1
|
Angeli S, Neophytou C, Kalli M, Stylianopoulos T, Mpekris F. The mechanopathology of the tumor microenvironment: detection techniques, molecular mechanisms and therapeutic opportunities. Front Cell Dev Biol 2025; 13:1564626. [PMID: 40171226 PMCID: PMC11958720 DOI: 10.3389/fcell.2025.1564626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
The mechanical properties of the tumor microenvironment (TME) undergo significant changes during tumor growth, primarily driven by alterations in extracellular (ECM) stiffness and tumor viscoelasticity. These mechanical changes not only promote tumor progression but also hinder therapeutic efficacy by impairing drug delivery and activating mechanotransduction pathways that regulate crucial cellular processes such as migration, proliferation, and resistance to therapy. In this review, we examine the mechanisms through which tumor cells sense and transmit mechanical signals to maintain homeostasis in the biomechanically altered TME. We explore current computational modelling strategies for mechanotransduction pathways, highlighting the need for developing models that incorporate additional components of the mechanosignaling machinery. Furthermore, we review available methods for measuring the mechanical properties of tumors in clinical settings and strategies aiming at restoring the TME and blocking deregulated mechanotransduction pathways. Finally, we propose that proper characterization and a deeper understanding of the mechanical landscape of the TME, both at the tissue and cellular levels, are essential for developing therapeutic strategies that account for the influence of mechanical forces on treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
2
|
Mannes A, Nogueira A, Both A, Mayr A, Marciniak J, Küchler EC, Bekbulat F, Cirelli JA, Kirschneck C, Behl C, Deschner J, Jäger A, Beisel-Memmert S. Biomechanically induced regulation of Damage-Regulated Autophagy Modulator 1 in periodontal cells and tissues. Biochem Biophys Res Commun 2025; 742:151131. [PMID: 39657351 DOI: 10.1016/j.bbrc.2024.151131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
PURPOSE Autophagy is an important adaptive process for mechanotransduction, in which Damage-Regulated Autophagy Modulator 1 (DRAM1) has a key function in cell fate determination. This study aimed to analyze the influence of biomechanical loading on DRAM1 expression in periodontal cells and tissues. METHODS Human periodontal ligament (PDL) fibroblasts were stimulated with different pressure protocols, physiological load and overload, in the presence and absence of autophagy inhibitor 3-methyladenine (3-MA) and compared with untreated cells. DRAM1 expression was measured using real-time PCR and ELISA after 1 d and 2 d. DRAM1 expression was determined in gingival biopsies of rats, and gene expression of DRAM1 was analyzed after 1 d, 7 d, and 15 d of orthodontic treatment. Statistical analysis was carried out using ANOVA and post-hoc tests. RESULTS Overload led to increased DRAM1 gene expression after 1 d, while physiological load did not change DRAM1 expression. After 2 d, DRAM1 expression was increased in both groups. Protein levels were elevated after 2 d of pressure application of both magnitudes, while no significant increase was evident after 1 d. Treatment with 3-MA led to a significant reduction in DRAM1 gene expression in both pressure groups, while it remained unchanged in the control group. In vivo, DRAM1 was located in the periodontal ligament, and we could determine an orthodontic force-mediated increase in DRAM1 gene expression at 7 d and 15 d. CONCLUSION This study indicates a dependence of DRAM1 regulation on the duration and magnitude of bio-mechanical loading and on autophagy-associated pathways.
Collapse
Affiliation(s)
- Anemone Mannes
- Department of Orthodontics, University Hospital, Medical Faculty, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Andressa Nogueira
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Annika Both
- Department of Orthodontics, University Hospital, Medical Faculty, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Alexandra Mayr
- Department of Orthodontics, University Hospital, Medical Faculty, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Jana Marciniak
- Department of Orthodontics, University Hospital, Medical Faculty, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Erika Calvano Küchler
- Department of Orthodontics, University Hospital, Medical Faculty, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Fazilet Bekbulat
- Institute of Pathobiochemistry, The Autophagy Lab, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Joni A Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, 14801-903, Araraquara, Brazil
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital, Medical Faculty, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Christian Behl
- Institute of Pathobiochemistry, The Autophagy Lab, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Jäger
- Department of Orthodontics, University Hospital, Medical Faculty, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Svenja Beisel-Memmert
- Department of Orthodontics, University Hospital, Medical Faculty, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.
