1
|
Ngowi EE, Lu T, Liu Q, Xie X, Wang N, Luo L, Deng L, Zhou Y, Zhang Z, Qiao A. Biofluid-Derived Exosomal LncRNAs: Their Potential in Obesity and Related Comorbidities. BIOLOGY 2024; 13:976. [PMID: 39765643 PMCID: PMC11673191 DOI: 10.3390/biology13120976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 01/03/2025]
Abstract
Obesity has escalated into a critical global health crisis, tripling in prevalence since the mid-1970s. This increase mirrors the rise in metabolic-associated diseases such as type 2 diabetes (T2D) and its complications, certain cancers, and cardiovascular conditions. While substantial research efforts have enriched our understanding and led to the development of innovative management strategies for these diseases, the suboptimal response rates of existing therapies remain a major obstacle to effectively managing obesity and its associated conditions. Over the years, inter-organ communication (IOC) has emerged as a crucial factor in the development and progression of metabolic disorders. Exosomes, which are nano-sized vesicular couriers released by cells, play a significant role in this communication by transporting proteins, lipids, and nucleic acids across cellular landscapes. The available evidence indicates that exosomal RNAs present in biofluids such as blood, urine, milk, vitreous humor (VH), and cerebrospinal fluid (CSF) are altered in numerous diseases, suggesting their diagnostic and therapeutic potential. Long non-coding RNAs contained in exosomes (exo-lncRNAs) have attracted considerable interest, owing to their ability to interact with critical components involved in a multitude of metabolic pathways. Recent studies have found that alterations in exo-lncRNAs in biofluids correlate with several metabolic parameters in patients with metabolic-associated conditions; however, their exact roles remain largely unclear. This review highlights the diagnostic and therapeutic potential of exosomal lncRNAs in obesity and its associated conditions, emphasizing their role in IOC and disease progression, aiming to pave the way for further research in this promising domain.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (E.E.N.); (T.L.); (Q.L.); (X.X.); (N.W.); (L.L.); (L.D.) (Y.Z.); (Z.Z.)
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Tuyan Lu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (E.E.N.); (T.L.); (Q.L.); (X.X.); (N.W.); (L.L.); (L.D.) (Y.Z.); (Z.Z.)
| | - Qing Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (E.E.N.); (T.L.); (Q.L.); (X.X.); (N.W.); (L.L.); (L.D.) (Y.Z.); (Z.Z.)
| | - Xianghong Xie
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (E.E.N.); (T.L.); (Q.L.); (X.X.); (N.W.); (L.L.); (L.D.) (Y.Z.); (Z.Z.)
| | - Ning Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (E.E.N.); (T.L.); (Q.L.); (X.X.); (N.W.); (L.L.); (L.D.) (Y.Z.); (Z.Z.)
| | - Liping Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (E.E.N.); (T.L.); (Q.L.); (X.X.); (N.W.); (L.L.); (L.D.) (Y.Z.); (Z.Z.)
| | - Lijuan Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (E.E.N.); (T.L.); (Q.L.); (X.X.); (N.W.); (L.L.); (L.D.) (Y.Z.); (Z.Z.)
| | - Yinghua Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (E.E.N.); (T.L.); (Q.L.); (X.X.); (N.W.); (L.L.); (L.D.) (Y.Z.); (Z.Z.)
| | - Zhihong Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (E.E.N.); (T.L.); (Q.L.); (X.X.); (N.W.); (L.L.); (L.D.) (Y.Z.); (Z.Z.)
| | - Aijun Qiao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (E.E.N.); (T.L.); (Q.L.); (X.X.); (N.W.); (L.L.); (L.D.) (Y.Z.); (Z.Z.)
