1
|
Li W, Wang S, Zhang T, Zhu Y, Yu L, Xu X. Activation of Adenosine Triphosphate-Gated Purinergic 2 Receptor Channels by Transient Receptor Potential Vanilloid Subtype 4 in Cough Hypersensitivity. Biomolecules 2025; 15:285. [PMID: 40001589 PMCID: PMC11852612 DOI: 10.3390/biom15020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Transient receptor potential vanilloid subtype 4 (TRPV4) is a Ca2+-permeable non-selective cation channel that is involved in the development of cough hypersensitivity. Purinergic 2 receptors (P2X) belong to a class of adenosine triphosphate (ATP)-gated non-selective cation channels that also play an important role in cough hypersensitivity. Nevertheless, little is known about the interaction between them for cough hypersensitivity. The present study was designed to clarify the roles of TRPV4 and ATP-P2X receptors in cough hypersensitivity, and to explore the possible involvement of ATP-P2X receptors in the development of cough hypersensitivity mediated by TRPV4. DESIGN AND METHOD This study aims to establish a guinea pig model of citric acid-induced enhanced cough to confirm the effects of the TRPV4-mediated purinergic signaling pathway on cough sensitivity by testing the number of coughs, the release of ATP, and the expressions of P2X and TRPV4 receptors in the tracheal carina and vagal ganglion; recording the activity of cellular currents with the whole-cell patch clamp technique; and detecting changes in intracellular calcium flow in the vagus nerve cells. RESULTS The number of coughs in the TRPV4 agonist GSK1016790A-treated control group was elevated compared with that in the control group, whereas the number of coughs in the TRPV4 antagonist HC067047-treated model group was significantly reduced compared with that in the chronic cough group. When the individuals in the chronic cough group were treated with A317491, PSB12062, and A804598 (P2X3,4,7 antagonists), the number of coughs was significantly decreased. This suggests that TRPV4 and P2X3, P2X4, and P2X7 receptors have an effect on cough hyper-responsiveness in guinea pigs with chronic cough. Enzyme-linked immunosorbent assay results suggested that TRPV4 antagonist and P2X3,4,7 antagonist could differentially reduce the levels of inflammatory factor SP and CGRP in alveolar lavage fluid, and TRPV4 antagonist could reduce the ATP content in the alveolar lavage fluid of guinea pigs in the model. Western blot and immunohistochemistry results showed that, in the tracheal carina and vagal ganglion, the TRPV4 and P2X3,4,7 expression was elevated in the chronic cough group compared with the control group, and could be significantly inhibited by TRPV4 antagonist. Vagus ganglion neurons were isolated, cultured, identified, and subjected to whole-cell membrane clamp assay. When ATP was given extracellularly, a significant inward current was recorded in the examined cells of individuals in the chronic cough and control groups, and the inward current induced by ATP was higher in the chronic cough group relative to the control group. This inward current (IATP) was differentially blocked by P2X3, P2X4, and P2X7 antagonists. Further studies revealed that TRPV4 agonists potentiated ATP-activated currents, and the potentiated currents could still be inhibited by P2X3, P2X4, and P2X7 receptor antagonists, whereas TRPV4 inhibitors partially blocked ATP-activated currents. It is suggested that TRPV4 affects P2X3, P2X4, and P2X7 receptor-mediated ATP-activated currents. Calcium imaging also showed that TRPV4 agonists induced different degrees of calcium inward currents in the vagal neurons of the chronic cough and the control group, and the calcium inward currents were more significant in the model group. CONCLUSIONS The TRPV4-mediated purinergic signaling pathway was identified to be involved in the development of cough hypersensitivity in guinea pigs with chronic cough; i.e., TRPV4 can lead to the release of airway epithelial ATP, which can stimulate P2X receptors on the cough receptor, and further activate the sensory afferent nerves in the peripheral airway, leading to increased cough sensitivity.
