1
|
Quan T, Li R, Gao T. Role of Mitochondrial Dynamics in Skin Homeostasis: An Update. Int J Mol Sci 2025; 26:1803. [PMID: 40076431 PMCID: PMC11898645 DOI: 10.3390/ijms26051803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 03/14/2025] Open
Abstract
Skin aging is the most prominent phenotype of host aging and is the consequence of a combination of genes and environment. Improving skin aging is essential for maintaining the healthy physiological function of the skin and the mental health of the human body. Mitochondria are vital organelles that play important roles in cellular mechanisms, including energy production and free radical balance. However, mitochondrial metabolism, mitochondrial dynamics, biogenesis, and degradation processes vary greatly in various cells in the skin. It is well known that mitochondrial dysfunction can promote the aging and its associated diseases of the skin, resulting in the damage of skin physiology and the occurrence of skin pathology. In this review, we summarize the important role of mitochondria in various skin cells, review the cellular responses to vital steps in mitochondrial quality regulation, mitochondrial dynamics, mitochondrial biogenesis, and mitochondrial phagocytosis, and describe their importance and specific pathways in skin aging.
Collapse
Affiliation(s)
| | | | - Ting Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (T.Q.); (R.L.)
| |
Collapse
|
2
|
Zhao Y, Yin N, Yang R, Faiola F. Recent advances in environmental toxicology: Exploring gene editing, organ-on-a-chip, chimeric animals, and in silico models. Food Chem Toxicol 2024; 193:115022. [PMID: 39326696 DOI: 10.1016/j.fct.2024.115022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
In our daily life, we are exposed to various environmental pollutants in multiple ways. At present, we mainly rely on animal models and two-dimensional cell culture models to evaluate the toxicity of environmental pollutants. Nevertheless, results in animal models do not always apply to humans because of differences between species, while two-dimensional cell culture models cannot replicate the in vivo microenvironments, making it difficult to predict the true toxic response of environmental pollutants in humans. The development of various high-end technologies in recent years has provided new opportunities for environmental toxicology research. The application of these high-end technologies in environmental toxicology can complement the limitations of traditional environmental toxicology screening and more accurately predict the toxicity of environmental pollutants. In this review, we first introduce the advantages and disadvantages of traditional environmental toxicology methods, then review the principles and development of four high-end technologies, such as gene editing, organ-on-a-chip, chimeric animals, and in silico models, summarize their application in toxicity testing, and finally emphasize their importance/potential in environmental toxicology.
Collapse
Affiliation(s)
- Yanyi Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Cho SW, Malick H, Kim SJ, Grattoni A. Advances in Skin-on-a-Chip Technologies for Dermatological Disease Modeling. J Invest Dermatol 2024; 144:1707-1715. [PMID: 38493383 DOI: 10.1016/j.jid.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 03/18/2024]
Abstract
Skin-on-a-chip (SoC) technologies are emerging as a paradigm shift in dermatology research by replicating human physiology in a dynamic manner not achievable by current animal models. Although animal models have contributed to successful clinical trials, their ability to predict human outcomes remains questionable, owing to inherent differences in skin anatomy and immune response. Covering areas including infectious diseases, autoimmune skin conditions, wound healing, drug toxicity, aging, and antiaging, SoC aims to circumvent the inherent disparities created by traditional models. In this paper, we review current SoC technologies, highlighting their potential as an alternative to animal models for a deeper understanding of complex skin conditions.
Collapse
Affiliation(s)
- Seo Won Cho
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA; Texas A&M University School of Medicine, College Station, Texas, USA
| | - Hamza Malick
- Texas A&M University School of Medicine, College Station, Texas, USA
| | - Soo Jung Kim
- Department of Dermatology, Baylor College of Medicine, Houston, Texas, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA; Department of Surgery, Houston Methodist Hospital, Houston, Texas, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texas, USA.
| |
Collapse
|
4
|
Ismayilzada N, Tarar C, Dabbagh SR, Tokyay BK, Dilmani SA, Sokullu E, Abaci HE, Tasoglu S. Skin-on-a-chip technologies towards clinical translation and commercialization. Biofabrication 2024; 16:042001. [PMID: 38964314 DOI: 10.1088/1758-5090/ad5f55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Skin is the largest organ of the human body which plays a critical role in thermoregulation, metabolism (e.g. synthesis of vitamin D), and protection of other organs from environmental threats, such as infections, microorganisms, ultraviolet radiation, and physical damage. Even though skin diseases are considered to be less fatal, the ubiquity of skin diseases and irritation caused by them highlights the importance of skin studies. Furthermore, skin is a promising means for transdermal drug delivery, which requires a thorough understanding of human skin structure. Current animal andin vitrotwo/three-dimensional skin models provide a platform for disease studies and drug testing, whereas they face challenges in the complete recapitulation of the dynamic and complex structure of actual skin tissue. One of the most effective methods for testing pharmaceuticals and modeling skin diseases are skin-on-a-chip (SoC) platforms. SoC technologies provide a non-invasive approach for examining 3D skin layers and artificially creating disease models in order to develop diagnostic or therapeutic methods. In addition, SoC models enable dynamic perfusion of culture medium with nutrients and facilitate the continuous removal of cellular waste to further mimic thein vivocondition. Here, the article reviews the most recent advances in the design and applications of SoC platforms for disease modeling as well as the analysis of drugs and cosmetics. By examining the contributions of different patents to the physiological relevance of skin models, the review underscores the significant shift towards more ethical and efficient alternatives to animal testing. Furthermore, it explores the market dynamics ofin vitroskin models and organ-on-a-chip platforms, discussing the impact of legislative changes and market demand on the development and adoption of these advanced research tools. This article also identifies the existing obstacles that hinder the advancement of SoC platforms, proposing directions for future improvements, particularly focusing on the journey towards clinical adoption.