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
2
|
Liu X, Tian L, Deng Z, Guo Y, Zhang S. Zoledronic Acid Accelerates Bone Healing in Carpal Navicular Fracture via Silencing Long Non-coding RNA Growth Arrest Specificity 5 to Modulate MicroRNA-29a-3p Expression. Mol Biotechnol 2024; 66:3238-3251. [PMID: 37861953 DOI: 10.1007/s12033-023-00931-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Carpal navicular fractures are the most common carpal fractures. This study intends to explore the specific mechanism of Zoledronic Acid (ZA) in carpal navicular fracture healing via long non-coding RNA (lncRNA) growth arrest specificity 5 (GAS5) to mediate microRNA (miR)-29a-3p. A fractured rat model was constructed. Two weeks later, a subcutaneous injection of systemic ZA was implemented, and an injection of plasmid vectors interfered with GAS5 or miR-29a-3p expression was performed on the fracture site. Osteocalcin (OCN) and bone morphogenetic protein-2 (BMP-2) were determined, as well as serum levels of alkaline phosphatase (ALP), osteopontin (OPN) and osteoprotegerin (OPG) and bone mineral density. MC3T3-E1 cells were transfected with plasmid vectors interfering with GAS5 or miR-29a-3p, and cell proliferation and apoptosis were analyzed. GAS5 and miR-29a-3p expression in fractured rats was tested, together with their binding relationship. ZA promoted OCN and BMP-2 expression, increased bone mineral density and serum levels of ALP, OPN and OPG in fractured rats. GAS5 was upregulated and miR-29a-3p was down-regulated in fractured rats. Downregulation of GAS5 or upregulation of miR-29a-3p further promoted bone healing in fractured rats. GAS5 targets miR-29a-3p, and down-regulation of miR-29a-3p can reverse the effect of down-regulation of GAS5 on bone healing in fractured rats. ZA promoted the proliferation of MC3T3-E1 cells and inhibited apoptosis by regulating the GAS5/miR-29a-3p axis. ZA regulates miR-29a-3p expression by down-regulating GAS5 to promote carpal navicular fracture healing, promote MC3T3-E1 cell proliferation, and inhibit cell apoptosis.
Collapse
Affiliation(s)
- Xing Liu
- Department of Orthopaedic Trauma 2, The Third Hospital of ShiJiaZhuang, No. 15 Tiyu South Street, Chang'an District, Shijiazhuang City, 050011, Hebei Province, China.
| | - LiJun Tian
- Department of Orthopaedic Trauma 2, The Third Hospital of ShiJiaZhuang, No. 15 Tiyu South Street, Chang'an District, Shijiazhuang City, 050011, Hebei Province, China
| | - ZhiGang Deng
- Department of Orthopaedic Trauma 2, The Third Hospital of ShiJiaZhuang, No. 15 Tiyu South Street, Chang'an District, Shijiazhuang City, 050011, Hebei Province, China
| | - YuSong Guo
- Department of Orthopaedic Trauma 2, The Third Hospital of ShiJiaZhuang, No. 15 Tiyu South Street, Chang'an District, Shijiazhuang City, 050011, Hebei Province, China
| | - SanBing Zhang
- Department of Hand/Foot and Ankle Surgery, The Third Hospital of ShiJiaZhuang, Shijiazhuang City, 050011, Hebei Province, China
| |
Collapse
|
3
|
Pokorná M, Černá M, Boussios S, Ovsepian SV, O’Leary VB. lncRNA Biomarkers of Glioblastoma Multiforme. Biomedicines 2024; 12:932. [PMID: 38790894 PMCID: PMC11117901 DOI: 10.3390/biomedicines12050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules of 200 nucleotides or more in length that are not translated into proteins. Their expression is tissue-specific, with the vast majority involved in the regulation of cellular processes and functions. Many human diseases, including cancer, have been shown to be associated with deregulated lncRNAs, rendering them potential therapeutic targets and biomarkers for differential diagnosis. The expression of lncRNAs in the nervous system varies in different cell types, implicated in mechanisms of neurons and glia, with effects on the development and functioning of the brain. Reports have also shown a link between changes in lncRNA molecules and the etiopathogenesis of brain neoplasia, including glioblastoma multiforme (GBM). GBM is an aggressive variant of brain cancer with an unfavourable prognosis and a median survival of 14-16 months. It is considered a brain-specific disease with the highly invasive malignant cells spreading throughout the neural tissue, impeding the complete resection, and leading to post-surgery recurrences, which are the prime cause of mortality. The early diagnosis of GBM could improve the treatment and extend survival, with the lncRNA profiling of biological fluids promising the detection of neoplastic changes at their initial stages and more effective therapeutic interventions. This review presents a systematic overview of GBM-associated deregulation of lncRNAs with a focus on lncRNA fingerprints in patients' blood.