Collapse
Affiliation(s)
| | | | | | | | - Li Yu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Xianghuai Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| |
Collapse
|
2
|
Kiaie SH, Hatami Z, Nasr MS, Pazooki P, Hemmati S, Baradaran B, Valizadeh H. Pharmacological interaction and immune response of purinergic receptors in therapeutic modulation. Purinergic Signal 2024; 20:321-343. [PMID: 37843749 PMCID: PMC11303644 DOI: 10.1007/s11302-023-09966-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/10/2023] [Indexed: 10/17/2023] Open
Abstract
Nucleosides and purine nucleotides serve as transmitter and modulator agents that extend their functions beyond the cell. In this context, purinergic signaling plays a crucial role in regulating energy homeostasis and modulating metabolic alterations in tumor cells. Therefore, it is essential to consider the pharmacological targeting of purinergic receptors (PUR), which encompass the expression and inhibition of P1 receptors (metabotropic adenosine receptors) as well as P2 receptors (extracellular ATP/ADP) comprising P2X and P2Y receptors. Thus, the pharmacological interaction between inhibitors (such as RNA, monoclonal antibodies, and small molecules) and PUR represents a key aspect in facilitating the development of therapeutic interventions. Moreover, this review explores recent advancements in pharmacological inhibitors and the regulation of innate and adaptive immunity of PUR, specifically in relation to immunological and inflammatory responses. These responses encompass the release of pro-inflammatory cytokines (PIC), the production of reactive oxygen and nitrogen species (ROS and RNS), the regulation of T cells, and the activation of inflammasomes in all human leukocytes.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Hatami
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sadegh Nasr
- Department of Computer Science and Engineering Multi-Interprofessional Center for Health Informatics (MICHI), The University of Texas at Arlington, Arlington, TX, USA
| | - Pouya Pazooki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Hemmati
- Institute Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hadi Valizadeh
- Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Sluyter R, McEwan TBD, Sophocleous RA, Stokes L. Methods for studying P2X4 receptor ion channels in immune cells. J Immunol Methods 2024; 526:113626. [PMID: 38311008 DOI: 10.1016/j.jim.2024.113626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
The P2X4 receptor is a trimeric ligand-gated ion channel activated by adenosine 5'-triphosphate (ATP). P2X4 is present in immune cells with emerging roles in inflammation and immunity, and related disorders. This review aims to provide an overview of the methods commonly used to study P2X4 in immune cells, focusing on those methods used to assess P2RX4 gene expression, the presence of the P2X4 protein, and P2X4 ion channel activity in these cells from humans, dogs, mice and rats. P2RX4 gene expression in immune cells is commonly assessed using semi-quantitative and quantitative reverse-transcriptase-PCR. The presence of P2X4 protein in immune cells is mainly assessed using anti-P2X4 polyclonal antibodies with immunoblotting or immunochemistry, but the use of these antibodies, as well as monoclonal antibodies and nanobodies to detect P2X4 with flow cytometry is increasing. Notably, use of an anti-P2X4 monoclonal antibody and flow cytometry has revealed that P2X4 is present on immune cells with a rank order of expression in eosinophils, then neutrophils and monocytes, then basophils and B cells, and finally T cells. P2X4 ion channel activity has been assessed mainly by Ca2+ flux assays using the cell permeable Ca2+-sensitive dyes Fura-2 and Fluo-4 with fluorescence microscopy, spectrophotometry, or flow cytometry. However, other methods including electrophysiology, and fluorescence assays measuring Na+ flux (using sodium green tetra-acetate) and dye uptake (using YO-PRO-12+) have been applied. Collectively, these methods have demonstrated the presence of functional P2X4 in monocytes and macrophages, microglia, eosinophils, mast cells and CD4+ T cells, with other evidence suggestive of functional P2X4 in dendritic cells, neutrophils, B cells and CD8+ T cells.
