1
|
Vashisth C, Kumar Verma N, Afshari M, Bendi A, Raghav N. Cinnamaldehyde as a Potential Cathepsin-B Inhibitor: A Comparative Investigation with some Commercial Anticancer Drugs. Chem Biodivers 2025; 22:e202401985. [PMID: 39530210 DOI: 10.1002/cbdv.202401985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/16/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Cancer is a leading cause of death worldwide, surpassed only by heart disease. Despite improved diagnosis and treatment, cancer cells still evade normal physiological processes such as apoptosis, metabolism, angiogenesis, cell cycle, and epigenetics. To mitigate the numerous side effects linked to chemotherapy, leveraging natural products emerged as a promising alternative, either alone or in tandem with traditional agents. Cinnamaldehyde, an active ingredient of Cinnamomum cassia's stem bark has emerged as a molecule of research with diverse pharmacological properties. In the present study, we report an in silico potential of cinnamaldehyde (CM) potential as an anticancer agent across thirteen anti-cancer targets in comparison with chlorambucil (CB), docetaxel (DOC), melphalan (MP). Computational tools such as DFT, CHEM3D, molinspiration, vNNADMET, SWISS ADME, admetSAR, galaxyrefine, iGEMDOCK, and DS-Visualizer were employed. Additionally, anti-cathepsin B activity was assessed for cinnamaldehyde and the commercial drugs CB, DOC, MP and the results showed 52.76, 62.41, 72.48 and 65.52 % inhibition respectively which is comparable. The results supported molecular docking using iGEMDOCK. Both in silico and experimental findings substantiate cinnamaldehyde as a promising drug for cancer treatment including metastasis and invasion where cathepsin B involvement is indicated.
Collapse
Affiliation(s)
- Chanchal Vashisth
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Nitin Kumar Verma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Mozhgan Afshari
- Department of Chemistry, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Anjaneyulu Bendi
- Innovation and Translational Research Hub (iTRH) & Department of Chemistry, Presidency University, Rajanukunte, Itgalpura, Bangalore, 560064, Karnataka, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| |
Collapse
|
2
|
Zhang Y, Zhu W, Tao R, Li W, Jiang C, Yan X. Endogenous peptide CBDP1 inhibits clear cell renal cell carcinoma progression by targeting USP5/YTHDF2/TRPM5 axis. J Transl Med 2025; 23:116. [PMID: 39863860 PMCID: PMC11763126 DOI: 10.1186/s12967-025-06091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined. METHODS Peptide expression in ccRCC was analyzed using peptidomics technology to screen for potential antitumor peptides. The effects of the peptide on ccRCC growth and migration were studied through Colony Formation Assay, CCK-8 assay, Transwell Assays, Wound Healing Assay, and animal experiments. Further investigation into the antitumor mechanisms of the peptide was conducted using lentivirus transduction, Western Blot Analysis, qRT-PCR, Immunoprecipitation, Immunofluorescence, and Immunohistochemistry. RESULTS Our findings reveal that Cathepsin B Derived Peptide 1 (CBDP1) can inhibit the progression of ccRCC both in vitro and in vivo. Through mechanistic investigations, it was revealed that CBDP1 facilitates the interaction between YTHDF2 and the deubiquitinase USP5, thereby impeding the ubiquitination and degradation of YTHDF2. The upregulated YTHDF2 then binds to TRPM3 mRNA and promotes its degradation, ultimately reducing TRPM3 expression levels. These molecular events collectively contribute to the anti-cancer properties of CBDP1. CONCLUSION These data indicate that CBDP1 exerts its antitumor effects by regulating the USP5/YTHDF2/TRPM3 axis. CBDP1 emerges as a promising candidate for the treatment of ccRCC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
- Medical School of Nanjing University, Nanjing, 210093, China
| | - Wei Zhu
- Department of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Ruijie Tao
- Medical School of Nanjing University, Nanjing, 210093, China
| | - Weijian Li
- Department of Urology, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chunming Jiang
- Department of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Xiang Yan
- Medical School of Nanjing University, Nanjing, 210093, China.