Collapse
Affiliation(s)
- Markéta Pokorná
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| | - Marie Černá
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK;
- Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury CT2 7PB, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
- Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| | - Saak V. Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent ME4 4TB, UK;
- Faculty of Medicine, Tbilisi State University, Tbilisi 0177, Georgia
| | - Valerie Bríd O’Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| |
Collapse
|
4
|
Yang J, Wu J. Discovery of potential biomarkers for osteoporosis diagnosis by individual omics and multi-omics technologies. Expert Rev Mol Diagn 2023:1-16. [PMID: 37140363 DOI: 10.1080/14737159.2023.2208750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Global aging has made osteoporosis an increasingly serious public health problem. Osteoporotic fractures seriously affect the quality of life of patients and increase disability and mortality rates. Early diagnosis is important for timely intervention. The continuous development of individual- and multi-omics methods is helpful for the exploration and discovery of biomarkers for the diagnosis of osteoporosis. AREAS COVERED In this review, we first introduce the epidemiological status of osteoporosis and then describe the pathogenesis of osteoporosis. Furthermore, the latest progress in individual- and multi-omics technologies for exploring biomarkers for osteoporosis diagnosis is summarized. Moreover, we clarify the advantages and disadvantages of the application of osteoporosis biomarkers obtained using the omics method. Finally, we put forward valuable views on the future research direction of diagnostic biomarkers of osteoporosis. EXPERT OPINION Omics methods undoubtedly provide greatly contribute to the exploration of diagnostic biomarkers of osteoporosis; however, in the future, the clinical validity and clinical utility of the obtained potential biomarkers should be thoroughly examined. In addition, the improvement and optimization of the detection methods for different types of biomarkers and standardization of the detection process guarantee the reliability and accuracy of the detection results.
Collapse
Affiliation(s)
- Jing Yang
- Department of Clinical Laboratory Medicine, Beijing Jishuitan Hospital, Peking University, Beijing, China
| | - Jun Wu
- Department of Clinical Laboratory Medicine, Beijing Jishuitan Hospital, Peking University, Beijing, China
| |
Collapse
|
5
|
Kefayati F, Karimi Babaahmadi A, Mousavi T, Hodjat M, Abdollahi M. Epigenotoxicity: a danger to the future life. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:382-411. [PMID: 36942370 DOI: 10.1080/10934529.2023.2190713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Environmental toxicants can regulate gene expression in the absence of DNA mutations via epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs' (ncRNAs). Here, all three epigenetic modifications for seven important categories of diseases and the impact of eleven main environmental factors on epigenetic modifications were discussed. Epigenetic-related mechanisms are among the factors that could explain the root cause of a wide range of common diseases. Its overall impression on the development of diseases can help us diagnose and treat diseases, and besides, predict transgenerational and intergenerational effects. This comprehensive article attempted to address the relationship between environmental factors and epigenetic modifications that cause diseases in different categories. The studies main gap is that the precise role of environmentally-induced epigenetic alterations in the etiology of the disorders is unknown; thus, still more well-designed researches need to be accomplished to fill this gap. The present review aimed to first summarize the adverse effect of certain chemicals on the epigenome that may involve in the onset of particular disease based on in vitro and in vivo models. Subsequently, the possible adverse epigenetic changes that can lead to many human diseases were discussed.