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Tahnee B-D McEwan
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Reece A Sophocleous
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
4
|
Simões JLB, Braga GDC, Mittelmann TH, Bagatini MD. Current Pharmacology and Modulation of the Purinergic System in Takotsubo Syndrome Triggered by Cytokine Storm. Curr Probl Cardiol 2024; 49:102019. [PMID: 37544631 DOI: 10.1016/j.cpcardiol.2023.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Studies show that with the COVID-19 pandemic, the world's population went through multiple stress and anxiety factors, generating serious psychological problems, in addition, the virus also caused damage and physical stress to those contaminated. In this way, the intense emotional experiences and stressful effects on the body caused by SARS-CoV-2 are capable of triggering the excessive release of catecholamines in the body. Thus, the framework of Takotsubo Syndrome is characterized by myocardial dysfunction as a response of cardiac receptors to the spillage of such hormones in an unregulated way in the human body. The purinergic system plays a central role in this process, as it actively participates in actions responsible for the syndromic cascade, such as the stress generated by the cytokine storm triggered by the virus and the stimulation of deregulated catecholamine release. Therefore, further pharmacological studies on the role of purines in this pathology should be developed in order to avoid the evolution of the syndrome and to modulate its P1 and P2 receptors aiming at developing means of reversing or treating the Takotsubo Syndrome.
Collapse
|
5
|
Mathias LS, Herman-de-Sousa C, Cury SS, Nogueira CR, Correia-de-Sá P, de Oliveira M. RNA-seq reveals that anti-obesity irisin and triiodothyronine (T3) hormones differentially affect the purinergic signaling transcriptomics in differentiated human adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159276. [PMID: 36642213 DOI: 10.1016/j.bbalip.2022.159276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
The anti-obesity thyroid hormone, triiodothyronine (T3), and irisin, an exercise- and/or cold-induced myokine, stimulate thermogenesis and energy consumption while decreasing lipid accumulation. The involvement of ATP signaling in adipocyte cell function and obesity has attracted increasing attention, but the crosstalk between the purinergic signaling cascade and anti-obesity hormones lacks experimental evidence. In this study, we investigated the effects of T3 and irisin in the transcriptomics of membrane-bound purinoceptors, ectonucleotidase enzymes and nucleoside transporters participating in the purinergic signaling in cultured human adipocytes. The RNA-seq analysis revealed that differentiated adipocytes express high amounts of ADORA1, P2RY11, P2RY12, and P2RX6 gene transcripts, along with abundant levels of transcriptional products encoding to purine metabolizing enzymes (ENPP2, ENPP1, NT5E, ADA and ADK) and transporters (SLC29A1, SCL29A2). The transcriptomics of purinergic signaling markers changed in parallel to the upsurge of "browning" adipocyte markers, like UCP1 and P2RX5, after treatment with T3 and irisin. Upregulation of ADORA1, ADORA2A and P2RX4 gene transcription was obtained with irisin, whereas T3 preferentially upregulated NT5E, SLC29A2 and P2RY11 genes. Irisin was more powerful than T3 towards inhibition of the leptin gene transcription, the SCL29A1 gene encoding for the ENT1 transporter, the E-NPP2 (autotaxin) gene, and genes that encode for two ADP-sensitive P2Y receptors, P2RY1 and P2RY12. These findings indicate that anti-obesity irisin and T3 hormones differentially affect the purinergic signaling transcriptomics, which might point towards new directions for the treatment of obesity and related metabolic disorders that are worth to be pursued in future functional studies.
Collapse
Affiliation(s)
- Lucas Solla Mathias
- Department of Internal Clinic, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Carina Herman-de-Sousa
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Célia Regina Nogueira
- Department of Internal Clinic, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), ICBAS-UP, Porto, Portugal.