| |
Collapse
|
3
|
Hardt M, Mayr A, Kutschera E, Marciniak J, Küchler EC, Kirschneck C, Deschner J, Jäger A, Beisel-Memmert S. Rho Kinases and Reactive Oxygen Species in Autophagy Regulation by Pressure in Periodontal Ligament Cells. Braz Dent J 2024; 35:e245944. [PMID: 40136129 PMCID: PMC11653791 DOI: 10.1590/0103-6440202405944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/06/2024] [Indexed: 03/27/2025] Open
Abstract
Autophagy is a self-digestion mechanism of cells, which is related to cell stress. It enables cell survival by maintaining cellular homeostasis or initiates cell death. This study aimed to investigate the intracellular signaling of pressure-induced autophagy regulation in human periodontal ligament (PDL) cells and to analyze the involvement of Rho kinases (ROCK) and reactive oxygen species (ROS) in particular. Human PDL cells were treated with the ROCK inhibitor Y-27632 and the ROS scavenger N-acetylcysteine (NAC) in combination with pressure magnitudes of 2, 6, and 8 g/cm2 over 16 hours. Cells treated with rapamycin served as a positive control and untreated cells as a control group. The Cyto-ID® Autophagy Detection Kit was used for flow cytometric analysis. Statistical analysis was performed using ANOVA and post-hoc tests. The results show that the pressure-induced autophagy was affected differently by the two inhibitors (p<0.05). The application of Y-27632 led to a significant reduction in autophagy in all pressure groups. The application of NAC led to reduced autophagy at pressures of 2 g/cm2 and 6 g/cm2. At 8 g/cm2, this effect was no longer present. In the control group, autophagy was significantly reduced by Y-27632 and significantly increased by NAC. Our data suggest that both Rho-kinase and reactive oxygen species could influence pressure-induced autophagy regulation in PDL cells.
Collapse
Affiliation(s)
- Miriam Hardt
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Alexandra Mayr
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Eric Kutschera
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Jana Marciniak
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Erika Calvano Küchler
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
- School of Dentistry, Universidade Tuiuti do Paraná, Curitiba, Brazil
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Jäger
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Svenja Beisel-Memmert
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
| |
Collapse
|
4
|
Peng Y, Li C, Zhang L, Yu R, Wang Y, Pan L, Guo H, Wei Y, Liu X. Cyclophilin A promotes porcine deltacoronavirus replication by regulating autophagy via the Ras/AKT/NF-κB pathway. Vet Microbiol 2024; 297:110190. [PMID: 39084161 DOI: 10.1016/j.vetmic.2024.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Porcine deltacoronavirus (PDCoV) is an important enteric coronavirus that has caused major worldwide economic losses in the pig industry. Previous studies have shown that cyclophilin A (CypA), a key player in aetiological agent infection, is involved in regulating viral infection. However, the role of CypA during PDCoV replication remains unknown. Therefore, in this study, the role of CypA in PDCoV replication was determined. The results demonstrated that PDCoV infection increased CypA expression in LLC-PK1 cells. CypA overexpression substantially promoted PDCoV replication. Proteomic analysis was subsequently used to assess changes in total protein expression levels after CypA overexpression. Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to further determine the mechanisms by which CypA affects viral replication. Proteomic analysis revealed that CypA protein overexpression significantly upregulated 75 differentially expressed proteins and significantly downregulated 172 differentially expressed proteins. The differentially expressed proteins were involved mainly in autophagy and activation of the host innate immune pathway. Subsequent experimental results revealed that the CypA protein promoted viral replication by reducing the levels of natural immune cytokines and mitigated the inhibitory effect of chloroquine (CQ) on viral replication. Further investigation revealed that CypA could activate the Ras/AKT/NF-κB pathway, mediate autophagy signalling and promote PDCoV replication. In summary, the findings of this study may help elucidate the role of CypA in PDCoV replication.
Collapse
Affiliation(s)
- Yousheng Peng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China; State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Chenchen Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Ruiming Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China; State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China.
| |
Collapse
|
5
|
Abbasi M, Zarei-Hanzaki A, Baghaei K, Abedi HR, Haghighipour N. Compression-induced apoptosis of fibroblasts and myofibroblasts in an in vitro model of pulmonary fibrosis by alginate/gelatin scaffold. Int J Biol Macromol 2024; 280:135875. [PMID: 39307498 DOI: 10.1016/j.ijbiomac.2024.135875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
Pulmonary fibrosis leads to increased mortality but is poorly understood. Fibrotic progression is associated with abnormal wound repair and an increase in myofibroblast cell populations. Here we investigate how the myofibroblast population is impacted by unique compression-induced apoptosis derived from mechanical strain characteristic of asthma. Using a mechanical device, both static and dynamic mechanical strains were applied to alginate/gelatin/CaCl2 scaffolds containing fibroblasts and myofibroblasts. As cell groups were stimulated with 30 % static strain for 12 h, fibroblast and myofibroblast cell groups showed increased cell apoptosis by 5.55 % and 19.56 %, respectively, compared to control groups. Additionally, myofibroblasts exhibited higher susceptibility to apoptosis induction than did fibroblasts. Comparing dynamic and static loading modes, dynamic loading resulted in a higher apoptosis rate of fibroblast and myofibroblast cells, indicating its potential to induce apoptosis effectively. These findings suggest that mechanical stimulation can be considered a promising approach to induce apoptosis in myofibroblasts, thus offering the potential for future approaches to treating pulmonary fibrosis. Moreover, mechanical loads can be designed for other diseases, selectively reducing or increasing apoptosis in either hard or soft cell groups, based on specific application needs.