Collapse
Affiliation(s)
- Farzaneh Kefayati
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atoosa Karimi Babaahmadi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Ali MA, Hussein SK, Khalifa AA, El Amin Ali AM, Farhan MS, Ibrahim Amin AA, Mohamed EA. The Ifng antisense RNA 1 (IFNG-AS1) and growth arrest-specific transcript 5 (GAS5) are novel diagnostic and prognostic markers involved in childhood ITP. Front Mol Biosci 2022; 9:1007347. [PMID: 36310591 PMCID: PMC9597367 DOI: 10.3389/fmolb.2022.1007347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background/aim:IFNG-AS1 is a long noncoding RNA that works as an enhancer for the Interferon-gamma (IFN-γ) transcript. GAS5 (growth arrest-specific 5) is a lncRNA that is associated with glucocorticoid resistance. Aberrant expressions of IFNG-AS1 and GAS5 are directly linked to numerous autoimmune disorders but their levels in childhood ITP are still obscure. This study aims to elucidate expressions of target lncRNAs in childhood ITP and their association with pathophysiology and clinical features of the disease as well as their association with types and treatment responses. Method: The fold changes of target lncRNAs in blood samples from children with ITP and healthy controls were analyzed using quantitative real-time PCR (qRT-PCR). Results: There were overexpressed lncRNAs IFNG-AS1 and GAS5 in serum of childhood ITP patients [(median (IQR) = 3.08 (0.2–22.39) and 4.19 (0.9–16.91) respectively, Also, significant higher IFNG-AS1 and GAS5 (p < 0.05) were present in persistent ITP (3–12 months) [ median (IQR) = 4.58 (0.31–22.39) and 3.77 (0.87–12.36) respectively] or chronic ITP (>12 months) [ median (IQR) = 5.6 (0.25–12.59) and 5.61 (1.15–16.91) respectively] when compared to newly diagnosed <3 months patients [IFNG-AS1 median (IQR) = 1.21 (0.2–8.95), and GAS5 median (IQR) = 1.07 (0.09–3.55)]. Also, significant higher lncRNAs IFNG-AS1 and GAS5 were present in patients with partial response to treatment [IFNG-AS1 median (IQR) = 4.15 (0.94–19.25), and GAS5 (median (IQR) = 4.25 (0.81–16.91)] or non-response [IFNG-AS1 median (IQR) = 4.19 (1.25–22.39) and GAS5 median (IQR) = 5.11 (2.34–15.27)] when compared to patients who completely responded to treatment (IFNG-AS1 median (IQR) = 2.09 (0.2–14.58) and GAS5 (median (IQR) = 2.51 (0.09–10.33). In addition, following therapy, the expressions of IFNG-AS1 and GAS5 are significantly negatively correlated with platelet count. Conclusion: Findings suggest that lncRNAs IFNG-AS1 and GAS5 are novel diagnostic and prognostic genetic markers for childhood ITP that can aid in a precise prediction of the disease’s progress at the time of diagnosis and could be a useful tool for treatment planning.