| | - Miriane de Oliveira
- Department of Internal Clinic, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
6
|
Sluyter R, Sophocleous RA, Stokes L. P2X receptors: Insights from the study of the domestic dog. Neuropharmacology 2023; 224:109358. [PMID: 36464207 DOI: 10.1016/j.neuropharm.2022.109358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Fifty years ago, the late Geoffrey Burnstock described the concept of purinergic nerves and transmission bringing into existence the broader concepts of purinergic signaling including P2X receptors. These receptors are trimeric ligand-gated cation channels activated by extracellular adenosine 5'-triphosphate (ATP). P2X receptors have important roles in health and disease and continue to gain interest as potential therapeutic targets in inflammatory, neurological, cardiovascular and many other disorders including cancer. Current understanding of P2X receptors has largely arisen from the study of these receptors in humans and rodents, but additional insights have been obtained from the study of P2X receptors in the domestic dog, Canis familiaris. This review article will briefly introduce purinergic signaling and P2X receptors, before detailing the pharmacological profiles of the two recombinant canine P2X receptors studied to date, P2X7 and P2X4. The article will then describe the current state of knowledge concerning the distribution and function of the P2X receptor family in dogs. The article will also discuss the characterization of single nucleotide polymorphisms in the canine P2RX7 gene, and contrast this variation to the canine P2RX4 gene, which is largely conserved between dogs. Finally, this article will outline published examples of the use of dogs to study the pharmacokinetics of P2X7 and P2X3 antagonists, and how they have contributed to the preclinical testing of antagonists to human P2X7, CE-224,535, and human P2X3, Gefapixant (AF-219, MK-7264) and Eliapixant (BAY, 1817080), with Gefapixant gaining recent approval for use in the treatment of refractory chronic cough in humans. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Reece A Sophocleous
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
7
|
Toti KS, Verma R, McGonnigle MJ, Gamiotea Turro D, Wen Z, Lewicki SA, Liang BT, Jacobson KA. Structure-Activity Relationship and Neuroprotective Activity of 1,5-Dihydro-2 H-naphtho[1,2- b][1,4]diazepine-2,4(3 H)-diones as P2X4 Receptor Antagonists. J Med Chem 2022; 65:13967-13987. [PMID: 36150180 PMCID: PMC9653265 DOI: 10.1021/acs.jmedchem.2c01197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We analyzed the P2X4 receptor structure-activity relationship of a known antagonist 5, a 1,5-dihydro-2H-naphtho[1,2-b][1,4]diazepine-2,4(3H)-dione. Following extensive modification of the reported synthetic route, 4-pyridyl 21u (MRS4719) and 6-methyl 22c (MRS4596) analogues were most potent at human (h) P2X4R (IC50 0.503 and 1.38 μM, respectively, and selective versus hP2X1R, hP2X2/3R, hP2X3R). Thus, the naphthalene 6-, but not 7-position was amenable to substitution, and an N-phenyl ring aza-scan identified 21u with 3-fold higher activity than 5. Compounds 21u and 22c showed neuroprotective and learning- and memory-enhancing activities in a mouse middle cerebral artery occlusion (MCAO) model of ischemic stroke, with potency of 21u > 22c. 21u dose-dependently reduced infarct volume and reduced brain atrophy at 3 and 35 days post-stroke, respectively. Relevant to clinical implication, 21u also reduced ATP-induced [Ca2+]i influx in primary human monocyte-derived macrophages. This study indicates the translational potential of P2X4R antagonists for treating ischemic stroke, including in aging populations.
Collapse
Affiliation(s)
- Kiran S Toti
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892-0810, United States
| | - Rajkumar Verma
- Department of Neuroscience, UConn School of Medicine, Farmington, Connecticut 06032, United States
| | - Michael J McGonnigle
- Department of Neuroscience, UConn School of Medicine, Farmington, Connecticut 06032, United States
| | - Daylin Gamiotea Turro
- Department of Neuroscience, UConn School of Medicine, Farmington, Connecticut 06032, United States
| | - Zhiwei Wen
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892-0810, United States
| | - Sarah A Lewicki
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892-0810, United States
| | - Bruce T Liang
- Calhoun Cardiology Center, UConn School of Medicine, Farmington, Connecticut 06032, United States
| | - Kenneth A Jacobson
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892-0810, United States
| |
Collapse
|
8
|
6-Furopyridine Hexamethylene Amiloride Is a Non-Selective P2X7 Receptor Antagonist. Biomolecules 2022; 12:biom12091309. [PMID: 36139148 PMCID: PMC9496321 DOI: 10.3390/biom12091309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
P2X7 is an extracellular adenosine 5′-triphopshate (ATP)-gated cation channel present on leukocytes, where its activation induces pro-inflammatory cytokine release and ectodomain shedding of cell surface molecules. Human P2X7 can be partially inhibited by amiloride and its derivatives at micromolar concentrations. This study aimed to screen a library of compounds derived from amiloride or its derivative 5-(N,N-hexamethylene) amiloride (HMA) to identify a potential P2X7 antagonist. 6-Furopyridine HMA (6-FPHMA) was identified as a novel P2X7 antagonist and was characterized further. 6-FPHMA impaired ATP-induced dye uptake into human RPMI8226 multiple myeloma cells and human P2X7-HEK293 cells, in a concentration-dependent, non-competitive manner. Likewise, 6-FPHMA blocked ATP-induced Ca2+ fluxes in human P2X7-HEK293 cells in a concentration-dependent, non-competitive manner. 6-FPHMA inhibited ATP-induced dye uptake into human T cells, and interleukin-1β release within human blood and CD23 shedding from RPMI8226 cells. 6-FPHMA also impaired ATP-induced dye uptake into murine P2X7- and canine P2X7-HEK293 cells. However, 6-FPHMA impaired ATP-induced Ca2+ fluxes in human P2X4-HEK293 cells and non-transfected HEK293 cells, which express native P2Y1, P2Y2 and P2Y4. In conclusion, 6-FPHMA inhibits P2X7 from multiple species. Its poor selectivity excludes its use as a specific P2X7 antagonist, but further study of amiloride derivatives as P2 receptor antagonists is warranted.