Collapse
Affiliation(s)
- Mahla Abbasi
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Abbas Zarei-Hanzaki
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Kaveh Baghaei
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Abedi
- School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | | |
Collapse
|
6
|
Sun M, Cao Y, Cheng J, Xu D, Li F, Wang J, Ge Y, Liu Y, Long X, Guo W, Liu J, Fu S. Stigmasterol Activates the mTOR Signaling Pathway by Inhibiting ORP5 Ubiquitination to Promote Milk Synthesis in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14769-14785. [PMID: 38912664 DOI: 10.1021/acs.jafc.4c03243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Stigmasterol (ST), a phytosterol found in food, has various biological activities. However, the effect of ST on milk synthesis in dairy cows remains unclear. Therefore, bovine primary mammary epithelial cells (BMECs) were isolated, cultured, and treated with ST to determine the effect of ST on milk synthesis. The study revealed that 10 μM ST significantly increased milk synthesis in BMECs by activating the mammalian target of rapamycin (mTOR) signaling pathway. Further investigation revealed that this activation depends on the regulatory role of oxysterol binding protein 5 (ORP5). ST induces the translocation of ORP5 from the cytoplasm to the lysosome, interacts with the mTOR, recruits mTOR to target the lysosomal surface, and promotes the activation of the mTOR signaling pathway. Moreover, ST was found to increase ORP5 protein levels by inhibiting its degradation via the ubiquitin-proteasome pathway. Specifically, the E3 ubiquitin ligase membrane-associated cycle-CH-type finger 4 (MARCH4) promotes the ubiquitination and subsequent degradation of ORP5. ST mitigates the interaction between MARCH4 and ORP5, thereby enhancing the structural stability of ORP5 and reducing its ubiquitination. In summary, ST stabilizes ORP5 by inhibiting the interaction between MARCH4 and ORP5, thereby activating mTOR signaling pathway and enhancing milk synthesis.
Collapse
Affiliation(s)
- Mingyang Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu Cao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ji Cheng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dianwen Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Feng Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiaxin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yusong Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuhao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoyu Long
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenjin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
7
|
Yamashita E, Negishi S, Kikuta J, Shimizu M, Senpuku H. Effects of Improper Mechanical Force on the Production of Sonic Hedgehog, RANKL, and IL-6 in Human Periodontal Ligament Cells In Vitro. Dent J (Basel) 2024; 12:108. [PMID: 38668020 PMCID: PMC11049549 DOI: 10.3390/dj12040108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Improper mechanical stress may induce side effects during orthodontic treatment. If the roots and alveolar bones are extensively resorbed following excess mechanical stress, unplanned tooth mobility and inflammation can occur. Although multiple factors are believed to contribute to the development of side effects, the cause is still unknown. Sonic hedgehog (Shh), one of the hedgehog signals significantly associated with cell growth and cancer development, promotes osteoclast formation in the jawbone. Shh may be associated with root and bone resorptions during orthodontic treatment. In this study, we investigated the relationships between Shh, RANKL, and IL-6 in human periodontal ligament (hPDL) cells exposed to improper mechanical force. Weights were placed on hPDL cells and human gingival fibroblasts (HGFs) for an optimal orthodontic force group (1.0 g/cm2) and a heavy orthodontic force group (4.0 g/cm2). A group with no orthodontic force was used as a control group. Real-time PCR, SDS-PAGE, and Western blotting were performed to examine the effects of orthodontic forces on the expression of Shh, RANKL, and IL-6 at 2, 4, 6, 8, 12, and 24 h after the addition of pressure. The protein expression of Shh was not clearly induced by orthodontic forces of 1.0 and 4.0 g/cm2 compared with the control in HGFs and hPDL cells. In contrast, RANKL and IL-6 gene and protein expression was significantly induced by 1.0 and 4.0 g/cm2 in hPDL cells for forces lasting 6~24 h. However, neither protein was expressed in HGFs. RANKL and IL-6 expressions in response to orthodontic forces and in the control were clearly inhibited by Shh inhibitor RU-SKI 43. Shh did not directly link to RANKL and IL-6 for root and bone resorptions by orthodontic force but was associated with cell activities to be finally guided by the production of cytokines in hPDL cells.