Collapse
Affiliation(s)
- Marwa A. Ali
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
- *Correspondence: Marwa A. Ali, ,
| | | | - Abeer A. Khalifa
- Department of Physiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amani M. El Amin Ali
- Department of Medical Physiology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Marwa S. Farhan
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amal A. Ibrahim Amin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Esam Ali Mohamed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
7
|
Deregulated Clusterin as a Marker of Bone Fragility: New Insights into the Pathophysiology of Osteoporosis. Genes (Basel) 2022; 13:genes13040652. [PMID: 35456459 PMCID: PMC9024451 DOI: 10.3390/genes13040652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Clusterin (CLU) is a secreted heterodimeric glycoprotein expressed in all organism fluids as well as in the intracellular matrix that plays key roles in several pathological processes. Its recent involvement in muscle degeneration of osteoporotic patients led to investigation of the role of CLU in bone metabolism, given the biochemical and biomechanical crosstalk of the bone–muscle unit. Quantitative real time-polymerase chain reaction (qRT-PCR) analysis of CLU expression was performed in both osteoblasts and Peripheral Blood Mononuclear Cells (PBMCs) from osteoporotic patients (OP) and healthy individuals (CTR). Furthermore, immunohistochemical analysis on femoral head tissues and enzyme-linked immunosorbent assay (ELISA) in plasma samples were performed to investigate CLU expression pattern. Finally, genotyping of CLU rs11136000 polymorphism has also been performed by qRT-PCR assays to explore a possible association with CLU expression levels. Data obtained showed a significantly increased expression level of secreted CLU isoform in PBMCs and osteoblasts from OP patients. Immunohistochemical analysis confirms the increased expression of CLU in OP patients, both in osteocytes and osteoblasts, while plasma analysis reveals a statistically significant decrease of CLU levels. Unfortunately, no functional association between CLU expression levels and the presence of CLU rs11136000 polymorphism in OP patients was found. These data suggest a potential role played by CLU as a potential biomarker for the diagnosis and prognosis of OP progression.
Collapse
|
8
|
Zhang C, Owen LA, Lillvis JH, Zhang SX, Kim IK, DeAngelis MM. AMD Genomics: Non-Coding RNAs as Biomarkers and Therapeutic Targets. J Clin Med 2022; 11:jcm11061484. [PMID: 35329812 PMCID: PMC8954267 DOI: 10.3390/jcm11061484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/04/2022] Open
Abstract
Age-related macular degeneration (AMD) is a progressive neurodegenerative disease that is the world’s leading cause of blindness in the aging population. Although the clinical stages and forms of AMD have been elucidated, more specific prognostic tools are required to determine when patients with early and intermediate AMD will progress into the advanced stages of AMD. Another challenge in the field has been the appropriate development of therapies for intermediate AMD and advanced atrophic AMD. After numerous negative clinical trials, an anti-C5 agent and anti-C3 agent have recently shown promising results in phase 3 clinical trials, in terms of slowing the growth of geographic atrophy, an advanced form of AMD. Interestingly, both drugs appear to be associated with an increased incidence of wet AMD, another advanced form of the disease, and will require frequent intravitreal injections. Certainly, there remains a need for other therapeutic agents with the potential to prevent progression to advanced stages of the disease. Investigation of the role and clinical utility of non-coding RNAs (ncRNAs) is a major advancement in biology that has only been minimally applied to AMD. In the following review, we discuss the clinical relevance of ncRNAs in AMD as both biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Charles Zhang
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (C.Z.); (L.A.O.); (J.H.L.); (S.X.Z.)
| | - Leah A. Owen
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (C.Z.); (L.A.O.); (J.H.L.); (S.X.Z.)
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Population Health Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
| | - John H. Lillvis
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (C.Z.); (L.A.O.); (J.H.L.); (S.X.Z.)
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14212, USA
| | - Sarah X. Zhang
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (C.Z.); (L.A.O.); (J.H.L.); (S.X.Z.)
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Ivana K. Kim
- Retina Service, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (I.K.K.); (M.M.D.)
| | - Margaret M. DeAngelis
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (C.Z.); (L.A.O.); (J.H.L.); (S.X.Z.)
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Population Health Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14212, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Genetics, Genomics and Bioinformatics Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Correspondence: (I.K.K.); (M.M.D.)
| |
Collapse
|
9
|
Zhou Z, Chen J, Huang Y, Liu D, Chen S, Qin S. Long Noncoding RNA GAS5: A New Factor Involved in Bone Diseases. Front Cell Dev Biol 2022; 9:807419. [PMID: 35155450 PMCID: PMC8826583 DOI: 10.3389/fcell.2021.807419] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), as an important type of RNA encoded in the human transcriptome, have shown to regulate different genomic processes in human cells, altering cell type and function. These factors are associated with carcinogenesis, cancer metastasis, bone diseases, and immune system diseases, among other pathologies. Although many lncRNAs are involved in various diseases, the molecular mechanisms through which lncRNAs contribute to regulation of disease are still unclear. The lncRNA growth arrest-specific 5 (GAS5) is a key player that we initially found to be associated with regulating cell growth, differentiation, and development. Further work has shown that GAS5 is involved in the occurrence and prognosis of bone diseases, such as osteoporosis, osteosarcoma, and postosteoporotic fracture. In this review, we discuss recent progress on the roles of GAS5 in bone diseases to establish novel targets for the treatment of bone diseases.