Collapse
Affiliation(s)
- Nilufar Ismayilzada
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | - Ceren Tarar
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | | | - Begüm Kübra Tokyay
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Sara Asghari Dilmani
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Emel Sokullu
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University, New York City, NY, United States of America
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Turkey
| |
Collapse
|
5
|
Kumar D, Nadda R, Repaka R. Advances and challenges in organ-on-chip technology: toward mimicking human physiology and disease in vitro. Med Biol Eng Comput 2024; 62:1925-1957. [PMID: 38436835 DOI: 10.1007/s11517-024-03062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Organs-on-chips have been tissues or three-dimensional (3D) mini-organs that comprise numerous cell types and have been produced on microfluidic chips to imitate the complicated structures and interactions of diverse cell types and organs under controlled circumstances. Several morphological and physiological distinctions exist between traditional 2D cultures, animal models, and the growing popular 3D cultures. On the other hand, animal models might not accurately simulate human toxicity because of physiological variations and interspecies metabolic capability. The on-chip technique allows for observing and understanding the process and alterations occurring in metastases. The present study aimed to briefly overview single and multi-organ-on-chip techniques. The current study addresses each platform's essential benefits and characteristics and highlights recent developments in developing and utilizing technologies for single and multi-organs-on-chips. The study also discusses the drawbacks and constraints associated with these models, which include the requirement for standardized procedures and the difficulties of adding immune cells and other intricate biological elements. Finally, a comprehensive review demonstrated that the organs-on-chips approach has a potential way of investigating organ function and disease. The advancements in single and multi-organ-on-chip structures can potentially increase drug discovery and minimize dependency on animal models, resulting in improved therapies for human diseases.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
| | - Rahul Nadda
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India.
| | - Ramjee Repaka
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
| |
Collapse
|
6
|
Asbóth D, Bánfi B, Kocsis D, Erdő F. Rodent models of dermatological disorders. Ital J Dermatol Venerol 2024; 159:303-317. [PMID: 38287740 DOI: 10.23736/s2784-8671.23.07700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
To assess the possible beneficial effects of drugs and drug candidates, different dermatological disease models are available in rodents. These models are able to mimic one or more characteristic features of the disorders, but not completely recapitulate the pathogenesis of the human skin diseases. Therefore, to improve the technology many new models have been developed both by genetic engineering and by chemical or physical induction. Currently the in vivo rodent models provide the physiologically most relevant approach to produce the pathology related to the majority of dermatological diseases. In this short review some widely used animal techniques (psoriasis, allergic contact dermatitis, atopic dermatitis, wound healing, melanoma and non-melanoma type skin cancers and UV erythema) are shown which are currently applied in pharmacological, pharmacokinetic, pharmaceutical and dermatological research. First the main points of the human pathomechanism are shown and afterwards the rodent models are briefly discussed. Finally critical evaluation is provided by the authors. However, according to the 3R rule the number of experimental animals is strongly suggested to be reduced, therefore the advanced in vitro and ex vivo techniques become more and more important contrary to in vivo preclinical methods also in dermatological research. As it is described in the outlook section, although the 2D/3D in vitro and skin on-a-chip techniques are promising and have many advantages they are not able to completely substitute the animal models in their vascular, immunological, secretory and neural complexity.