- Department of Urology, Affiliated Children's Hospital, Zhejiang University School of Medicine, Zhejiang, 310052, China.
| |
Collapse
|
3
|
Sun Z, Chen H, Li C, Yang H, Ling J, Chang A, Zhao H, Zhuo X. Are cathepsins a risk factor for papillary thyroid carcinoma? A bidirectional two-sample mendelian randomization analysis. Eur Arch Otorhinolaryngol 2025:10.1007/s00405-024-09176-w. [PMID: 39757267 DOI: 10.1007/s00405-024-09176-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the most common type of endocrine tumor, and its incidence is on the rise. Observational studies have linked cathepsins, an endolysosomal cysteine protein hydrolase, to the malignant progression of several tumors, including PTC. However, the causal relationship between cathepsins and PTC remains unclear. The purpose of this study was to investigate the causal relationship between cathepsins and PTC using a bidirectional two-sample Mendelian randomization (MR) analysis. METHODS Publicly available databases were used to obtain data on cathepsins and PTCs. Single nucleotide polymorphisms were screened for instrumental variables. Causality was evaluated using five methods. Heterogeneity and sensitivity analyses were performed to evaluate the stability of the results. RESULTS The analysis revealed a significant association between cathepsin Z (CTSZ) and the risk of PTC (IVW, OR = 1.170, 95% CI: 1.035-1.102, P = 0.011). However, no association was found in the inverse analysis (IVW, OR = 1.006, 95% CI: 0.982-1.031, P = 0.612). The stability and reliability of the results of this study were indicated by both heterogeneity and sensitivity. CONCLUSIONS This study confirmed the association between CTSZ and an increased risk of PTC. This finding has important implications for clinical practice, as it may help to predict and screen for PTC at an early stage, as well as provide some guidance for therapeutic strategies against CTSZ.
Collapse
Affiliation(s)
- Zhen Sun
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Huarong Chen
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Changya Li
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Hao Yang
- People's Hospital of Qianxinan Prefecture, Guizhou Province, Xingyi, Guizhou, 562400, China
| | - Junjun Ling
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Aoshuang Chang
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Houyu Zhao
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.
| | - Xianlu Zhuo
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.
| |
Collapse
|
4
|
Ying J, Chen X, Lv T, Jie F, Tian H. Mendelian randomization analysis to explore the relationship between cathepsins and malignant ovarian tumors. Medicine (Baltimore) 2024; 103:e40219. [PMID: 39560510 PMCID: PMC11575957 DOI: 10.1097/md.0000000000040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/04/2024] [Indexed: 11/20/2024] Open
Abstract
Cysteine cathepsins are a family of lysosomal proteases that are often overexpressed in several human malignancies and haves been linked to cellular genomic alterations, disturbances in genomic stability, and the onset and spread of cancer. Recent studies have shown alterations in cysteine cathepsins in malignant ovarian tumors. However, it remains unclear whether there is a causal relationship between ovarian cancer, and its subtypes, and the cathepsin family. This study utilized two-sample Mendelian randomization (MR) analysis to examine this potential causal relationship. Genetic instruments derived from publicly available genetic summary data were used for the analyses. For MR analysis, the inverse-variance weighted method, weighted median method, and MR-Egger regression were employed. Multivariate MR analysis was performed concurrently. Univariate MR analysis indicated a strong correlation between decreased incidence of low-grade serous ovarian cancer and elevated levels of cathepsin L2 (odds ratio = 0.803, 95% confidence interval = 0.685-0.942, P = .007), whereas clear cell ovarian cancer showed a strong correlation with elevated levels of cathepsin H (odds ratio = 1.149, 95% confidence interval = 1.036-1.274, P = .008). Multivariate analysis, adjusted for 9 different cathepsins as covariates, confirmed the genetic relationships between cathepsin L2 and low-grade serous ovarian cancer and between cathepsin H and clear cell ovarian cancer. Our results suggest a causal relationship between cathepsins and ovarian malignancy and its subtypes. Cathepsin L2 has a protective effect on low-grade serous ovarian cancer, whereas cathepsin H is an adverse risk factor for clear cell ovarian cancer.