Collapse
Affiliation(s)
- Erika Yamashita
- Department of Orthodontics, Nihon University of School at Matsudo, Matsudo 271-8587, Japan; (E.Y.); (S.N.); (J.K.)
| | - Shinichi Negishi
- Department of Orthodontics, Nihon University of School at Matsudo, Matsudo 271-8587, Japan; (E.Y.); (S.N.); (J.K.)
| | - Jun Kikuta
- Department of Orthodontics, Nihon University of School at Matsudo, Matsudo 271-8587, Japan; (E.Y.); (S.N.); (J.K.)
| | - Mami Shimizu
- Department of Orthodontics, Nihon University of School at Matsudo, Matsudo 271-8587, Japan; (E.Y.); (S.N.); (J.K.)
| | - Hidenobu Senpuku
- Department of Microbiology and Immunology, Nihon University of School at Matsudo, Matsudo 271-8587, Japan
| |
Collapse
|
8
|
Du J, Liu W, Song Y, Zhang Y, Dong C, Xiong S, Huang Z, Wang T, Ding J, He Q, Yu Z, Ma X. Activating autophagy promotes skin regeneration induced by mechanical stretch during tissue expansion. BURNS & TRAUMA 2024; 12:tkad057. [PMID: 38328438 PMCID: PMC10849167 DOI: 10.1093/burnst/tkad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/28/2023] [Accepted: 11/15/2023] [Indexed: 02/09/2024]
Abstract
Background Tissue expansion, a technique in which skin regeneration is induced by mechanical stretch stimuli, is commonly used for tissue repair and reconstruction. In this study, we aimed to monitor the autophagy levels of expanded skin after the application of expansion stimuli and explore the effect of autophagy modulation on skin regeneration. Methods A rat scalp expansion model was established to provide a stable expanded skin response to mechanical stretch. Autophagy levels at different time points (6, 12, 24, 48 and 72 h after the last expansion) were detected via western blotting. The effect of autophagy regulation on skin regeneration during tissue expansion was evaluated via skin expansion efficiency assessment, western blotting, immunofluorescence staining, TUNEL staining and laser Doppler blood flow imaging. Results The autophagic flux reached its highest level 48 h after tissue expansion. Activating autophagy by rapamycin increased the area of expanded skin as well as the thicknesses of epidermis and dermis. Furthermore, activating autophagy accelerated skin regeneration during tissue expansion by enhancing the proliferation of cells and the number of epidermal basal and hair follicle stem cells, reducing apoptosis, improving angiogenesis, and promoting collagen synthesis and growth factor secretion. Conversely, the regenerative effects were reversed when autophagy was blocked. Conclusions Autophagy modulation may be a promising therapeutic strategy for improving the efficiency of tissue expansion and preventing the incidence of the complication of skin necrosis.
Collapse
Affiliation(s)
- Jing Du
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi’an, Shaanxi 710032, China
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, No. 169 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Wei Liu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Yu Zhang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Chen Dong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Shaoheng Xiong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Zhaosong Huang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Tong Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Jianke Ding
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Qiang He
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Xianjie Ma
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi’an, Shaanxi 710032, China
| |
Collapse
|
9
|
Ma Y, Qian Y, Chen Y, Ruan X, Peng X, Sun Y, Zhang J, Luo J, Zhou S, Deng C. Resveratrol modulates the inflammatory response in hPDLSCs via the NRF2/HO-1 and NF-κB pathways and promotes osteogenic differentiation. J Periodontal Res 2024; 59:162-173. [PMID: 37905727 DOI: 10.1111/jre.13200] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate resveratrol's specific role as an anti-inflammatory and osteogenic differentiation of hPDLSCs in periodontitis and to reveal the mechanisms involved. BACKGROUND Numerous studies have shown that inhibiting the inflammatory response of periodontal tissues and promoting the regeneration of alveolar bone are crucial treatments for periodontitis. Resveratrol has been found to have certain anti-inflammatory property. However, the anti-inflammatory mechanism and osteogenic effect of resveratrol in periodontitis are poorly understood. MATERIALS AND METHODS We constructed an in vitro periodontitis model by LPS stimulation of hPDLSCs and performed WB, RT-qPCR, and immunofluorescence to analyze inflammatory factors and related pathways. In addition, we explored the osteogenic ability of resveratrol in in vitro models. RESULTS In vitro, resveratrol ameliorated the inflammatory response associated with activation of the NF-κB pathway through activation of the NRF2/HO-1 pathway, characterized by inhibition of p65/p50 nuclear translocation and the proinflammatory cytokines interleukin-1β levels. Resveratrol also has a positive effect on osteogenic differentiation. CONCLUSIONS Observations suggest that resveratrol modulates the inflammatory response in hPDLSCs via the NRF2/HO-1 and NF-κB pathways and promotes osteogenic differentiation.