Collapse
Affiliation(s)
- Zimo Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiahui Chen
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Huang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Da Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Da Liu,
| | - Senxiang Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Sen Qin
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Wang Y, Xue M, Xia F, Zhu L, Jia D, Gao Y, Li L, Shi Y, Li Y, Chen S, Xu G, Yuan C. Long noncoding RNA GAS5 in age-related diseases. Curr Med Chem 2021; 29:2863-2877. [PMID: 34711157 DOI: 10.2174/0929867328666211027123932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022]
Abstract
Aging refers to a natural process and a universal phenomenon in all cells, tissues, organs and the whole organism. Long non-coding RNAs (lncRNAs) are non-coding RNAs with the length of 200 nucleotides. LncRNA growth arrest-specific 5 (lncRNA GAS5) is often down-regulated in cancer. The accumulation of lncRNA GAS5 has been found to be able to inhibit cancer growth, invasion and metastasis, while enhancing the sensitivity of cells to chemotherapy drugs. LncRNA GAS5 can be a signaling protein, which is specifically transcribed under different triggering conditions. Subsequently, it is involved in signal transmission in numerous pathways as a signal node. LncRNA GAS5, with a close relationship to multiple miRNAs, was suggested to be involved in the signaling pathway under three action modes (i.e., signal, bait and guidance). LncRNA GAS5 was found to be involved in different age-related diseases (e.g., rheumatoid arthritis, type 2 diabetes, atherosclerosis, osteoarthritis, osteoporosis, multiple sclerosis, cancer etc.). This study mainly summarized the regulatory effect exerted by lncRNA GAS5 on age-related diseases.
Collapse
Affiliation(s)
- Yaqi Wang
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Mengzhen Xue
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Fangqi Xia
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Leiqi Zhu
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Dengke Jia
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yan Gao
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Luoying Li
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yue Shi
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yuanyang Li
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Silong Chen
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Guangfu Xu
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| |
Collapse
|
11
|
Fantini S, Rontauroli S, Sartini S, Mirabile M, Bianchi E, Badii F, Maccaferri M, Guglielmelli P, Ottone T, Palmieri R, Genovese E, Carretta C, Parenti S, Mallia S, Tavernari L, Salvadori C, Gesullo F, Maccari C, Zizza M, Grande A, Salmoiraghi S, Mora B, Potenza L, Rosti V, Passamonti F, Rambaldi A, Voso MT, Mecucci C, Tagliafico E, Luppi M, Vannucchi AM, Manfredini R. Increased Plasma Levels of lncRNAs LINC01268, GAS5 and MALAT1 Correlate with Negative Prognostic Factors in Myelofibrosis. Cancers (Basel) 2021; 13:cancers13194744. [PMID: 34638230 PMCID: PMC8507546 DOI: 10.3390/cancers13194744] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary Myelofibrosis (MF) displays the worst prognosis among Philadelphia-negative chronic myeloproliferative neoplasms. There is no curative therapy for MF, except for bone marrow transplantation, which however has a consistent percentage of failure. There is thus an urgent need of novel biomarkers to complement current stratification models and to enable better management of patients. To address this issue, we herein measured the plasma levels of several long noncoding RNAs (lncRNAs). Circulating lncRNAs has been already largely described as potential non-invasive biomarkers in cancers. In our study we unveiled that LINC01268, MALAT1 (both p < 0.0001) and GAS5 (p = 0.0003) plasma levels are significantly higher in MF patients if compared with healthy donors, and their increased plasma levels correlate with several detrimental features in MF. Among them, LINC01268 is an independent variable for both OS (p = 0.0297) and LFS (p = 0.0479), thus representing a putative new biomarker suitable for integrate contemporary prognostic models. Abstract Long non-coding RNAs (lncRNAs) have been recently described as key mediators in the development of hematological malignancies. In the last years, circulating lncRNAs have