1
|
Obeagu EI, Obeagu GU. Telomere Dynamics in Sickle Cell Anemia: Unraveling Molecular Aging and Disease Progression. J Blood Med 2024; 15:313-323. [PMID: 39081620 PMCID: PMC11288316 DOI: 10.2147/jbm.s462758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Sickle Cell Anemia (SCA) is a hereditary blood disorder characterized by the presence of abnormal hemoglobin, leading to the formation of sickle-shaped red blood cells. While extensive research has unraveled many aspects of the genetic and molecular basis of SCA, the role of telomere dynamics in disease progression remains a relatively unexplored frontier. This review seeks to provide a comprehensive examination of telomere biology within the context of SCA, aiming to elucidate its potential impact on molecular aging and the progression of the disease. The impact of oxidative stress on telomere dynamics in SCA is explored, with a particular focus on how increased reactive oxygen species (ROS) may contribute to accelerated telomere shortening and genomic instability. Furthermore, the potential relationship between telomere dysfunction and cellular senescence in SCA is investigated, shedding light on how telomere dynamics may contribute to the premature aging of cells in this population. The review concludes by summarizing key findings and proposing potential therapeutic strategies targeting telomere dynamics to mitigate disease progression in SCA. It also identifies gaps in current understanding and suggests avenues for future research, emphasizing the importance of further investigating telomere biology to advance our understanding of molecular aging and disease progression in Sickle Cell Anemia. This comprehensive exploration of telomere dynamics in SCA offers insights into potential mechanisms of molecular aging and disease progression, paving the way for targeted therapeutic interventions and improved disease management.
Collapse
|
2
|
Prabhu KS, Kuttikrishnan S, Ahmad N, Habeeba U, Mariyam Z, Suleman M, Bhat AA, Uddin S. H2AX: A key player in DNA damage response and a promising target for cancer therapy. Biomed Pharmacother 2024; 175:116663. [PMID: 38688170 DOI: 10.1016/j.biopha.2024.116663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
Cancer is caused by a complex interaction of factors that interrupt the normal growth and division of cells. At the center of this process is the intricate relationship between DNA damage and the cellular mechanisms responsible for maintaining genomic stability. When DNA damage is not repaired, it can cause genetic mutations that contribute to the initiation and progression of cancer. On the other hand, the DNA damage response system, which involves the phosphorylation of the histone variant H2AX (γH2AX), is crucial in preserving genomic integrity by signaling and facilitating the repair of DNA double-strand breaks. This review provides an explanation of the molecular dynamics of H2AX in the context of DNA damage response. It emphasizes the crucial role of H2AX in recruiting and localizing repair machinery at sites of chromatin damage. The review explains how H2AX phosphorylation, facilitated by the master kinases ATM and ATR, acts as a signal for DNA damage, triggering downstream pathways that govern cell cycle checkpoints, apoptosis, and the cellular fate decision between repair and cell death. The phosphorylation of H2AX is a critical regulatory point, ensuring cell survival by promoting repair or steering cells towards apoptosis in cases of catastrophic genomic damage. Moreover, we explore the therapeutic potential of targeting H2AX in cancer treatment, leveraging its dual function as a biomarker of DNA integrity and a therapeutic target. By delineating the pathways that lead to H2AX phosphorylation and its roles in apoptosis and cell cycle control, we highlight the significance of H2AX as both a prognostic tool and a focal point for therapeutic intervention, offering insights into its utility in enhancing the efficacy of cancer treatments.
