1
|
Dong Y, Fu C, Zhang T, Dong F, Zhu X, Jiang Y, Hu L, Pan L, Li J, Zhang X. Abnormal hippocampal neurogenesis and impaired social recognition memory in two neurodevelopmental models of schizophrenia. FASEB J 2024; 38:e70138. [PMID: 39485229 DOI: 10.1096/fj.202401258rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Schizophrenia is a mental disorder characterized by cognitive impairments, specifically deficits in social recognition memory (SRM). Abnormal hippocampal neurogenesis has been implicated in these deficits. Due to the pathogenetic heterogeneity of schizophrenia, studying the hippocampal neurogenesis and SRM in two models with prenatal and postnatal defects could enhance our understanding of the developmental aspects of the biological susceptibility to schizophrenia. Here, we examined SRM and hippocampal neurogenesis in two developmental models of schizophrenia: gestational exposure to methylazoxymethanol acetate (MAM) and postweaning social isolation (SI). Our findings revealed that gestational MAM exposure induced a decay of social memory while postweaning SI led to impaired social memory formation and decay. In both models, we observed a correlation between impaired SRM and reduced number, and abnormal differentiation and less complex morphology of hippocampal neurons. These results indicate that aberrant hippocampal neurogenesis may contribute to the deficits of SRM in both models, and these abnormalities may be a shared underlying pathogenic factor in developmental models of schizophrenia, regardless of prenatal and postnatal pathogenesis.
Collapse
Affiliation(s)
- Yibei Dong
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Chuxian Fu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Ting Zhang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Feiyuan Dong
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Xinyi Zhu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yingke Jiang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Linbo Hu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Luhui Pan
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Jiawen Li
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Xiaoqin Zhang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Chen Y, Yu H, Xue F, Bai J, Guo L, Peng Z. 16S rRNA gene sequencing reveals altered gut microbiota in young adults with schizophrenia and prominent negative symptoms. Brain Behav 2024; 14:e3579. [PMID: 38841824 PMCID: PMC11154826 DOI: 10.1002/brb3.3579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Gut dysbiosis has been established as a characteristic of schizophrenia (SCH). However, the signatures regarding SCH patients with prominent negative symptoms (SCH-N) in young adults have been poorly elucidated. METHODS Stool samples were obtained from 30 young adults with SCH-N, 32 SCH patients with prominent positive symptoms (SCH-P) along with 36 healthy controls (HCs). Microbial diversity and composition were analyzed by 16S rRNA gene sequencing. Meanwhile, psychiatric symptoms were assessed by the positive and negative syndrome scale (PANSS). RESULTS There is a significant difference in β-diversity but not α-diversity indexes among the three groups. Moreover, we found a higher abundance of Fusobacteria and Proteobacteria phyla and a lower abundance of Firmicutes phyla in SCH-N when compared with HC. Besides, we identified a diagnostic potential panel comprising six genera (Coprococcus, Monoglobus, Prevotellaceae_NK3B31_group, Escherichia-Shigella, Dorea, and Butyricicoccus) that can distinguish SCH-N from HC (area under the curve = 0.939). However, the difference in microbial composition between the SCH-N and SCH-P is much less than that between SCH-N and the HC, and SCH-N and SCH-P cannot be effectively distinguished by gut microbiota. CONCLUSION The composition of gut microbiota was changed in the patients with SCH-N, which may help in further understanding of pathogenesis in young adults with SCH-N.
