita Ruoppolo
- CEINGE - Biotecnologie Avanzate s.c.ar.l., Via Gaetano Salvatore, 486, 80145, Naples, Italy. .,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131, Naples, Italy.
| | - Giuseppe Castaldo
- CEINGE - Biotecnologie Avanzate s.c.ar.l., Via Gaetano Salvatore, 486, 80145, Naples, Italy. .,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131, Naples, Italy.
| |
Collapse
|
32
|
Costanzo M, Caterino M, Cevenini A, Jung V, Chhuon C, Lipecka J, Fedele R, Guerrera IC, Ruoppolo M. Dataset of a comparative proteomics experiment in a methylmalonyl-CoA mutase knockout HEK 293 cell model. Data Brief 2020; 33:106453. [PMID: 33195772 PMCID: PMC7644733 DOI: 10.1016/j.dib.2020.106453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Methylmalonic acidemia is a rare inborn error of metabolism with severe clinical complications and poor outcome. The present data article is related to a proteomic investigation conducted on a HEK 293 cell line which has been genetically modified using CRISPR-CAS9 system to knockout the methylmalonyl-CoA mutase enzyme (MUT-KO). Thus, the generated cell model for methylmalonic acidemia was used for a proteomic comparison with respect to HEK 293 wild type cells performing a label-free quantification (LFQ) experiment. A comparison between FASP and S-Trap digestion methods was performed on protein extracts before to proceed with the proteomic analysis of the samples. Four biological replicates were employed for LC-MS/MS analysis and each was run in technical triplicates. MaxQuant and Perseus platforms were used to perform the LFQ of the proteomes and carry out statistical analysis, respectively. Globally, 4341 proteins were identified, and 243 as differentially regulated, of which 150 down-regulated and 93 up-regulated in the MUT-KO condition. MS proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD017977. The information provided in this dataset shed new light on the cellular mechanisms altered in this rare metabolic disorder, highlighting quantitative unbalances in proteins acting in cell structure and architecture organization and response to the stress. This article can be used as a new source of protein actors to be validated and a starting point for the identification of clinically relevant therapeutic targets.
Collapse
Affiliation(s)
- Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.,CEINGE - Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.,CEINGE - Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy
| | - Armando Cevenini
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.,CEINGE - Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy
| | - Vincent Jung
- Proteomics Platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, Inserm US24/CNRS UMS3633, 75015 Paris, France
| | - Cerina Chhuon
- Proteomics Platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, Inserm US24/CNRS UMS3633, 75015 Paris, France
| | - Joanna Lipecka
- Proteomics Platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, Inserm US24/CNRS UMS3633, 75015 Paris, France
| | - Roberta Fedele
- CEINGE - Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy
| | - Ida Chiara Guerrera
- Proteomics Platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, Inserm US24/CNRS UMS3633, 75015 Paris, France
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.,CEINGE - Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy
| |
Collapse
|
33
|
Lyon P, Strippoli V, Fang B, Cimmino L. B Vitamins and One-Carbon Metabolism: Implications in Human Health and Disease. Nutrients 2020; 12:E2867. [PMID: 32961717 PMCID: PMC7551072 DOI: 10.3390/nu12092867] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Vitamins B9 (folate) and B12 are essential water-soluble vitamins that play a crucial role in the maintenance of one-carbon metabolism: a set of interconnected biochemical pathways driven by folate and methionine to generate methyl groups for use in DNA synthesis, amino acid homeostasis, antioxidant generation, and epigenetic regulation. Dietary deficiencies in B9 and B12, or genetic polymorphisms that influence the activity of enzymes involved in the folate or methionine cycles, are known to cause developmental defects, impair cognitive function, or block normal blood production. Nutritional deficiencies have historically been treated with dietary supplementation or high-dose parenteral administration that can reverse symptoms in the majority of cases. Elevated levels of these vitamins have more recently been shown to correlate with immune dysfunction, cancer, and increased mortality. Therapies that specifically target one-carbon metabolism are therefore currently being explored for the treatment of immune disorders and cancer. In this review, we will highlight recent studies aimed at elucidating the role of folate, B12, and methionine in one-carbon metabolism during normal cellular processes and in the context of disease progression.
Collapse
Affiliation(s)
- Peter Lyon
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (P.L.); (V.S.); (B.F.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Victoria Strippoli
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (P.L.); (V.S.); (B.F.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Byron Fang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (P.L.); (V.S.); (B.F.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Luisa Cimmino
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (P.L.); (V.S.); (B.F.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
34
|
Secretome Proteomic Approaches for Biomarker Discovery: An Update on Colorectal Cancer. ACTA ACUST UNITED AC 2020; 56:medicina56090443. [PMID: 32878319 PMCID: PMC7559921 DOI: 10.3390/medicina56090443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Searching for new cancer-related biomarkers is a key priority for the early detection of solid tumors, such as colorectal cancer (CRC), in clinically relevant biological fluids. The cell line and/or tumor tissue secretome represents a valuable resource for discovering novel protein markers secreted by cancer cells. The advantage of a secretome analysis is the reduction of the large dynamic range characterizing human plasma/serum, and the simultaneous enrichment of low abundance cancer-secreted proteins, thereby overcoming the technical limitations underlying the direct search in blood samples. In this review, we provided a comprehensive overview of recent studies on the CRC secretome for biomarker discovery, focusing both on methodological and technical aspects of secretome proteomic approaches and on biomarker-independent validation in CRC patient samples (blood and tissues). Secretome proteomics are mainly based on LC-MS/MS analyses for which secretome samples are either in-gel or in-solution trypsin-digested. Adequate numbers of biological and technical replicates are required to ensure high reproducibility and robustness of the secretome studies. Moreover, another major challenge is the accuracy of proteomic quantitative analysis performed by label-free or labeling methods. The analysis of differentially expressed proteins in the CRC secretome by using bioinformatic tools allowed the identification of potential biomarkers for early CRC detection. In this scenario, this review may help to follow-up the recent secretome studies in order to select promising circulating biomarkers to be validated in larger screenings, thereby contributing toward a complete translation in clinical practice.
Collapse
|