Collapse
Affiliation(s)
- Dorottya Asbóth
- Pediatric Dermatology Center, Szent János Center Hospital in North Buda, Budapest, Hungary
| | - Barnabás Bánfi
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Faculty of Science, Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary -
| |
Collapse
|
7
|
Fernandez-Carro E, Remacha AR, Orera I, Lattanzio G, Garcia-Barrios A, del Barrio J, Alcaine C, Ciriza J. Human Dermal Decellularized ECM Hydrogels as Scaffolds for 3D In Vitro Skin Aging Models. Int J Mol Sci 2024; 25:4020. [PMID: 38612828 PMCID: PMC11011913 DOI: 10.3390/ijms25074020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Biomaterials play an important role in the development of advancing three dimensional (3D) in vitro skin models, providing valuable insights for drug testing and tissue-specific modeling. Commercial materials, such as collagen, fibrin or alginate, have been widely used in skin modeling. However, they do not adequately represent the molecular complexity of skin components. On this regard, the development of novel biomaterials that represent the complexity of tissues is becoming more important in the design of advanced models. In this study, we have obtained aged human decellularized dermal extracellular matrix (dECM) hydrogels extracted from cadaveric human skin and demonstrated their potential as scaffold for advanced skin models. These dECM hydrogels effectively reproduce the complex fibrillar structure of other common scaffolds, exhibiting similar mechanical properties, while preserving the molecular composition of the native dermis. It is worth noting that fibroblasts embedded within human dECM hydrogels exhibit a behavior more representative of natural skin compared to commercial collagen hydrogels, where uncontrolled cell proliferation leads to material shrinkage. The described human dECM hydrogel is able to be used as scaffold for dermal fibroblasts in a skin aging-on-a-chip model. These results demonstrate that dECM hydrogels preserve essential components of the native human dermis making them a suitable option for the development of 3D skin aging models that accurately represent the cellular microenvironment, improving existing in vitro skin models and allowing for more reliable results in dermatopathological studies.
Collapse
Affiliation(s)
- Estibaliz Fernandez-Carro
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Ana Rosa Remacha
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
| | - Irene Orera
- Proteomics Research Core Facility, Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain; (I.O.)
| | - Giuseppe Lattanzio
- Proteomics Research Core Facility, Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain; (I.O.)
| | - Alberto Garcia-Barrios
- Department of Anatomy and Histology, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Jesús del Barrio
- Departamento de Química Orgánica, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - Clara Alcaine
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Jesús Ciriza
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain
- Department of Anatomy and Histology, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
8
|
Ponmozhi J, Dhinakaran S, Kocsis D, Iván K, Erdő F. Models for barrier understanding in health and disease in lab-on-a-chips. Tissue Barriers 2024; 12:2221632. [PMID: 37294075 PMCID: PMC11042069 DOI: 10.1080/21688370.2023.2221632] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
The maintenance of body homeostasis relies heavily on physiological barriers. Dysfunction of these barriers can lead to various pathological processes, including increased exposure to toxic materials and microorganisms. Various methods exist to investigate barrier function in vivo and in vitro. To investigate barrier function in a highly reproducible manner, ethically, and high throughput, researchers have turned to non-animal techniques and micro-scale technologies. In this comprehensive review, the authors summarize the current applications of organ-on-a-chip microfluidic devices in the study of physiological barriers. The review covers the blood-brain barrier, ocular barriers, dermal barrier, respiratory barriers, intestinal, hepatobiliary, and renal/bladder barriers under both healthy and pathological conditions. The article then briefly presents placental/vaginal, and tumour/multi-organ barriers in organ-on-a-chip devices. Finally, the review discusses Computational Fluid Dynamics in microfluidic systems that integrate biological barriers. This article provides a concise yet informative overview of the current state-of-the-art in barrier studies using microfluidic devices.
Collapse
Affiliation(s)
- J. Ponmozhi
- Microfluidics Laboratory, Department of Mechanical Engineering, IPS Academy-Institute of Engineering Science, Indore, India
| | - S. Dhinakaran
- The Centre for Fluid Dynamics, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Kristóf Iván
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
9
|
Galvan A, Pellicciari C, Calderan L. Recreating Human Skin In Vitro: Should the Microbiota Be Taken into Account? Int J Mol Sci 2024; 25:1165. [PMID: 38256238 PMCID: PMC10816982 DOI: 10.3390/ijms25021165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Skin plays crucial roles in the human body: besides protecting the organism from external threats, it acts as a thermal regulator, is responsible for the sense of touch, hosts microbial communities (the skin microbiota) involved in preventing the invasion of foreign pathogens, contains immunocompetent cells that maintain a healthy immunogenic/tolerogenic balance, and is a suitable route for drug administration. In the skin, four defense levels can be identified: besides the physical, chemical, and immune barriers that are inherent to the tissue, the skin microbiota (i.e., the numerous microorganisms living on the skin surface) provides an additional barrier. Studying the skin barrier function or the effects of drugs or cosmetic agents on human skin is a difficult task since snapshot evidence can only be obtained using bioptic samples where dynamic processes cannot properly be followed. To overcome these limitations, many different in vitro models of human skin have been developed that are characterized by diverse levels of complexity in terms of chemical, structural, and cellular composition. The aim of this review is to summarize and discuss the advantages and disadvantages of the different human skin models so far available and to underline how the insertion of a proper microbiota would positively impact an in vitro human skin model in an attempt to better mimic conditions in vivo.