Collapse
Affiliation(s)
- Yifan Ma
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Yi Qian
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Yuteng Chen
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Xiaoxu Ruan
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Xiaoya Peng
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Yi Sun
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Jue Zhang
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Jingjing Luo
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Songlin Zhou
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Chao Deng
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| |
Collapse
|
10
|
Yang Y, Liu Q, Lu X, Ma J, Mei D, Chen Q, Zhao T, Chen J. Sanhuang decoction inhibits autophagy of periodontal ligament fibroblasts during orthodontic tooth movement by activating PI3K-Akt-mTOR pathway. Biomed Pharmacother 2023; 166:115391. [PMID: 37677964 DOI: 10.1016/j.biopha.2023.115391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Orthodontic tooth movement (OTM) is a typical treatment that corrects malaligned teeth by applying mechanical forces. However, mechanical overload often leads to damage of PDL fibroblasts. Sanhuang decoction (SHD) is commonly used to inhibit inflammation and oxidative stress. However, the mechanism of SHD for OTM treatment is still unclear. Therefore, this study attempts to explore the underlying mechanism through relevant experiments. METHODS In the present paper, we established a OTM rat model and further explored the effects of SHD on the PDL of OTM rats. The OTM model and effects of SHD were determined by micro-CT, and the PDL pathological changes, PDL width and capillaries in PDL were observed by H&E staining. Subsequently, the ROS levels in PDL was determined using flow cytometry analysis with DCFH-DA staining, MDA contents and antioxidative enzymes activities were also measured using commercial kits. Furthermore, the autophagy of PDL fibroblasts and proteins in the PI3K/Akt/mTOR pathway were detected using immunoluminescence, qPCR and western blotting assays. RESULTS The results showed SHD treatment can alleviate the decrease of PDL cells and capillaries induced by OTM, and improve the MDA and ROS levels in PDL, as well as enhance the activities of SOD and GSH-Px. Further experiments indicated SHD decreased the autophagy levels of PDL fibroblasts via promoting the phosphorylation levels of mTOR, PI3K and Akt proteins. CONCLUSION SHD inhibited autophagy of periodontal ligament fibroblasts during orthodontic tooth movement by inhibiting oxidative stress via activating PI3K-Akt-mTOR pathway. Our present findings suggested SHD treatment would be useful for management of the possible disorders occurs in orthodontic tooth movement therapy.
Collapse
Affiliation(s)
- Yiqiang Yang
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Qi Liu
- Department of Prosthodontics, Yinchuan Stomatological Hospital, Yinchuan 750004, PR China
| | - Xun Lu
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Jing Ma
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Donglan Mei
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Qi Chen
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Tian Zhao
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Jia Chen
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China.
| |
Collapse
|
11
|
Zhang Y, Liu C, Li Y, Xu H. Mechanism of the Mitogen-Activated Protein Kinases/Mammalian Target of Rapamycin Pathway in the Process of Cartilage Endplate Stem Cell Degeneration Induced by Tension Load. Global Spine J 2023; 13:2396-2408. [PMID: 35400210 PMCID: PMC10538332 DOI: 10.1177/21925682221085226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
STUDY DESIGN Basic Research. OBJECTIVE Intervertebral disc degeneration (IVDD) is caused by the cartilage endplate (CEP). Cartilage endplate stem cell (CESC) is involved in the recovery of CEP degeneration. Tension load (TL) contributes a lot to the initiation and progression of IVDD. This study aims to investigate the regulatory mechanism of the Mitogen-activated protein kinases/Mammalian target of rapamycin (MAPK/mTOR) pathway during TL-induced CESC degeneration. METHODS CESCs were isolated from New Zealand big-eared white female rabbits (6 months old). FX-4000T cell stress loading system was applied to establish a TL-induced degeneration model of CESCs. Western blotting was used to detect the level of mTOR pathway-related proteins and autophagy markers LC3-Ⅱ, Beclin-1, and p62 in degenerative CESCs. The expression of MAPK pathway-related proteins JNK and extracellular signal-regulated kinases (ERK) in degenerated CESCs was inhibited by cell transfection to explore whether JNK and ERK play a regulatory role in TL-induced