Collapse
Affiliation(s)
- Jiaqi Ying
- Gynaecology and Obstetrics, Women and Children’s Hospital of Zhoushan, Zhoushan, China
| | - Xia Chen
- Outpatient Department, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, China
| | - Tian Lv
- Department of Neurology, Zhuji Affiliated Hospital of Wenzhou Medical, University, Zhuji, China
| | - Fang Jie
- Gynaecology and Obstetrics, Women and Children’s Hospital of Shaoxing, Shaoxing, China
| | - Huanyong Tian
- Department of Radiotherapy, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, China
| |
Collapse
|
5
|
Surman M, Wilczak M, Jankowska U, Skupień-Rabian B, Przybyło M. Shotgun proteomics of thyroid carcinoma exosomes - Insight into the role of exosomal proteins in carcinogenesis and thyroid homeostasis. Biochim Biophys Acta Gen Subj 2024; 1868:130672. [PMID: 39025337 DOI: 10.1016/j.bbagen.2024.130672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Transport of molecules via exosomes is one of the factors involved in thyroid cancer development, and transported molecules may serve as cancer biomarkers. The aim of the study was to characterize protein content of thyroid-derived exosomes and their functional effect exerted on recipient cells. METHODS LC-MS/MS proteomics of exosomes released by FTC and 8305C thyroid carcinoma cell lines, and Nthy-ori 3-1 normal thyroid follicular cells was performed, followed by bioinformatic analysis and functional tests (wound healing and Alamar Blue assays). RESULTS Exosomes from Nthy-ori 3-1 cells had the highest number of 1504 proteins, while in exosomes from thyroid carcinoma FTC and 8305C cells 730 and 1304 proteins were identified, respectively. For proteins uniquely found in FTC- and 8305C-derived exosomes, enriched cancer-related gene ontology categories included cell adhesion, positive regulation of cell migration, N-glycosylation, drug resistance, and response to NK/T cell cytotoxicity. Furthermore, through label-free quantification (that identified differentially expressed proteins) and comparison with The Human Protein Atlas database several potential diagnostic and/or prognostic biomarkers were indicated. Finally, exosomes from FTC and 8305C cells displayed ability to stimulate migratory properties of recipient Nthy-ori 3-1 cells. Additionally, 8305C-derived exosomes increased recipient cell viability. CONCLUSIONS Multiple proteins identified in thyroid cancer-derived exosomes have a direct link to thyroid cancer progression. Also, in functional tests exosomes enhanced growth and dissemination of non-transformed thyroid cells. GENERAL SIGNIFICANCE The obtained results expands the knowledge concerning the role of exosomal proteins in thyroid cancer and indicate potential biomarkers for further evaluation in clinical settings.
Collapse
Affiliation(s)
- Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Magdalena Wilczak
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Krakow, Poland.
| | - Urszula Jankowska
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Bożena Skupień-Rabian
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland.
| |
Collapse
|
6
|
K N, P J, Nalla SV, Dubey I, Kushwaha S. Arsenic-Induced Thyroid Hormonal Alterations and Their Putative Influence on Ovarian Follicles in Balb/c Mice. Biol Trace Elem Res 2024; 202:4087-4100. [PMID: 38093019 DOI: 10.1007/s12011-023-03988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/28/2023] [Indexed: 07/18/2024]
Abstract
Thyroid issues are common among women in their reproductive years, and women with thyroid dysfunction often encounter challenges with fertility. Arsenic is known for its toxic effects on the thyroid and ovaries, investigated independently. However, there is no known study directly or indirectly addressing the association between arsenic, thyroid function, and ovarian reserve. This study aims to investigate the effect of arsenic on thyroid function and its possible implications on ovarian follicular reserve. Female Balb/c mice were given sodium arsenite (0.2 ppm, 2 ppm, and 20 ppm) via drinking water for 30 days. Findings showed that arsenic decreased thyroid hormone levels (fT3 and fT4) while increasing TSH levels, which might have led to elevated levels of FSH and LH. Furthermore, arsenic treatment not only decreased thyroid follicle sizes but also altered the ovarian follicular count. The finding demonstrates that arsenic significantly reduced the expression of LAMP1, a lysosomal marker protein. This reduction leads to increased lysosomal permeability in the thyroid, resulting in a significant release of cathepsin B. These changes led to hypothyroidism, which might indirectly affect the ovaries. Also, the elevated levels of growth differentiation factor-8 in arsenic-treated ovaries indicate impaired folliculogenesis and ovulation. Furthermore, arsenic significantly increased the expressions of pAkt and pFoxo3a, implying that arsenic accelerated the activation of the primordial follicular pools. In conclusion, arsenic disrupts lysosomal stabilization, potentially leading to a decline in circulating fT3 and fT4 levels. This disturbance could, in turn, affect the estrous cycle and may alter the pattern of follicular development.