been proposed as a new class of non-invasive biomarkers for cancer diagnosis and prognosis and to predict treatment response. The present study is aimed to investigate the potential of circulating lncRNAs as non-invasive prognostic biomarkers in myelofibrosis (MF), the most severe among Philadelphia-negative myeloproliferative neoplasms. We detected increased levels of seven circulating lncRNAs in plasma samples of MF patients (n = 143), compared to healthy controls (n = 65). Among these, high levels of LINC01268, MALAT1 or GAS5 correlate with detrimental clinical variables, such as high count of leukocytes and CD34+ cells, severe grade of bone marrow fibrosis and presence of splenomegaly. Strikingly, high plasma levels of LINC01268 (p = 0.0018), GAS5 (p = 0.0008) or MALAT1 (p = 0.0348) are also associated with a poor overall-survival while high levels of LINC01268 correlate with a shorter leukemia-free-survival. Finally, multivariate analysis demonstrated that the plasma level of LINC01268 is an independent prognostic variable, suggesting that, if confirmed in future in an independent patients’ cohort, it could be used for further studies to design an updated classification model for MF patients.
Collapse
Affiliation(s)
- Sebastian Fantini
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Sebastiano Rontauroli
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Stefano Sartini
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Margherita Mirabile
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Elisa Bianchi
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Filippo Badii
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Monica Maccaferri
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy;
| | - Paola Guglielmelli
- Department of Experimental and Clinical Medicine, and Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), University of Florence, Careggi University Hospital, 50134 Florence, Italy; (P.G.); (C.S.); (F.G.); (C.M.); (M.Z.); (A.M.V.)
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy; (T.O.); (R.P.); (M.T.V.)
- Santa Lucia Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), Neuro-Oncohematology, 00179 Rome, Italy
| | - Raffaele Palmieri
- Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy; (T.O.); (R.P.); (M.T.V.)
| | - Elena Genovese
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Chiara Carretta
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Sandra Parenti
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Selene Mallia
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Lara Tavernari
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Costanza Salvadori
- Department of Experimental and Clinical Medicine, and Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), University of Florence, Careggi University Hospital, 50134 Florence, Italy; (P.G.); (C.S.); (F.G.); (C.M.); (M.Z.); (A.M.V.)
| | - Francesca Gesullo
- Department of Experimental and Clinical Medicine, and Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), University of Florence, Careggi University Hospital, 50134 Florence, Italy; (P.G.); (C.S.); (F.G.); (C.M.); (M.Z.); (A.M.V.)
| | - Chiara Maccari
- Department of Experimental and Clinical Medicine, and Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), University of Florence, Careggi University Hospital, 50134 Florence, Italy; (P.G.); (C.S.); (F.G.); (C.M.); (M.Z.); (A.M.V.)
| | - Michela Zizza
- Department of Experimental and Clinical Medicine, and Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), University of Florence, Careggi University Hospital, 50134 Florence, Italy; (P.G.); (C.S.); (F.G.); (C.M.); (M.Z.); (A.M.V.)
| | - Alexis Grande
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Silvia Salmoiraghi
- Hematology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (S.S.); (A.R.)
| | - Barbara Mora
- Division of Hematology, Ospedale ASST Sette Laghi, University of Insubria, 21100 Varese, Italy; (B.M.); (F.P.)
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (L.P.); (E.T.); (M.L.)
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Foundation Policlinico San Matteo, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 27100 Pavia, Italy;
| | - Francesco Passamonti
- Division of Hematology, Ospedale ASST Sette Laghi, University of Insubria, 21100 Varese, Italy; (B.M.); (F.P.)
| | | | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy; (T.O.); (R.P.); (M.T.V.)