autophagy in CESCs. RESULTS In the CESC degeneration model, the mTOR pathway was activated. After inhibition of mTOR, the autophagy level of CESCs was increased, and the degeneration of CESCs was alleviated. The MAPK pathway was also activated in the CESC degeneration model. Inhibition of JNK expression may alleviate TL-induced CEP degeneration by inhibiting Raptor phosphorylation and activating autophagy. Inhibition of ERK expression may alleviate TL-induced CEP degeneration by inhibiting mTOR phosphorylation and activating autophagy. CONCLUSION Inhibition of JNK and ERK in the MAPK signaling family alleviated TL-induced CESC degeneration by inhibiting the phosphorylation of Raptor and mTOR in the mTOR pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Spine Research Center of Wannan Medical College, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| | - Chen Liu
- Spine Research Center of Wannan Medical College, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| | - Yu Li
- Spine Research Center of Wannan Medical College, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| | - Hongguang Xu
- Spine Research Center of Wannan Medical College, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| |
Collapse
|
12
|
He W, Fu Y, Yao S, Huang L. Programmed cell death of periodontal ligament cells. J Cell Physiol 2023; 238:1768-1787. [PMID: 37566596 DOI: 10.1002/jcp.31091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023]
Abstract
The periodontal ligament is a crucial tissue that provides support to the periodontium. Situated between the alveolar bone and the tooth root, it consists primarily of fibroblasts, cementoblasts, osteoblasts, osteoclasts, periodontal ligament stem cells (PDLSCs), and epithelial cell rests of Malassez. Fibroblasts, cementoblasts, osteoblasts, and osteoclasts are functionally differentiated cells, whereas PDLSCs are undifferentiated mesenchymal stem cells. The dynamic development of these cells is intricately linked to periodontal changes and homeostasis. Notably, the regulation of programmed cell death facilitates the clearance of necrotic tissue and plays a pivotal role in immune response. However, it also potentially contributes to the loss of periodontal supporting tissues and root resorption. These findings have significant implications for understanding the occurrence and progression of periodontitis, as well as the mechanisms underlying orthodontic root resorption. Further, the regulation of periodontal ligament cell (PDLC) death is influenced by both systemic and local factors. This comprehensive review focuses on recent studies reporting the mechanisms of PDLC death and related factors.
Collapse
Affiliation(s)
- Wei He
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yu Fu
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Song Yao
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lan Huang
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
13
|
Jia D, Chen H, Dai J, He S, Liu Y, Liu Z, Zhang Y, Li X, Sun Y, Wang Q. Human Infrapatellar Fat Pad Mesenchymal Stem Cell-Derived Extracellular Vesicles Inhibit Fibroblast Proliferation by Regulating MT2A to Reduce Knee Arthrofibrosis. Stem Cells Int 2023; 2023:9067621. [PMID: 37091533 PMCID: PMC10115539 DOI: 10.1155/2023/9067621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 04/25/2023] Open
Abstract
Knee arthrofibrosis is one of the most serious complications of knee surgery; however, its pathogenesis is unclear, and current treatment methods have not achieved satisfactory results. Mesenchymal stem cells (MSCs) have good anti-inflammatory and antifibrotic properties, and studies have reported that human infrapatellar fat pad-derived MSCs (IPFSCs) have the advantages of strong proliferative and differentiating ability, ease of acquisition, and minimal harm to the donor. Increasing evidence has shown that MSCs function through their paracrine extracellular vesicles (EVs). Our study is aimed at exploring the effects of human IPFSC-derived EVs (IPFSC-EVs) on knee arthrofibrosis and the underlying mechanisms in vivo and in vitro. In the in vivo study, injecting IPFSC-EVs into the knee joint cavity effectively reduced surgery-induced knee arthrofibrosis in rats. In the in vitro study, IPFSC-EVs were found to inhibit the proliferation of fibroblasts in the inflammatory environment. Additionally, we screened a potential IPFSC-EV molecular target, metallothionein 2A (MT2A), using RNA sequencing. We found that silencing MT2A partially reversed the inhibitory effect of IPFSC-EVs on fibroblast proliferation in the inflammatory environment. In conclusion, IPFSC-EVs inhibit the progression of knee arthrofibrosis by regulating MT2A, which inhibits fibroblast proliferation in the inflammatory environment.