Collapse
Affiliation(s)
- Andrea Galvan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.G.); (L.C.)
| | - Carlo Pellicciari
- Department of Biology and Biotechnology, University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Laura Calderan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.G.); (L.C.)
| |
Collapse
|
10
|
Kim K, Jang H, Kim E, Kim H, Sung GY. Recent advances in understanding the role of the skin microbiome in the treatment of atopic dermatitis. Exp Dermatol 2023; 32:2048-2061. [PMID: 37767872 DOI: 10.1111/exd.14940] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/31/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
The skin is the largest organ in the human body, and histologically consists of the epidermis, dermis and subcutaneous tissue. Humans maintain a cooperative symbiotic relationship with their skin microbiota, a complex community of bacteria, fungi and viruses that live on the surface of the skin, and which act as a barrier to protect the body from the inside and outside. The skin is a 'habitat' and vast 'ecosystem' inhabited by countless microbes; as such, relationships have been forged through millions of years of coevolution. It is not surprising then that microbes are key participants in shaping and maintaining essential physiological processes. In addition to maintaining barrier function, the unique symbiotic microbiota that colonizes the skin increases the immune response and provides protection against pathogenic microbes. This review examines our current understanding of skin microbes in shaping and enhancing the skin barrier, as well as skin microbiome-host interactions and their roles in skin diseases, such as atopic dermatitis (AD). We also report on the current status of AD therapeutic drugs that target the skin microbiome, related research on current therapeutic strategies, and the limitations and future considerations of skin microbiome research. In particular, as a future strategy, we discuss the need for a skin-on-a-chip-based microphysiological system research model amenable to biomimetic in vitro studies and human skin equivalent models, including skin appendages.
Collapse
Affiliation(s)
- Kyunghee Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
| | - Hyeji Jang
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
| | - Eunyul Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
| | - Hyeju Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
| | - Gun Yong Sung
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
- Major in Materials Science and Engineering, Hallym University, Chuncheon, Korea
| |
Collapse
|
11
|
Monteduro AG, Rizzato S, Caragnano G, Trapani A, Giannelli G, Maruccio G. Organs-on-chips technologies – A guide from disease models to opportunities for drug development. Biosens Bioelectron 2023; 231:115271. [PMID: 37060819 DOI: 10.1016/j.bios.2023.115271] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 11/24/2022] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Current in-vitro 2D cultures and animal models present severe limitations in recapitulating human physiopathology with striking discrepancies in estimating drug efficacy and side effects when compared to human trials. For these reasons, microphysiological systems, organ-on-chip and multiorgans microdevices attracted considerable attention as novel tools for high-throughput and high-content research to achieve an improved understanding of diseases and to accelerate the drug development process towards more precise and eventually personalized standards. This review takes the form of a guide on this fast-growing field, providing useful introduction to major themes and indications for further readings. We start analyzing Organs-on-chips (OOC) technologies for testing the major drug administration routes: (1) oral/rectal route by intestine-on-a-chip, (2) inhalation by lung-on-a-chip, (3) transdermal by skin-on-a-chip and (4) intravenous through vascularization models, considering how drugs penetrate in the bloodstream and are conveyed to their targets. Then, we focus on OOC models for (other) specific organs and diseases: (1) neurodegenerative diseases with brain models and blood brain barriers, (2) tumor models including their vascularization, organoids/spheroids, engineering and screening of antitumor drugs, (3) liver/kidney on chips and multiorgan models for gastrointestinal diseases and metabolic assessment of drugs and (4) biomechanical systems recapitulating heart, muscles and bones structures and related diseases. Successively, we discuss technologies and materials for organ on chips, analyzing (1) microfluidic tools for organs-on-chips, (2) sensor integration for real-time monitoring, (3) materials and (4) cell lines for organs on chips. (Nano)delivery approaches for therapeutics and their on chip assessment are also described. Finally, we conclude with a critical discussion on current significance/relevance, trends, limitations, challenges and future prospects in terms of revolutionary impact on biomedical research, preclinical models and drug development.
Collapse
Affiliation(s)
- Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Silvia Rizzato
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Giusi Caragnano
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
12
|
Jeong S, Na Y, Nam HM, Sung GY. Skin-on-a-chip strategies for human hair follicle regeneration. Exp Dermatol 2023; 32:13-23. [PMID: 36308297 DOI: 10.1111/exd.14699] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 01/06/2023]
Abstract
The number of hair loss patients increases every year, and hair loss treatment has several limitations, so research on hair is attracting attention recently. However, most current hair follicle research models are limited by their inability to replicate several key functions of the hair follicle microenvironment. To complement this, an in vitro culture system similar to the in vivo environment must be constructed. It is necessary to develop a hair-on-a-chip that implements a fully functional hair follicle model by reproducing the main characteristics of hair follicle morphogenesis and cycle. In this review, we summarize the gradation of hair follicle morphogenesis and the roles and mechanisms of molecular signals involved in the hair follicle cycle. In addition, we discuss research results of various in vitro organoid products and organ-on-a-chip-based hair follicle tissue chips for the treatment of alopecia and present future research and development directions.