Collapse
|
9
|
Sophocleous RA, Ooi L, Sluyter R. The P2X4 Receptor: Cellular and Molecular Characteristics of a Promising Neuroinflammatory Target. Int J Mol Sci 2022; 23:ijms23105739. [PMID: 35628550 PMCID: PMC9147237 DOI: 10.3390/ijms23105739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
The adenosine 5′-triphosphate-gated P2X4 receptor channel is a promising target in neuroinflammatory disorders, but the ability to effectively target these receptors in models of neuroinflammation has presented a constant challenge. As such, the exact role of P2X4 receptors and their cell signalling mechanisms in human physiology and pathophysiology still requires further elucidation. To this end, research into the molecular mechanisms of P2X4 receptor activation, modulation, and inhibition has continued to gain momentum in an attempt to further describe the role of P2X4 receptors in neuroinflammation and other disease settings. Here we provide an overview of the current understanding of the P2X4 receptor, including its expression and function in cells involved in neuroinflammatory signalling. We discuss the pharmacology of P2X4 receptors and provide an overview of P2X4-targeting molecules, including agonists, positive allosteric modulators, and antagonists. Finally, we discuss the use of P2X4 receptor modulators and antagonists in models of neuroinflammatory cell signalling and disease.
Collapse
Affiliation(s)
- Reece Andrew Sophocleous
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: ; Tel.: +612-4221-5508
| |
Collapse
|
10
|
Bhattacharyya A, Torre P, Yadav P, Boostanpour K, Chen TY, Tsukui T, Sheppard D, Muramatsu R, Seed RI, Nishimura SL, Jung JB, Tang XZ, Allen CDC, Bhattacharya M. Macrophage Cx43 Is Necessary for Fibroblast Cytosolic Calcium and Lung Fibrosis After Injury. Front Immunol 2022; 13:880887. [PMID: 35634278 PMCID: PMC9134074 DOI: 10.3389/fimmu.2022.880887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022] Open
Abstract
Macrophages are paracrine signalers that regulate tissular responses to injury through interactions with parenchymal cells. Connexin hemichannels have recently been shown to mediate efflux of ATP by macrophages, with resulting cytosolic calcium responses in adjacent cells. Here we report that lung macrophages with deletion of connexin 43 (MacΔCx43) had decreased ATP efflux into the extracellular space and induced a decreased cytosolic calcium response in co-cultured fibroblasts compared to WT macrophages. Furthermore, MacΔCx43 mice had decreased lung fibrosis after bleomycin-induced injury. Interrogating single cell data for human and mouse, we found that P2rx4 was the most highly expressed ATP receptor and calcium channel in lung fibroblasts and that its expression was increased in the setting of fibrosis. Fibroblast-specific deletion of P2rx4 in mice decreased lung fibrosis and collagen expression in lung fibroblasts in the bleomycin model. Taken together, these studies reveal a Cx43-dependent profibrotic effect of lung macrophages and support development of fibroblast P2rx4 as a therapeutic target for lung fibrosis.