- Santa Lucia Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), Neuro-Oncohematology, 00179 Rome, Italy
| | - Cristina Mecucci
- Department of Medicine and Surgery, Section of Hematology and Clinical Immunology, University of Perugia, 06129 Perugia, Italy;
| | - Enrico Tagliafico
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (L.P.); (E.T.); (M.L.)
- Center for Genome Research, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (L.P.); (E.T.); (M.L.)
| | - Alessandro Maria Vannucchi
- Department of Experimental and Clinical Medicine, and Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), University of Florence, Careggi University Hospital, 50134 Florence, Italy; (P.G.); (C.S.); (F.G.); (C.M.); (M.Z.); (A.M.V.)
| | - Rossella Manfredini
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
- Correspondence:
| |
Collapse
|
12
|
Visconti VV, Cariati I, Fittipaldi S, Iundusi R, Gasbarra E, Tarantino U, Botta A. DNA Methylation Signatures of Bone Metabolism in Osteoporosis and Osteoarthritis Aging-Related Diseases: An Updated Review. Int J Mol Sci 2021; 22:ijms22084244. [PMID: 33921902 PMCID: PMC8072687 DOI: 10.3390/ijms22084244] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/03/2023] Open
Abstract
DNA methylation is one of the most studied epigenetic mechanisms that play a pivotal role in regulating gene expression. The epigenetic component is strongly involved in aging-bone diseases, such as osteoporosis and osteoarthritis. Both are complex multi-factorial late-onset disorders that represent a globally widespread health problem, highlighting a crucial point of investigations in many scientific studies. In recent years, new findings on the role of DNA methylation in the pathogenesis of aging-bone diseases have emerged. The aim of this systematic review is to update knowledge in the field of DNA methylation associated with osteoporosis and osteoarthritis, focusing on the specific tissues involved in both pathological conditions.
Collapse
Affiliation(s)
- Virginia Veronica Visconti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Ida Cariati
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Simona Fittipaldi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
| | - Riccardo Iundusi
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Umberto Tarantino
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
| |
Collapse
|
13
|
Aurilia C, Donati S, Palmini G, Miglietta F, Iantomasi T, Brandi ML. The Involvement of Long Non-Coding RNAs in Bone. Int J Mol Sci 2021; 22:ijms22083909. [PMID: 33920083 PMCID: PMC8069547 DOI: 10.3390/ijms22083909] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
A harmonious balance between osteoblast and osteoclast activity guarantees optimal bone formation and resorption, pathological conditions affecting the bone may arise. In recent years, emerging evidence has shown that epigenetic mechanisms play an important role during osteoblastogenesis and osteoclastogenesis processes, including long non-coding RNAs (lncRNAs). These molecules are a class of ncRNAs with lengths exceeding 200 nucleotides not translated into protein, that have attracted the attention of the scientific community as potential biomarkers to use for the future development of novel diagnostic and therapeutic approaches for several pathologies, including bone diseases. This review aims to provide an overview of the lncRNAs and their possible molecular mechanisms in the osteoblastogenesis and osteoclastogenesis processes. The deregulation of their expression profiles in common diseases associated with an altered bone turnover is also described. In perspective, lncRNAs could be considered potential innovative molecular biomarkers to help with earlier diagnosis of bone metabolism-related disorders and for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (C.A.); (S.D.); (G.P.); (F.M.); (T.I.)
| | - Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (C.A.); (S.D.); (G.P.); (F.M.); (T.I.)
| | - Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (C.A.); (S.D.); (G.P.); (F.M.); (T.I.)
| | - Francesca Miglietta
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (C.A.); (S.D.); (G.P.); (F.M.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (C.A.); (S.D.); (G.P.); (F.M.); (T.I.)
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (C.A.); (S.D.); (G.P.); (F.M.); (T.I.)
- Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), 50141 Florence, Italy
- Correspondence:
| |
Collapse
|