Collapse
Affiliation(s)
- Subin Jeong
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, South Korea.,Integrative Materials Research Institute, Hallym University, Chuncheon, South Korea
| | - Yoojin Na
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, South Korea.,Integrative Materials Research Institute, Hallym University, Chuncheon, South Korea
| | - Hyeon-Min Nam
- Integrative Materials Research Institute, Hallym University, Chuncheon, South Korea.,Major in Materials Science and Engineering, Hallym University, Chuncheon, South Korea
| | - Gun Yong Sung
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, South Korea.,Integrative Materials Research Institute, Hallym University, Chuncheon, South Korea.,Major in Materials Science and Engineering, Hallym University, Chuncheon, South Korea
| |
Collapse
|
13
|
Tan SH, Chua DAC, Tang JRJ, Bonnard C, Leavesley D, Liang K. Design of Hydrogel-based Scaffolds for in vitro Three-dimensional Human Skin Model Reconstruction. Acta Biomater 2022; 153:13-37. [DOI: 10.1016/j.actbio.2022.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/01/2022]
|
14
|
Sun W, Liu Z, Xu J, Cheng Y, Yin R, Ma L, Li H, Qian X, Zhang H. 3D skin models along with skin-on-a-chip systems: A critical review. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Phang SJ, Basak S, Teh HX, Packirisamy G, Fauzi MB, Kuppusamy UR, Neo YP, Looi ML. Advancements in Extracellular Matrix-Based Biomaterials and Biofabrication of 3D Organotypic Skin Models. ACS Biomater Sci Eng 2022; 8:3220-3241. [PMID: 35861577 DOI: 10.1021/acsbiomaterials.2c00342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last decades, three-dimensional (3D) organotypic skin models have received enormous attention as alternative models to in vivo animal models and in vitro two-dimensional assays. To date, most organotypic skin models have an epidermal layer of keratinocytes and a dermal layer of fibroblasts embedded in an extracellular matrix (ECM)-based biomaterial. The ECM provides mechanical support and biochemical signals to the cells. Without advancements in ECM-based biomaterials and biofabrication technologies, it would have been impossible to create organotypic skin models that mimic native human skin. In this review, the use of ECM-based biomaterials in the reconstruction of skin models, as well as the study of complete ECM-based biomaterials, such as fibroblasts-derived ECM and decellularized ECM as a better biomaterial, will be highlighted. We also discuss the benefits and drawbacks of several biofabrication processes used in the fabrication of ECM-based biomaterials, such as conventional static culture, electrospinning, 3D bioprinting, and skin-on-a-chip. Advancements and future possibilities in modifying ECM-based biomaterials to recreate disease-like skin models will also be highlighted, given the importance of organotypic skin models in disease modeling. Overall, this review provides an overview of the present variety of ECM-based biomaterials and biofabrication technologies available. An enhanced organotypic skin model is expected to be produced in the near future by combining knowledge from previous experiences and current research.
Collapse
Affiliation(s)
- Shou Jin Phang
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Soumyadeep Basak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247 667, Uttarakhand, India
| | - Huey Xhin Teh
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247 667, Uttarakhand, India
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yun Ping Neo
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Mee Lee Looi
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Al-Oudah GA, Sahib AS, Al-Hattab MK, Al-Ameedee AA. Effect of CoQ10 Administration to Psoriatic Iraqi Patients on Biological Therapy Upon Severity Index (PASI) and Quality of Life Index (DLQI) Before and After Therapy. JOURNAL OF POPULATION THERAPEUTICS AND CLINICAL PHARMACOLOGY = JOURNAL DE LA THERAPEUTIQUE DES POPULATIONS ET DE LA PHARMACOLOGIE CLINIQUE 2022; 29:e52-e60. [PMID: 35848197 DOI: 10.47750/jptcp.2022.931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 06/15/2023]
Abstract
Psoriasis is a medical condition in which the skin of the body is affected at a multisytemic level. Patients with moderate to severe psoriasis have a considerably reduced quality of life as a result of their disease. For morphological indicators, the Psoriasis Area Severity Index (PASI) test is one of the methods for indicating the severity of the illness. An imbalance between pro-oxidants and antioxidants in our bodies causes oxidative stress and plays a crucial role in the pathophysiology of chronic inflammatory diseases like psoriasis(1). It has been considered that antioxidant treatment can be an effective therapeutic option. The goal of this clinical investigation was to see if there was a link between the percentage change in quality of life and the clinical severity of psoriasis during a 12-week period among Iraqi psoriatic patients. Over the course of 3 months, 24 psoriatic patients (9 females and 15 males) ranging in age from 17 to 72 years participated in a prospective double-blinded clinical experiment. Two groups of participants were formed. A biological medicine (adalimumab) and a placebo was given to group A (n = 11), whereas group B (n = 13) received 100 mg CoQ10 adjuvant therapy in addition to the biological medication already provided. The Psoriasis Area and Severity Index (PASI) and the Dermatology Life Quality Index (DLQI) were used to examine patients (DLQI). Treatment with both biological and adjuvant CoQ10 therapy showed a substantial association between the PASI and the DLQI (p = 0.000132). After 3 months of therapy, the mean (SD) of the PASI score for all patients was 20.88 7.15, with a 67.48% ± 22.25% improvement change. The mean SD of the DLQI score at baseline was 12.5 ± 4.71, with a change of 56.13% ± 20.15% following treatment. After therapy with a biological medication, there was a favorable association between the PASI and the DLQI (p > 0.05). This indicates that therapy with a biological medication with daily administration of 100 mg CoQ10 supplements to psoriatic patients for 12 weeks improved the correlation between PASI and DLQI.