Collapse
Affiliation(s)
- Aritra Bhattacharyya
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Paola Torre
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Preeti Yadav
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Kaveh Boostanpour
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Tian Y. Chen
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Tatsuya Tsukui
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Dean Sheppard
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Rieko Muramatsu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Robert I. Seed
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | - Stephen L. Nishimura
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | - James B. Jung
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Xin-Zi Tang
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher D. C. Allen
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
| | - Mallar Bhattacharya
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
11
|
Bidula S, Nadzirin IB, Cominetti M, Hickey H, Cullum SA, Searcey M, Schmid R, Fountain SJ. Structural Basis of the Negative Allosteric Modulation of 5-BDBD at Human P2X4 Receptors. Mol Pharmacol 2022; 101:33-44. [PMID: 34718224 DOI: 10.1124/molpharm.121.000402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/17/2021] [Indexed: 11/22/2022] Open
Abstract
The P2X4 receptor is a ligand-gated ion channel activated by extracellular ATP. P2X4 activity is associated with neuropathic pain, vasodilation, and pulmonary secretion and is therefore of therapeutic interest. The structure-activity relationship of P2X4 antagonists is poorly understood. Here we elucidate the structure-activity of 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD) at human P2X4 by combining pharmacology, electrophysiology, molecular modeling, and medicinal chemistry. 5-BDBD antagonized P2X4 in a noncompetitive manner but lacked effect at human P2X2. Molecular modeling and site-directed mutagenesis suggested an allosteric binding site for 5-BDBD located between two subunits in the body region of P2X4, with M109, F178, Y300, and I312 on one subunit and R301 on the neighboring subunit as key residues involved in antagonist binding. The bromine group of 5-BDBD was redundant for the antagonist activity of 5-BDBD, although an interaction between the carbonyl group of 5-BDBD and R301 in P2X4 was associated with 5-BDBD activity. 5-BDBD could inhibit the closed channel but poorly inhibited the channel in the open/desensitizing state. We hypothesize that this is due to constriction of the allosteric site after transition from closed to open channel state. We propose that M109, F178, Y300, R301, and I312 are key residues for 5-BDBD binding; provide a structural explanation of how they contribute to 5-BDBD antagonism; and highlight that the limited action of 5-BDBD on open versus closed channels is due to a conformational change in the allosteric site. SIGNIFICANCE STATEMENT: Activity of P2X4 receptor is associated with neuropathic pain, inflammation, and vasodilatation. Molecular information regarding small-molecule interaction with P2X4 is very limited. Here, this study provides a structural explanation for the action of the small-molecule antagonist 5-BDBD at the human P2X4 receptor.
Collapse
Affiliation(s)
- Stefan Bidula
- School of Biological Sciences (S.B., I.B.N., H.H., S.A.C., S.J.F.), and School of Pharmacy (M.C., M.S.), University of East Anglia, Norwich Research Park, United Kingdom; and Leicester Institute of Structural and Chemical Biology (R.S.), and Department of Molecular and Cell Biology (R.S.), University of Leicester, United Kingdom
| | - Izzuddin Bin Nadzirin
- School of Biological Sciences (S.B., I.B.N., H.H., S.A.C., S.J.F.), and School of Pharmacy (M.C., M.S.), University of East Anglia, Norwich Research Park, United Kingdom; and Leicester Institute of Structural and Chemical Biology (R.S.), and Department of Molecular and Cell Biology (R.S.), University of Leicester, United Kingdom
| | - Marco Cominetti
- School of Biological Sciences (S.B., I.B.N., H.H., S.A.C., S.J.F.), and School of Pharmacy (M.C., M.S.), University of East Anglia, Norwich Research Park, United Kingdom; and Leicester Institute of Structural and Chemical Biology (R.S.), and Department of Molecular and Cell Biology (R.S.), University of Leicester, United Kingdom
| | - Harry Hickey