Collapse
Affiliation(s)
- Dazhou Jia
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225001 Jiangsu, China
| | - Hui Chen
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Jihang Dai
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Shiping He
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Yangyang Liu
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225001 Jiangsu, China
| | - Zhendong Liu
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Yaxin Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaolei Li
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Yu Sun
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
14
|
Kalli M, Li R, Mills GB, Stylianopoulos T, Zervantonakis IK. Mechanical Stress Signaling in Pancreatic Cancer Cells Triggers p38 MAPK- and JNK-Dependent Cytoskeleton Remodeling and Promotes Cell Migration via Rac1/cdc42/Myosin II. Mol Cancer Res 2022; 20:485-497. [PMID: 34782370 PMCID: PMC8898300 DOI: 10.1158/1541-7786.mcr-21-0266] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/24/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022]
Abstract
Advanced or metastatic pancreatic cancer is highly resistant to existing therapies, and new treatments are urgently needed to improve patient outcomes. Current studies focus on alternative treatment approaches that target the abnormal microenvironment of pancreatic tumors and the resulting elevated mechanical stress in the tumor interior. Nevertheless, the underlying mechanisms by which mechanical stress regulates pancreatic cancer metastatic potential remain elusive. Herein, we used a proteomic assay to profile mechanical stress-induced signaling cascades that drive the motility of pancreatic cancer cells. Proteomic analysis, together with selective protein inhibition and siRNA treatments, revealed that mechanical stress enhances cell migration through activation of the p38 MAPK/HSP27 and JNK/c-Jun signaling axes, and activation of the actin cytoskeleton remodelers: Rac1, cdc42, and myosin II. In addition, mechanical stress upregulated transcription factors associated with epithelial-to-mesenchymal transition and stimulated the formation of stress fibers and filopodia. p38 MAPK and JNK inhibition resulted in lower cell proliferation and more effectively blocked cell migration under mechanical stress compared with control conditions. The enhanced tumor cell motility under mechanical stress was potently reduced by cdc42 and Rac1 silencing with no effects on proliferation. Our results highlight the importance of targeting aberrant signaling in cancer cells that have adapted to mechanical stress in the tumor microenvironment, as a novel approach to effectively limit pancreatic cancer cell migration. IMPLICATIONS Our findings highlight that mechanical stress activated the p38 MAPK and JNK signaling axis and stimulated pancreatic cancer cell migration via upregulation of the actin cytoskeleton remodelers cdc42 and Rac1.
Collapse
Affiliation(s)
- Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Ruxuan Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gordon B. Mills
- Knight Cancer Institute, Oregon Health Sciences University, Oregon, Pennsylvania
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Ioannis K. Zervantonakis
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Gargalionis AN, Papavassiliou KA, Basdra EK, Papavassiliou AG. mTOR Signaling Components in Tumor Mechanobiology. Int J Mol Sci 2022; 23:1825. [PMID: 35163745 PMCID: PMC8837098 DOI: 10.3390/ijms23031825] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a central signaling hub that integrates networks of nutrient availability, cellular metabolism, and autophagy in eukaryotic cells. mTOR kinase, along with its upstream regulators and downstream substrates, is upregulated in most human malignancies. At the same time, mechanical forces from the tumor microenvironment and mechanotransduction promote cancer cells' proliferation, motility, and invasion. mTOR signaling pathway has been recently found on the crossroads of mechanoresponsive-induced signaling cascades to regulate cell growth, invasion, and metastasis in cancer cells. In this review, we examine the emerging association of mTOR signaling components with certain protein tools of tumor mechanobiology. Thereby, we highlight novel mechanisms of mechanotransduction, which regulate tumor progression and invasion, as well as mechanisms related to the therapeutic efficacy of antitumor drugs.
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
- Department of Biopathology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Kostas A. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
| | - Efthimia K. Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
| |
Collapse
|
16
|
Mayr A, Marciniak J, Eggers B, Blawat K, Wildenhof J, Bastos Craveiro R, Wolf M, Deschner J, Jäger A, Beisel-Memmert S. Autophagy Induces Expression of IL-6 in Human Periodontal Ligament Fibroblasts Under Mechanical Load and Overload and Effects Osteoclastogenesis in vitro. Front Physiol 2021; 12:716441. [PMID: 34512388 PMCID: PMC8430222 DOI: 10.3389/fphys.2021.716441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022] Open
Abstract
Objective: Autophagy is an important cellular adaptation mechanism to mechanical stress. In animal experiments, inhibition of autophagy during orthodontic tooth movement triggered increased expression of inflammation-related genes and decreased bone density. The aim of this study was to investigate how autophagy affects cytokine levels of interleukin 6 (IL-6) in human periodontal ligament (hPDL) fibroblasts under mechanical pressure and the resulting influence on osteoblast communication. Methods: hPDL fibroblasts were subjected to physiologic mechanical load, constant overload, or rapamycin treatment for 16 to 24 h ± autophagy inhibitor 3-MA. Autophagosomes were quantified by flow cytometry. Gene expression of il-6 as well as IL-6 levels in the supernatant were determined with rtPCR and ELISA. To investigate the influence of mechanically-induced autophagy on cell-cell communication, an osteoblast-culture was subjected to supernatant from stimulated hPDL fibroblasts ± soluble IL-6 receptor (sIL-6R). After 24 h, osteoprotegerin (opg) and receptor activator of nuclear factor κB ligand (rankl) gene expressions were detected with rtPCR. Gene expression of a disintegrin and metalloproteinases (adam) 10 and 17 in stimulated hPDL fibroblasts was examined via rtPCR. Results: Autophagy was induced by biomechanical stress in hPDL fibroblasts in a dose-dependent manner. Mechanical load and overload increased IL-6 expression at gene and protein level. Autophagy inhibition further enhanced the effects of mechanical stimulation on IL-6 expression. Mechanical stimulation of hPDL fibroblasts downregulated adam10 and adam17 expressions. Inhibition of autophagy had stimulus-intensity depending effects: autophagy inhibition alone or additional application of physiological stress enhanced adam10 and adam17 expressions, whereas mechanical overload had adverse effects. Osteoblasts showed significantly reduced opg expression in the presence of supernatant derived of hPDL fibroblasts treated with autophagy inhibitor and sIL-6R. Conclusion: IL-6 levels were increased in response to pressure in hPDL fibroblasts, which was further enhanced by autophagy inhibition. This caused a decrease in opg expression in osteoblasts. This may serve as an explanatory model for accelerated tooth movement observed under autophagy inhibition, but may also represent a risk factor for uncontrolled bone loss.