Collapse
Affiliation(s)
- Ghadah Ali Al-Oudah
- Department of Pharmacology, College of Pharmacy University of Mustansiriyah, Iraq
- Department of Pharmacy, Al-Mustaqbal University College, Hilla, Iraq;
| | - Ahmed Salih Sahib
- Department of Pharmacology, College of Pharmacy, University of Kerbala, Kerbala, Iraq
| | - Mohammed K Al-Hattab
- Department of Dermatology, Hammurabi Medical College, University of Babylon, Iraq
| | - Ali Ameer Al-Ameedee
- MBChB Resident Doctor at Babil Health Directorate, Iraqi Ministry of Health, Iraq
| |
Collapse
|
17
|
Journey of organ on a chip technology and its role in future healthcare scenario. APPLIED SURFACE SCIENCE ADVANCES 2022; 9. [PMCID: PMC9000345 DOI: 10.1016/j.apsadv.2022.100246] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Organ on a chip refers to microengineered biomimetic system which reflects structural and functional characteristics of human tissue. It involves biomaterial technology, cell biology and engineering combined together in a miniaturized platform. Several models using different organs such as lungs on a chip, liver on a chip, kidney on a chip, heart on a chip, intestine on a chip and skin on a chip have been successfully developed. Food and Drug administration (FDA) has also shown confidence in this technology and has partnered with industries/institutes which are working with this technology. In this review, the concepts and applications of Organ on a chip model in different scientific domains including disease model development, drug screening, toxicology, pathogenesis study, efficacy testing and virology is discussed. It is envisaged that amalgamation of various organs on chip modules into a unified body on chip device is of utmost importance for diagnosis and treatment, especially considering the complications due to the ongoing COVID-19 pandemic. It is expected that the market demand for developing organ on chip devices to skyrocket in the near future.
Collapse
|
18
|
Wikramanayake TC, Chéret J, Sevilla A, Birch-Machin M, Paus R. Targeting mitochondria in dermatological therapy: Beyond oxidative damage and skin aging. Expert Opin Ther Targets 2022; 26:233-259. [PMID: 35249436 DOI: 10.1080/14728222.2022.2049756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The analysis of the role of the mitochondria in oxidative damage and skin aging is a significant aspect of dermatological research. Mitochondria generate most reactive oxygen species (ROS); however, excessive ROS are cytotoxic and DNA-damaging and promote (photo-)aging. ROS also possesses key physiological and regulatory functions and mitochondrial dysfunction is prominent in several skin diseases including skin cancers. Although many standard dermatotherapeutics modulate mitochondrial function, dermatological therapy rarely targets the mitochondria. Accordingly, there is a rationale for "mitochondrial dermatology"-based approaches to be applied to therapeutic research. AREAS COVERED This paper examines the functions of mitochondria in cutaneous physiology beyond energy (ATP) and ROS production. Keratinocyte differentiation and epidermal barrier maintenance, appendage morphogenesis and homeostasis, photoaging and skin cancer are considered. Based on related PubMed search results, the paper evaluates thyroid hormones, glucocorticoids, Vitamin D3 derivatives, retinoids, cannabinoid receptor agonists, PPARγ agonists, thyrotropin, and thyrotropin-releasing hormone as instructive lead compounds. Moreover, the mitochondrial protein MPZL3 as a promising new drug target for future "mitochondrial dermatology" is highlighted. EXPERT OPINION Future dermatological therapeutic research should have a mitochondrial medicine emphasis. Focusing on selected lead agents, protein targets, in silico drug design, and model diseases will fertilize a mito-centric approach.
Collapse
Affiliation(s)
- Tongyu C Wikramanayake
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Molecular Cell and Developmental Biology Program, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Jérémy Chéret
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Alec Sevilla
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Mark Birch-Machin
- Dermatological Sciences, Translational and Clinical Research Institute, and The UK National Innovation Centre for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Paus
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
19
|
Development of an Aged Full-Thickness Skin Model Using Flexible Skin-on-a-Chip Subjected to Mechanical Stimulus Reflecting the Circadian Rhythm. Int J Mol Sci 2021; 22:ijms222312788. [PMID: 34884594 PMCID: PMC8657468 DOI: 10.3390/ijms222312788] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
The skin is subject to both intrinsic aging caused by metabolic processes in the body and extrinsic aging caused by exposure to environmental factors. Intrinsic aging is an important obstacle to in vitro experimentation as its long-term progression is difficult to replicate. Here, we accelerated aging of a full-thickness skin equivalent by applying periodic mechanical stimulation, replicating the circadian rhythm for 28 days. This aging skin model was developed by culturing a full-thickness, three-dimensional skin equivalent with human fibroblasts and keratinocytes to produce flexible skin-on-a-chip. Accelerated aging associated with periodic compressive stress was evidenced by reductions in the epidermal layer thickness, contraction rate, and secretion of Myb. Increases in β-galactosidase gene expression and secretion of reactive oxygen species and transforming growth factor-β1 were also observed. This in vitro aging skin model is expected to greatly accelerate drug development for skin diseases and cosmetics that cannot be tested on animals.