- School of Biological Sciences (S.B., I.B.N., H.H., S.A.C., S.J.F.), and School of Pharmacy (M.C., M.S.), University of East Anglia, Norwich Research Park, United Kingdom; and Leicester Institute of Structural and Chemical Biology (R.S.), and Department of Molecular and Cell Biology (R.S.), University of Leicester, United Kingdom
| | - Sean A Cullum
- School of Biological Sciences (S.B., I.B.N., H.H., S.A.C., S.J.F.), and School of Pharmacy (M.C., M.S.), University of East Anglia, Norwich Research Park, United Kingdom; and Leicester Institute of Structural and Chemical Biology (R.S.), and Department of Molecular and Cell Biology (R.S.), University of Leicester, United Kingdom
| | - Mark Searcey
- School of Biological Sciences (S.B., I.B.N., H.H., S.A.C., S.J.F.), and School of Pharmacy (M.C., M.S.), University of East Anglia, Norwich Research Park, United Kingdom; and Leicester Institute of Structural and Chemical Biology (R.S.), and Department of Molecular and Cell Biology (R.S.), University of Leicester, United Kingdom
| | - Ralf Schmid
- School of Biological Sciences (S.B., I.B.N., H.H., S.A.C., S.J.F.), and School of Pharmacy (M.C., M.S.), University of East Anglia, Norwich Research Park, United Kingdom; and Leicester Institute of Structural and Chemical Biology (R.S.), and Department of Molecular and Cell Biology (R.S.), University of Leicester, United Kingdom
| | - Samuel J Fountain
- School of Biological Sciences (S.B., I.B.N., H.H., S.A.C., S.J.F.), and School of Pharmacy (M.C., M.S.), University of East Anglia, Norwich Research Park, United Kingdom; and Leicester Institute of Structural and Chemical Biology (R.S.), and Department of Molecular and Cell Biology (R.S.), University of Leicester, United Kingdom
| |
Collapse
|
12
|
Woodbury DJ, Whitt EC, Coffman RE. A review of TNP-ATP in protein binding studies: benefits and pitfalls. BIOPHYSICAL REPORTS 2021; 1:100012. [PMID: 36425312 PMCID: PMC9680771 DOI: 10.1016/j.bpr.2021.100012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/03/2021] [Indexed: 06/16/2023]
Abstract
We review 50 years of use of 2',3'-O-trinitrophenyl (TNP)-ATP, a fluorescently tagged ATP analog. It has been extensively used to detect binding interactions of ATP to proteins and to measure parameters of those interactions such as the dissociation constant, Kd, or inhibitor dissociation constant, Ki. TNP-ATP has also found use in other applications, for example, as a fluorescence marker in microscopy, as a FRET pair, or as an antagonist (e.g., of P2X receptors). However, its use in protein binding studies has limitations because the TNP moiety often enhances binding affinity, and the fluorescence changes that occur with binding can be masked or mimicked in unexpected ways. The goal of this review is to provide a clear perspective of the pros and cons of using TNP-ATP to allow for better experimental design and less ambiguous data in future experiments using TNP-ATP and other TNP nucleotides.
Collapse
Affiliation(s)
- Dixon J. Woodbury
- Department of Cell Biology and Physiology
- Neuroscience Center, Brigham Young University, Provo, Utah
| | | | | |
Collapse
|
13
|
Dissecting the Purinergic Signaling Puzzle. Int J Mol Sci 2021; 22:ijms22168925. [PMID: 34445630 PMCID: PMC8396290 DOI: 10.3390/ijms22168925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
|
14
|
Ai X, Dong X, Guo Y, Yang P, Hou Y, Bai J, Zhang S, Wang X. Targeting P2 receptors in purinergic signaling: a new strategy of active ingredients in traditional Chinese herbals for diseases treatment. Purinergic Signal 2021; 17:229-240. [PMID: 33751327 PMCID: PMC8155138 DOI: 10.1007/s11302-021-09774-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine triphosphate (ATP) and its metabolites adenosine diphosphate, adenosine monophosphate, and adenosine in purinergic signaling pathway play important roles in many diseases. Activation of P2 receptors (P2R) channels and subsequent membrane depolarization can induce accumulation of extracellular ATP, and furtherly cause kinds of diseases, such as pain- and immune-related diseases, cardiac dysfunction, and tumorigenesis. Active ingredients of traditional Chinese herbals which exhibit superior pharmacological activities on diversified P2R channels have been considered as an alternative strategy of disease treatment. Experimental evidence of potential ingredients in Chinese herbs targeting P2R and their pharmacological activities were outlined in the study.