Collapse
Affiliation(s)
- Nandheeswari K
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Jayapradha P
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Sree Vaishnavi Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Itishree Dubey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
7
|
Deng T, Lu X, Jia X, Du J, Wang L, Cao B, Yang M, Yin Y, Liu F. Cathepsins and cancer risk: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1428433. [PMID: 38883596 PMCID: PMC11176415 DOI: 10.3389/fendo.2024.1428433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Background Previous observational epidemiological studies reported an association between cathepsins and cancer, however, a causal relationship is uncertain. This study evaluated the causal relationship between cathepsins and cancer using Mendelian randomization (MR) analysis. Methods We used publicly available genome-wide association study (GWAS) data for bidirectional MR analysis. Inverse variance weighting (IVW) was used as the primary MR method of MR analysis. Results After correction for the False Discovery Rate (FDR), two cathepsins were found to be significantly associated with cancer risk: cathepsin H (CTSH) levels increased the risk of lung cancer (OR = 1.070, 95% CI = 1.027-1.114, P = 0.001, PFDR = 0.009), and CTSH levels decreased the risk of basal cell carcinoma (OR = 0.947, 95% CI = 0.919-0.975, P = 0.0002, P FDR = 0.002). In addition, there was no statistically significant effect of the 20 cancers on the nine cathepsins. Some unadjusted low P-value phenotypes are worth mentioning, including a positive correlation between cathepsin O (CTSO) and breast cancer (OR = 1.012, 95% CI = 1.001-1.025, P = 0.041), cathepsin S (CTSS) and pharyngeal cancer (OR = 1.017, 95% CI = 1.001-1.034, P = 0.043), and CTSS and endometrial cancer (OR = 1.055, 95% CI = 1.012-1.101, P = 0.012); and there was a negative correlation between cathepsin Z and ovarian cancer (CTSZ) (OR = 0.970, 95% CI = 0.949-0.991, P = 0.006), CTSS and prostate cancer (OR = 0.947, 95% CI = 0.902-0.944, P = 0.028), and cathepsin E (CTSE) and pancreatic cancer (OR = 0.963, 95% CI = 0.938-0.990, P = 0.006). Conclusion Our MR analyses showed a causal relationship between cathepsins and cancers and may help provide new insights for further mechanistic and clinical studies of cathepsin-mediated cancer.
Collapse
Affiliation(s)
- Tingting Deng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xixue Lu
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center (School of Biomedical Sciences), Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xuemin Jia
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center (School of Biomedical Sciences), Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jinxin Du
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center (School of Biomedical Sciences), Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Baorui Cao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meina Yang
- National Health Commission (NHC) Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Ying Yin
- Department of Acupuncture, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fanjie Liu
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center (School of Biomedical Sciences), Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
8
|
Coelho M, Capela J, Mendes VM, Pacheco J, Fernandes MS, Amendoeira I, Jones JG, Raposo L, Manadas B. Peptidomics Unveils Distinct Acetylation Patterns of Histone and Annexin A1 in Differentiated Thyroid Cancer. Int J Mol Sci 2023; 25:376. [PMID: 38203548 PMCID: PMC10778789 DOI: 10.3390/ijms25010376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Thyroid cancer is a common malignancy of the endocrine system. Nodules are routinely evaluated for malignancy risk by fine needle aspiration biopsy (FNAB), and in cases such as follicular lesions, differential diagnosis between benign and malignant nodules is highly uncertain. Therefore, the discovery of new biomarkers for this disease could be helpful in improving diagnostic accuracy. Thyroid nodule biopsies were subjected to a precipitation step with both the insoluble and supernatant fractions subjected to proteome and peptidome profiling. Proteomic analysis identified annexin A1 as a potential biomarker of thyroid cancer malignancy, with its levels increased in malignant samples. Also upregulated were the acetylated peptides of annexin A1, revealed by the peptidome analysis of the supernatant fraction. In addition, supernatant peptidomic analysis revealed a number of acetylated histone peptides that were significantly elevated in the malignant group, suggesting higher gene transcription activity in malignant tissue. Two of these peptides were found to be robust malignancy predictors, with an area under the receiver operating a characteristic curve (ROC AUC) above 0.95. Thus, this combination of proteomics and peptidomics analyses improved the detection of malignant lesions and also provided new evidence linking thyroid cancer development to heightened transcription activity. This study demonstrates the importance of peptidomic profiling in complementing traditional proteomics approaches.