Collapse
|
20
|
Joseph X, Akhil V, Arathi A, Mohanan PV. Comprehensive Development in Organ-On-A-Chip Technology. J Pharm Sci 2021; 111:18-31. [PMID: 34324944 DOI: 10.1016/j.xphs.2021.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022]
Abstract
The expeditious advancement in the organ on chip technology provided a phase change to the conventional in vitro tests used to evaluate absorption, distribution, metabolism, excretion (ADME) studies and toxicity assessments. The demand for an accurate predictive model for assessing toxicity and reducing the potential risk factors became the prime area of any drug delivery process. Researchers around the globe are welcoming the incorporation of organ-on-a-chips for ADME and toxicity evaluation. Organ-on-a-chip (OOC) is an interdisciplinary technology that evolved as a contemporary in vitro model for the pharmacokinetics and pharmacodynamics (PK-PD) studies of a proposed drug candidate in the pre-clinical phases of drug development. The OOC provides a platform that mimics the physiological functions occurring in the human body. The precise flow control systems and the rapid sample processing makes OOC more advanced than the conventional two-dimensional (2D) culture systems. The integration of various organs as in the multi organs-on-a-chip provides more significant ideas about the time and dose dependant effects occurring in the body when a new drug molecule is administered as part of the pre-clinical times. This review outlines the comprehensive development in the organ-on-a-chip technology, various OOC models and its drug development applications, toxicity evaluation and efficacy studies.
Collapse
Affiliation(s)
- X Joseph
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India
| | - V Akhil
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India
| | - A Arathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India.
| |
Collapse
|
21
|
Risueño I, Valencia L, Jorcano JL, Velasco D. Skin-on-a-chip models: General overview and future perspectives. APL Bioeng 2021; 5:030901. [PMID: 34258497 PMCID: PMC8270645 DOI: 10.1063/5.0046376] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/10/2021] [Indexed: 01/13/2023] Open
Abstract
Over the last few years, several advances have been made toward the development and production of in vitro human skin models for the analysis and testing of cosmetic and pharmaceutical products. However, these skin models are cultured under static conditions that make them unable to accurately represent normal human physiology. Recent interest has focused on the generation of in vitro 3D vascularized skin models with dynamic perfusion and microfluidic devices known as skin-on-a-chip. These platforms have been widely described in the literature as good candidates for tissue modeling, as they enable a more physiological transport of nutrients and permit a high-throughput and less expensive evaluation of drug candidates in terms of toxicity, efficacy, and delivery. In this Perspective, recent advances in these novel platforms for the generation of human skin models under dynamic conditions for in vitro testing are reported. Advances in vascularized human skin equivalents (HSEs), transferred skin-on-a-chip (introduction of a skin biopsy or a HSE in the chip), and in situ skin-on-a-chip (generation of the skin model directly in the chip) are critically reviewed, and currently used methods for the introduction of skin cells in the microfluidic chips are discussed. An outlook on current applications and future directions in this field of research are also presented.
Collapse
Affiliation(s)
- I Risueño
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28911 Leganés (Madrid), Spain
| | - L Valencia
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28911 Leganés (Madrid), Spain
| | - J L Jorcano
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28911 Leganés (Madrid), Spain
| | | |
Collapse
|
22
|
Ponmozhi J, Dhinakaran S, Varga-Medveczky Z, Fónagy K, Bors LA, Iván K, Erdő F. Development of Skin-On-A-Chip Platforms for Different Utilizations: Factors to Be Considered. MICROMACHINES 2021; 12:mi12030294. [PMID: 33802208 PMCID: PMC8001759 DOI: 10.3390/mi12030294] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
There is increasing interest in miniaturized technologies in diagnostics, therapeutic testing, and biomedicinal fundamental research. The same is true for the dermal studies in topical drug development, dermatological disease pathology testing, and cosmetic science. This review aims to collect the recent scientific literature and knowledge about the application of skin-on-a-chip technology in drug diffusion studies, in pharmacological and toxicological experiments, in wound healing, and in fields of cosmetic science (ageing or repair). The basic mathematical models are also presented in the article to predict physical phenomena, such as fluid movement, drug diffusion, and heat transfer taking place across the dermal layers in the chip using Computational Fluid Dynamics techniques. Soon, it can be envisioned that animal studies might be at least in part replaced with skin-on-a-chip technology leading to more reliable results close to study on humans. The new technology is a cost-effective alternative to traditional methods used in research institutes, university labs, and industry. With this article, the authors would like to call attention to a new investigational family of platforms to refresh the researchers’ theranostics and preclinical, experimental toolbox.