Collapse
Affiliation(s)
- Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Nuha Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Ummu Habeeba
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Zahwa Mariyam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Muhammad Suleman
- Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
3
|
Cooper K, Campbell F, Harnan S, Sutton A. Association between stress, depression or anxiety and cancer: Rapid review of reviews. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 16:100215. [PMID: 38108025 PMCID: PMC10724821 DOI: 10.1016/j.cpnec.2023.100215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 12/19/2023] Open
Abstract
Background Several studies have suggested links between psychological stress, depression or anxiety, and cancer incidence or outcomes. Existing systematic reviews have addressed this question, with differing results. Aims This rapid systematic umbrella review summarises existing reviews assessing the association between psychological stress, depression or anxiety and cancer incidence or cancer outcomes. Methods Systematic reviews assessing stress, depression or anxiety and cancer were identified via searches of MEDLINE, PsycInfo and Cochrane Database of Systematic Reviews from 2010 to November 2020. Results Twelve systematic reviews were included, summarising cohort and case-control studies, most of which adjusted for confounders. Regarding cancer incidence, one large meta-analysis reported a significant association between depression/anxiety and cancer incidence, while another showed a non-significant trend. Two further meta-analyses reported significant associations between stressful life events and cancer incidence. Conversely, two meta-analyses of work stress showed no significant association with cancer incidence. Regarding outcomes among cancer patients, three meta-analyses reported significant associations between depression/anxiety and cancer mortality, while another reported a non-significant trend for depression and cancer recurrence. One meta-analysis reported a significant association between partner bereavement and cancer mortality, while another showed no significant association between work stress and cancer mortality. Conclusions There is consistent evidence for an association between psychological stress, depression or anxiety and cancer incidence in general populations, and some evidence for an association with mortality in cancer populations. Future research may focus on confirmation of these findings, as well as the role of social support and stress-reducing interventions in buffering against these effects.
Collapse
Affiliation(s)
- Katy Cooper
- Sheffield Centre for Health and Related Research (SCHARR), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Fiona Campbell
- Population Health Sciences Institute, Newcastle University, UK
| | - Sue Harnan
- Sheffield Centre for Health and Related Research (SCHARR), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Anthea Sutton
- Sheffield Centre for Health and Related Research (SCHARR), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Ahmad A. Exosomes in Cancer Diagnosis and Therapy. Int J Mol Sci 2022; 23:ijms23179930. [PMID: 36077326 PMCID: PMC9456038 DOI: 10.3390/ijms23179930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
5
|
Assante G, Chandrasekaran S, Ng S, Tourna A, Chung CH, Isse KA, Banks JL, Soffientini U, Filippi C, Dhawan A, Liu M, Rozen SG, Hoare M, Campbell P, Ballard JWO, Turner N, Morris MJ, Chokshi S, Youngson NA. Acetyl-CoA metabolism drives epigenome change and contributes to carcinogenesis risk in fatty liver disease. Genome Med 2022; 14:67. [PMID: 35739588 PMCID: PMC9219160 DOI: 10.1186/s13073-022-01071-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence of non-alcoholic fatty liver disease (NAFLD)-associated hepatocellular carcinoma (HCC) is increasing worldwide, but the steps in precancerous hepatocytes which lead to HCC driver mutations are not well understood. Here we provide evidence that metabolically driven histone hyperacetylation in steatotic hepatocytes can increase DNA damage to initiate carcinogenesis. METHODS Global epigenetic state was assessed in liver samples from high-fat diet or high-fructose diet rodent models, as well as in cultured immortalized human hepatocytes (IHH cells). The mechanisms linking steatosis, histone acetylation and DNA damage were investigated by computational metabolic modelling as well as through manipulation of IHH cells with metabolic and epigenetic inhibitors. Chromatin immunoprecipitation and next-generation sequencing (ChIP-seq) and transcriptome (RNA-seq) analyses were performed on IHH cells. Mutation locations and patterns were compared between the IHH cell model and genome sequence data from preneoplastic fatty liver samples from patients with alcohol-related liver disease and NAFLD. RESULTS Genome-wide histone acetylation was increased in steatotic livers of rodents fed high-fructose or high-fat diet. In vitro, steatosis relaxed chromatin and increased DNA damage marker γH2AX, which was reversed by inhibiting acetyl-CoA production. Steatosis-associated acetylation and γH2AX were enriched at gene clusters in telomere-proximal regions which contained HCC tumour suppressors in hepatocytes and human fatty livers. Regions of metabolically driven epigenetic change also had increased levels of DNA mutation in non-cancerous tissue from NAFLD and alcohol-related liver disease patients. Finally, genome-scale network modelling indicated that redox balance could be a key contributor to this mechanism. CONCLUSIONS Abnormal histone hyperacetylation facilitates DNA damage in steatotic hepatocytes and is a potential initiating event in hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Gabriella Assante
- Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT, UK
- King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Sriram Chandrasekaran
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Center for Bioinformatics and Computational Medicine, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Stanley Ng
- Wellcome Trust Sanger Institute, Cambridge, UK
| | - Aikaterini Tourna
- Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT, UK
- King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Carolina H Chung
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kowsar A Isse
- Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT, UK
- King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Jasmine L Banks
- UNSW Sydney, Sydney, Australia
- Cellular Bioenergetics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Ugo Soffientini
- Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT, UK
- King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Celine Filippi
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Anil Dhawan
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Mo Liu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Steven G Rozen
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Matthew Hoare
- CRUK Cambridge Institute, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | | - J William O Ballard
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia
| | - Nigel Turner
- UNSW Sydney, Sydney, Australia
- Cellular Bioenergetics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | | | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT, UK
- King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Neil A Youngson
- Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT, UK.
