1
|
Liu D, Siguenza NE, Zarrinpar A, Ding Y. Methods of DNA introduction for the engineering of commensal microbes. ENGINEERING MICROBIOLOGY 2022; 2:100048. [PMID: 39628703 PMCID: PMC11610962 DOI: 10.1016/j.engmic.2022.100048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 12/06/2024]
Abstract
The microbiome is an essential component of ecological systems and is comprised of a diverse array of microbes. Over the past decades, the accumulated observational evidence reveals a close correlation between the microbiome and human health and disease. Many groups are now manipulating individual microbial strains, species and the community as a whole to gain a mechanistic understanding of the functions of the microbiome. Here, we discuss three major approaches for introducing DNA to engineer model bacteria and isolated undomesticated bacteria, including transformation, transduction, and conjugation. We provide an overview of these approaches and describe the advantages and limitations of each method. In addition, we highlight examples of human microbiome engineering using these approaches. Finally, we provide perspectives for the future of microbiome engineering.
Collapse
Affiliation(s)
- Dake Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville 32610, Florida, United States
| | - Nicole E. Siguenza
- Division of Gastroenterology, Center for Microbiome Innovation, University of California, La Jolla, San Diego 92093, California , United States
| | - Amir Zarrinpar
- Division of Gastroenterology, Center for Microbiome Innovation, University of California, La Jolla, San Diego 92093, California , United States
- VA San Diego Health System, La Jolla 92161, California, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville 32610, Florida, United States
| |
Collapse
|
2
|
Saylor TC, Casselli T, Lethbridge KG, Moore JP, Owens KM, Brissette CA, Zückert WR, Stevenson B. Borrelia burgdorferi, the Lyme disease spirochete, possesses genetically-encoded responses to doxycycline, but not to amoxicillin. PLoS One 2022; 17:e0274125. [PMID: 36178885 PMCID: PMC9524633 DOI: 10.1371/journal.pone.0274125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Some species of bacteria respond to antibiotic stresses by altering their transcription profiles, in order to produce proteins that provide protection against the antibiotic. Understanding these compensatory mechanisms allows for informed treatment strategies, and could lead to the development of improved therapeutics. To this end, studies were performed to determine whether Borrelia burgdorferi, the spirochetal agent of Lyme disease, also exhibits genetically-encoded responses to the commonly prescribed antibiotics doxycycline and amoxicillin. After culturing for 24 h in a sublethal concentration of doxycycline, there were significant increases in a substantial number of transcripts for proteins that are involved with translation. In contrast, incubation with a sublethal concentration of amoxicillin did not lead to significant changes in levels of any bacterial transcript. We conclude that B. burgdorferi has a mechanism(s) that detects translational inhibition by doxycycline, and increases production of mRNAs for proteins involved with translation machinery in an attempt to compensate for that stress.
Collapse
Affiliation(s)
- Timothy C. Saylor
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, School of Medicine, Lexington, Kentucky, United States of America
| | - Timothy Casselli
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Kathryn G. Lethbridge
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, School of Medicine, Lexington, Kentucky, United States of America
| | - Jessamyn P. Moore
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, School of Medicine, Lexington, Kentucky, United States of America
| | - Katie M. Owens
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, School of Medicine, Lexington, Kentucky, United States of America
| | - Catherine A. Brissette
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Wolfram R. Zückert
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kentucky, United States of America
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, School of Medicine, Lexington, Kentucky, United States of America
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
3
|
Kapteijn R, Shitut S, Aschmann D, Zhang L, de Beer M, Daviran D, Roverts R, Akiva A, van Wezel GP, Kros A, Claessen D. Endocytosis-like DNA uptake by cell wall-deficient bacteria. Nat Commun 2022; 13:5524. [PMID: 36138004 PMCID: PMC9500057 DOI: 10.1038/s41467-022-33054-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Horizontal gene transfer in bacteria is widely believed to occur via conjugation, transduction and transformation. These mechanisms facilitate the passage of DNA across the protective cell wall using sophisticated machinery. Here, we report that cell wall-deficient bacteria can engulf DNA and other extracellular material via an endocytosis-like process. Specifically, we show that L-forms of the filamentous actinomycete Kitasatospora viridifaciens can take up plasmid DNA, polysaccharides (dextran) and 150-nm lipid nanoparticles. The process involves invagination of the cytoplasmic membrane, leading to formation of intracellular vesicles that encapsulate extracellular material. DNA uptake is not affected by deletion of genes homologous to comEC and comEA, which are required for natural transformation in other species. However, uptake is inhibited by sodium azide or incubation at 4 °C, suggesting the process is energy-dependent. The encapsulated materials are released into the cytoplasm upon degradation of the vesicle membrane. Given that cell wall-deficient bacteria are considered a model for early life forms, our work reveals a possible mechanism for primordial cells to acquire food or genetic material before invention of the bacterial cell wall. Horizontal gene transfer in bacteria can occur through mechanisms such as conjugation, transduction and transformation, which facilitate the passage of DNA across the cell wall. Here, Kapteijn et al. show that cell wall-deficient bacteria can take up DNA and other extracellular materials via an endocytosis-like process.
Collapse
Affiliation(s)
- Renée Kapteijn
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands
| | - Shraddha Shitut
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands
| | - Dennis Aschmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333, Leiden, The Netherlands
| | - Le Zhang
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands
| | - Marit de Beer
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Nijmegen, The Netherlands
| | - Deniz Daviran
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Nijmegen, The Netherlands
| | - Rona Roverts
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Nijmegen, The Netherlands
| | - Anat Akiva
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Nijmegen, The Netherlands
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands.
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333, Leiden, The Netherlands
| | - Dennis Claessen
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands.
| |
Collapse
|