Collapse
Affiliation(s)
- Alexandra Mayr
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Jana Marciniak
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Benedikt Eggers
- Department of Oral, Maxillofacial and Plastic Surgery, Center of Dento-Maxillo-Facial Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Kim Blawat
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Jan Wildenhof
- Private Clinic Schloss Schellenstein, Olsberg, Germany
| | - Rogerio Bastos Craveiro
- Department of Orthodontics, Faculty of Medicine, University Hospital Aachen, Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, Faculty of Medicine, University Hospital Aachen, Aachen, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Jäger
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Svenja Beisel-Memmert
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
17
|
Nie D, Zhou Y, Wang W, Zhang J, Wang JHC. Mechanical Overloading Induced-Activation of mTOR Signaling in Tendon Stem/Progenitor Cells Contributes to Tendinopathy Development. Front Cell Dev Biol 2021; 9:687856. [PMID: 34322484 PMCID: PMC8311934 DOI: 10.3389/fcell.2021.687856] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023] Open
Abstract
Despite the importance of mechanical loading in tendon homeostasis and pathophysiology, the molecular responses involved in the mechanotransduction in tendon cells remain unclear. In this study, we found that in vitro mechanical loading activated the mammalian target of rapamycin (mTOR) in rat patellar tendon stem/progenitor cells (TSCs) in a stretching magnitude-dependent manner. Application of rapamycin, a specific inhibitor of mTOR, attenuated the phosphorylation of S6 and 4E-BP1 and as such, largely inhibited the mechanical activation of mTOR. Moreover, rapamycin significantly decreased the proliferation and non-tenocyte differentiation of PTSCs as indicated by the reduced expression levels of LPL, PPARγ, SOX-9, collagen II, Runx-2, and osteocalcin genes. In the animal studies, mice subjected to intensive treadmill running (ITR) developed tendon degeneration, as evidenced by the formation of round-shaped cells, accumulation of proteoglycans, and expression of SOX-9 and collagen II proteins. However, daily injections of rapamycin in ITR mice reduced all these tendon degenerative changes. Collectively, these findings suggest that mechanical loading activates the mTOR signaling in TSCs, and rapamycin may be used to prevent tendinopathy development by blocking non-tenocyte differentiation due to mechanical over-activation of mTOR in TSCs.
Collapse
Affiliation(s)
- Daibang Nie
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yiqin Zhou
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wang Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jianying Zhang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - James H.-C. Wang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
18
|
In Vitro Compression Model for Orthodontic Tooth Movement Modulates Human Periodontal Ligament Fibroblast Proliferation, Apoptosis and Cell Cycle. Biomolecules 2021; 11:biom11070932. [PMID: 34201602 PMCID: PMC8301966 DOI: 10.3390/biom11070932] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022] Open
Abstract
Human Periodontal Ligament Fibroblasts (hPDLF), as part of the periodontal apparatus, modulate inflammation, regeneration and bone remodeling. Interferences are clinically manifested as attachment loss, tooth loosening and root resorption. During orthodontic tooth movement (OTM), remodeling and adaptation of the periodontium is required in order to enable tooth movement. hPDLF involvement in the early phase-OTM compression side was investigated for a 72-h period through a well-studied in vitro model. Changes in the morphology, cell proliferation and cell death were analyzed. Specific markers of the cell cycle were investigated by RT-qPCR and Western blot. The study showed that the morphology of hPDLF changes towards more unstructured, unsorted filaments under mechanical compression. The total cell numbers were significantly reduced with a higher cell death rate over the whole observation period. hPDLF started to recover to pretreatment conditions after 48 h. Furthermore, key molecules involved in the cell cycle were significantly reduced under compressive force at the gene expression and protein levels. These findings revealed important information for a better understanding of the preservation and remodeling processes within the periodontium through Periodontal Ligament Fibroblasts during orthodontic tooth movement. OTM initially decelerates the hPDLF cell cycle and proliferation. After adapting to environmental changes, human Periodontal Ligament Fibroblasts can regain homeostasis of the periodontium, affecting its reorganization.
Collapse
|