- King's College London, Faculty of Life Sciences and Medicine, London, UK.
- UNSW Sydney, Sydney, Australia.
| |
Collapse
|
6
|
Muresanu C, Khalchitsky S. Updated Understanding of the Causes of Cancer, and a New Theoretical Perspective of Combinational Cancer Therapies, a Hypothesis. DNA Cell Biol 2022; 41:342-355. [PMID: 35262416 DOI: 10.1089/dna.2021.1118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We present an integrative understanding of cancer as a metabolic multifactorial, multistage disease. We focus on underlying genetics-environmental interactions, evidenced by telomere changes. A range of genetic and epigenetic factors, including physical agents and predisposing factors such as diet and lifestyle are included. We present a structured model of the causes of cancer, methods of investigations, approaches to cancer prevention, and polypharmaceutical multidisciplinary complex treatment within a framework of personalized medicine. We searched PubMed, National Cancer Institute online, and other databases for publications regarding causes of cancer, reports of novel mitochondrial reprogramming, epigenetic, and telomerase therapies and state-of-the-art investigations. We focused on multistep treatment protocols to enhance early detection of cancer, and elimination or neutralization of the causes and factors associated with cancer formation and progression.Our aim is to suggest a model therapeutic protocol that incorporates the patient's genome, metabolism, and immune system status; stage of tumor development; and comorbidity(ies), if any. Investigation and treatment of cancer is a challenge that requires further holistic studies that improve the quality of life and survival rates, but are most likely to aid prevention.
Collapse
Affiliation(s)
- Cristian Muresanu
- Research Center for Applied Biotechnology in Diagnosis and Molecular Therapies, Cluj-Napoca, Romania.,Department of Ecology, Taxonomy and Nature Conservation, Institute of Biology, Romanian Academy, Bucharest, Romania
| | - Sergei Khalchitsky
- H. Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russia
| |
Collapse
|
7
|
Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021; 6:254. [PMID: 34238917 PMCID: PMC8266832 DOI: 10.1038/s41392-021-00648-7] [Citation(s) in RCA: 365] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is the hallmark of various cancers with the increasing accumulation of DNA damage. The application of radiotherapy and chemotherapy in cancer treatment is typically based on this property of cancers. However, the adverse effects including normal tissues injury are also accompanied by the radiotherapy and chemotherapy. Targeted cancer therapy has the potential to suppress cancer cells' DNA damage response through tailoring therapy to cancer patients lacking specific DNA damage response functions. Obviously, understanding the broader role of DNA damage repair in cancers has became a basic and attractive strategy for targeted cancer therapy, in particular, raising novel hypothesis or theory in this field on the basis of previous scientists' findings would be important for future promising druggable emerging targets. In this review, we first illustrate the timeline steps for the understanding the roles of DNA damage repair in the promotion of cancer and cancer therapy developed, then we summarize the mechanisms regarding DNA damage repair associated with targeted cancer therapy, highlighting the specific proteins behind targeting DNA damage repair that initiate functioning abnormally duo to extrinsic harm by environmental DNA damage factors, also, the DNA damage baseline drift leads to the harmful intrinsic targeted cancer therapy. In addition, clinical therapeutic drugs for DNA damage and repair including therapeutic effects, as well as the strategy and scheme of relative clinical trials were intensive discussed. Based on this background, we suggest two hypotheses, namely "environmental gear selection" to describe DNA damage repair pathway evolution, and "DNA damage baseline drift", which may play a magnified role in mediating repair during cancer treatment. This two new hypothesis would shed new light on targeted cancer therapy, provide a much better or more comprehensive holistic view and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China.
| |
Collapse
|