Collapse
Affiliation(s)
- J. Ponmozhi
- Microfluidics Laboratory, Department of Mechanical Engineering, IPS Academy-Institute of Engineering Science, Indore 452012, India;
| | - S. Dhinakaran
- The Centre for Fluid Dynamics, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore 453552, India;
| | - Zsófia Varga-Medveczky
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
| | - Katalin Fónagy
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
| | - Luca Anna Bors
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
- Heart and Vascular Centre, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary
| | - Kristóf Iván
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
- Correspondence:
| |
Collapse
|
23
|
Kim K, Kim J, Kim H, Sung GY. Effect of α-Lipoic Acid on the Development of Human Skin Equivalents Using a Pumpless Skin-on-a-Chip Model. Int J Mol Sci 2021; 22:2160. [PMID: 33671528 PMCID: PMC7927099 DOI: 10.3390/ijms22042160] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
Owing to the prohibition of cosmetic animal testing, various attempts have recently been made using skin-on-a-chip (SOC) technology as a replacement for animal testing. Previously, we reported the development of a pumpless SOC capable of drug testing with a simple drive using the principle that the medium flows along the channel by gravity when the chip is tilted using a microfluidic channel. In this study, using pumpless SOC, instead of drug testing at the single-cell level, we evaluated the efficacy of α-lipoic acid (ALA), which is known as an anti-aging substance in skin equivalents, for skin tissue and epidermal structure formation. The expression of proteins and changes in genotyping were compared and evaluated. Hematoxylin and eosin staining for histological analysis showed a difference in the activity of fibroblasts in the dermis layer with respect to the presence or absence of ALA. We observed that the epidermis layer became increasingly prominent as the culture period was extended by treatment with 10 μM ALA. The expression of epidermal structural proteins of filaggrin, involucrin, keratin 10, and collagen IV increased because of the effect of ALA. Changes in the epidermis layer were noticeable after the ALA treatment. As a result of aging, damage to the skin-barrier function and structural integrity is reduced, indicating that ALA has an anti-aging effect. We performed a gene analysis of filaggrin, involucrin, keratin 10, integrin, and collagen I genes in ALA-treated human skin equivalents, which indicated an increase in filaggrin gene expression after ALA treatment. These results indicate that pumpless SOC can be used as an in vitro skin model similar to human skin, protein and gene expression can be analyzed, and it can be used for functional drug tests of cosmetic materials in the future. This technology is expected to contribute to the development of skin disease models.
Collapse
Affiliation(s)
- Kyunghee Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Graduate School, Hallym University, Chuncheon 24252, Korea; (K.K.); (J.K.); (H.K.)
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
| | - Jisue Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Graduate School, Hallym University, Chuncheon 24252, Korea; (K.K.); (J.K.); (H.K.)
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
| | - Hyoungseob Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Graduate School, Hallym University, Chuncheon 24252, Korea; (K.K.); (J.K.); (H.K.)
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
| | - Gun Yong Sung
- Interdisciplinary Program of Nano-Medical Device Engineering, Graduate School, Hallym University, Chuncheon 24252, Korea; (K.K.); (J.K.); (H.K.)
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
- Major in Materials Science and Engineering, School of Future Convergence, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
24
|
Yang S, Chen Z, Cheng Y, Liu T, Pu Y, Liang G. Environmental toxicology wars: Organ-on-a-chip for assessing the toxicity of environmental pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115861. [PMID: 33120150 DOI: 10.1016/j.envpol.2020.115861] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 05/07/2023]
Abstract
Environmental pollution is a widespread problem, which has seriously threatened human health and led to an increase of human diseases. Therefore, it is critical to evaluate environmental pollutants quickly and efficiently. Because of obvious inter-species differences between animals and humans, and lack of physiologically-relevant microenvironment, animal models and in vitro two-dimensional (2D) models can not accurately describe toxicological effects and predicting actual in vivo responses. To make up the limitations of conventional environmental toxicology screening, organ-on-a-chip (OOC) systems are increasingly developing. OOC systems can provide a well-organized architecture with comparable to the complex microenvironment in vivo and generate realistic responses to environmental pollutants. The feasibility, adjustability and reliability of OCC systems make it possible to offer new opportunities for environmental pollutants screening, which can study their metabolism, collective response, and fate in vivo. Further progress can address the challenges to make OCC systems better investigate and evaluate environmental pollutants with high predictive power.
Collapse
Affiliation(s)
- Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China, 210009.
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, PR China, 210096.
| | - Yanping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China, 210009.
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China, 210009.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China, 210009.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China, 210009.
| |
Collapse
|