Collapse
Affiliation(s)
- Xiaopeng Ai
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Xing Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Guo
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Yang
- Chengdu Fifth People's Hospital, Chengdu, China
| | - Ya Hou
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
15
|
Kanellopoulos JM, Almeida-da-Silva CLC, Rüütel Boudinot S, Ojcius DM. Structural and Functional Features of the P2X4 Receptor: An Immunological Perspective. Front Immunol 2021; 12:645834. [PMID: 33897694 PMCID: PMC8059410 DOI: 10.3389/fimmu.2021.645834] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular nucleotides are important mediators of activation, triggering various responses through plasma membrane P2 and P1 receptors. P2 receptors are further subdivided into ionotropic P2X receptors and G protein-coupled P2Y receptors. P2X4 is an ATP-gated cation channel broadly expressed in most tissues of the body. Within the P2X family, P2X4 has a unique subcellular distribution, being preferentially localized in lysosomes. In these organelles, high ATP concentrations do not trigger P2X4 because of the low pH. However, when the pH increases to 7.4, P2X4 can be stimulated by intra-lysosomal ATP, which is in its active, tetra-anionic form. Elucidation of P2X4, P2X3 and P2X7 structures has shed some light on the functional differences between these purinergic receptors. The potential interaction between P2X4 and P2X7 has been extensively studied. Despite intensive effort, it has not been possible yet to determine whether P2X4 and P2X7 interact as heterotrimers or homotrimers at the plasma membrane. However, several publications have shown that functional interactions between P2X4 and P2X7 do occur. Importantly, these studies indicate that P2X4 potentiates P2X7-dependent activation of inflammasomes, leading to increased release of IL-1β and IL-18. The role of P2X4 in various diseases could be beneficial or deleterious even though the pathophysiological mechanisms involved are still poorly defined. However, in diseases whose physiopathology involves activation of the NLRP3 inflammasome, P2X4 was found to exacerbate severity of disease. The recent production of monoclonal antibodies specific for the human and mouse P2X4, some of which are endowed with agonist or antagonist properties, raises the possibility that they could be used therapeutically. Analysis of single nucleotide polymorphisms of the human P2RX4 gene has uncovered the association of P2RX4 gene variants with susceptibility to several human diseases.
Collapse
Affiliation(s)
- Jean M Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Sirje Rüütel Boudinot
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, United States
| |
Collapse
|
16
|
Illes P, Müller CE, Jacobson KA, Grutter T, Nicke A, Fountain SJ, Kennedy C, Schmalzing G, Jarvis MF, Stojilkovic SS, King BF, Di Virgilio F. Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. Br J Pharmacol 2020; 178:489-514. [PMID: 33125712 PMCID: PMC8199792 DOI: 10.1111/bph.15299] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
The known seven mammalian receptor subunits (P2X1–7) form cationic channels gated by ATP. Three subunits compose a receptor channel. Each subunit is a polypeptide consisting of two transmembrane regions (TM1 and TM2), intracellular N- and C-termini, and a bulky extracellular loop. Crystallization allowed the identification of the 3D structure and gating cycle of P2X receptors. The agonist-binding pocket is located at the intersection of two neighbouring subunits. In addition to the mammalian P2X receptors, their primitive ligand-gated counterparts with little structural similarity have also been cloned. Selective agonists for P2X receptor subtypes are not available, but medicinal chemistry supplied a range of subtype-selective antagonists, as well as positive and negative allosteric modulators. Knockout mice and selective antagonists helped to identify pathological functions due to defective P2X receptors, such as male infertility (P2X1), hearing loss (P2X2), pain/cough (P2X3), neuropathic pain (P2X4), inflammatory bone loss (P2X5), and faulty immune reactions (P2X7).
Collapse
Affiliation(s)
- Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Grutter
- University of Strasbourg, Centre National de la Recherche Scientifique, CAMB UMR 7199, Strasbourg, France
| | - Annette Nicke
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Charles Kennedy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Günther Schmalzing
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
| | | | - Stanko S Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Brian F King
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Francesco Di Virgilio
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|