Collapse
Affiliation(s)
- Yi‐Huan Chen
- Department of PsychiatryXijing HospitalAir Force Medical UniversityXi'anChina
| | - Huan Yu
- Department of PsychiatryXijing HospitalAir Force Medical UniversityXi'anChina
| | - Fen Xue
- Department of PsychiatryXijing HospitalAir Force Medical UniversityXi'anChina
| | - Jie Bai
- Department of PsychiatryXijing HospitalAir Force Medical UniversityXi'anChina
- Department of PsychiatryGaoxin HospitalXi'anChina
| | - Li Guo
- Department of PsychiatryXijing HospitalAir Force Medical UniversityXi'anChina
| | - Zheng‐Wu Peng
- Department of PsychiatryXijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
3
|
Wu Z, Ren Z, Gao R, Sun K, Sun F, Liu T, Zheng S, Wang W, Zhang G. Impact of subthalamic nucleus deep brain stimulation at different frequencies on neurogenesis in a rat model of Parkinson's disease. Heliyon 2024; 10:e30730. [PMID: 38784548 PMCID: PMC11112288 DOI: 10.1016/j.heliyon.2024.e30730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Neurogenesis, play a vital role in neuronal plasticity of adult mammalian brains, and its dysregulation is present in the pathophysiology of Parkinson's disease (PD). While subthalamic nucleus deep brain stimulation (STN-DBS) at various frequencies has been proven effective in alleviating PD symptoms, its influence on neurogenesis remains unclear. This study aimed to investigate the effects of 1-week electrical stimulation at frequencies of 60Hz, 130Hz, and 180Hz on neurogenesis in the subventricular zone (SVZ) of PD rats. A hemiparkinsonian rat model was established using 6-hydroxydopamine and categorized into six groups: control, PD, sham stimulation, 60Hz stimulation, 130Hz stimulation, and 180Hz stimulation. Motor function was assessed using the open field test and rotarod test after one week of STN-DBS at different frequencies. Tyrosine hydroxylase (TH) expression in brain tissue was analyzed via Western blot and immunohistochemistry. Immunofluorescence analysis was conducted to evaluate the expression of BrdU/Sox2, BrdU/GFAP, Ki67/GFAP, and BrdU/DCX in bilateral SVZ and the rostral migratory stream (RMS). Our findings revealed that high-frequency STN-DBS improved motor function. Specifically, stimulation at 130Hz increased dopaminergic neuron survival in the PD rat model, while significantly enhancing the proliferation of neural stem cells (NSCs) and neuroblasts in bilateral SVZ. Moreover, this stimulation effectively facilitated the generation of new NSCs in the ipsilateral RMS and triggered the emergence of fresh neuroblasts in bilateral RMS, with notable presence within the lesioned striatum. Conversely, electrical stimulation at 60Hz and 180Hz did not exhibit comparable effects. The observed promotion of neurogenesis in PD rats following STN-DBS provides valuable insights into the mechanistic basis of this therapeutic approach for PD.
Collapse
Affiliation(s)
- Zheng Wu
- Department of Functional Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
- Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - Zhiwei Ren
- Department of Functional Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
- Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - Runshi Gao
- Department of Functional Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
- Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - Ke Sun
- Functional Neurosurgery Department, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Fangling Sun
- Department of Experimental Animal Laboratory, Xuan-Wu Hospital of Capital Medical University, Beijing, China
| | - Tingting Liu
- Department of Experimental Animal Laboratory, Xuan-Wu Hospital of Capital Medical University, Beijing, China
| | - Songyang Zheng
- Department of Experimental Animal Laboratory, Xuan-Wu Hospital of Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Experimental Animal Laboratory, Xuan-Wu Hospital of Capital Medical University, Beijing, China
| | - Guojun Zhang
- Functional Neurosurgery Department, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
4
|
Gillespie B, Panthi S, Sundram S, Hill RA. The impact of maternal immune activation on GABAergic interneuron development: A systematic review of rodent studies and their translational implications. Neurosci Biobehav Rev 2024; 156:105488. [PMID: 38042358 DOI: 10.1016/j.neubiorev.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Mothers exposed to infections during pregnancy disproportionally birth children who develop autism and schizophrenia, disorders associated with altered GABAergic function. The maternal immune activation (MIA) model recapitulates this risk factor, with many studies also reporting disruptions to GABAergic interneuron expression, protein, cellular density and function. However, it is unclear if there are species, sex, age, region, or GABAergic subtype specific vulnerabilities to MIA. Furthermore, to fully comprehend the impact of MIA on the GABAergic system a synthesised account of molecular, cellular, electrophysiological and behavioural findings was required. To this end we conducted a systematic review of GABAergic interneuron changes in the MIA model, focusing on the prefrontal cortex and hippocampus. We reviewed 102 articles that revealed robust changes in a number of GABAergic markers that present as gestationally-specific, region-specific and sometimes sex-specific. Disruptions to GABAergic markers coincided with distinct behavioural phenotypes, including memory, sensorimotor gating, anxiety, and sociability. Findings suggest the MIA model is a valid tool for testing novel therapeutics designed to recover GABAergic function and associated behaviour.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Sandesh Panthi
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
5
|
Moon C. New Insights into and Emerging Roles of Animal Models for Neurological Disorders. Int J Mol Sci 2022; 23:ijms23094957. [PMID: 35563352 PMCID: PMC9105220 DOI: 10.3390/ijms23094957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|