Collapse
Affiliation(s)
- Margarida Coelho
- CNC—Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - João Capela
- Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Vera M. Mendes
- CNC—Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - João Pacheco
- Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | | | - Isabel Amendoeira
- Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- Ipatimup, Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-465 Porto, Portugal
| | - John G. Jones
- CNC—Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Luís Raposo
- Portuguese Society of Endocrinology, Diabetes and Metabolism, 1600-892 Lisbon, Portugal
- EPIUnit, Institute of Public Health, University of Porto, 4050-600 Porto, Portugal
| | - Bruno Manadas
- CNC—Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
9
|
Wang B, Shen W, Yan L, Li X, Zhang L, Zhao S, Jin X. Reveal the potential molecular mechanism of circRNA regulating immune-related mRNA through sponge miRNA in the occurrence and immune regulation of papillary thyroid cancer. Ann Med 2023; 55:2244515. [PMID: 37603701 PMCID: PMC10443982 DOI: 10.1080/07853890.2023.2244515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is the most common endocrine malignant tumour. The purpose of this study was to explore the potential molecular mechanism of circRNA regulating immune-related mRNA through sponge miRNA in the occurrence and immune regulation of PTC. METHODS All data were downloaded from public databases, such as GEO, Immport and TCGA. Differentially expressed (DE) mRNAs (DEmRNAs), DEmiRNAs and DEcircRNAs were identified using metaMA and limma packages. Subsequently, immune-related DEmRNAs were screened, and circRNA-miRNA-mRNA (ceRNA) regulatory network was constructed. In addition, functional annotation, protein-protein interaction (PPI) network construction, immune cell infiltration analysis and Pearson correlation analysis were performed. Finally, qRT-PCR validation and cell experiments were also performed. RESULTS In total, 2962 DEmRNAs, 78 DEmiRNAs and 51 DEcircRNAs were obtained. Subsequently, 195 immune-related DEmRNAs were obtained based on Immport database. Cytokine-cytokine receptor interaction was the only signalling pathway obtained in KEGG analysis. Then, 8 hub immune-related DEmRNAs were identified based on PPI network and CytoHubba plug-in. Subsequently, ceRNA sub-network containing hub immune-related DEmRNAs was extracted from ceRNA regulatory network. In ceRNA sub-network, hsa_circ_0082182-hsa-miR-18b-5p-FGF1/PDGFC, hsa_circ_0016404-hsa-miR-1275-FGF1/CTSB/IL13RA1, hsa_circ_0070100-hsa-miR-27a-3p/hsa-miR-27b-3p-TGFBR3, hsa_circ_0060055/hsa_circ_0038718-hsa-miR-150-3p-CXCL14, hsa_circ_0030427/hsa_circ_0002917-hsa-miR-22-3p-BMP7 and hsa_circ_0030427/hsa_circ_0002917-hsa-miR-125a-5p-LIFR axes were identified. Moreover, FGF1, PDGFC, CTSB, IL13RA1, TGFBR3, CXCL14, BMP7, LIFR, hsa-miR-125a-5p, hsa-miR-1275, hsa-miR-150-3p, hsa-miR-18b-5p and hsa-miR-27b-3p were also found to have good diagnostic accuracy and may be potential novel diagnostic markers for PTC. XCell analysis showed that the levels of immune cell infiltration (including Tregs, HSC, DC and Monocytes) were significantly different between the PTC and the control groups. Knockdown of the expression of hsa_circ_0082182 significantly inhibits the activity, proliferation, migration and invasion of TPC-1 cells. CONCLUSION Several circRNA-miRNA-mRNA axes identified in this study may be related to the occurrence, progression and survival of PTC. This lays a theoretical foundation for further understanding the molecular mechanism of PTC, and also contributes to clinical management and research.
Collapse
Affiliation(s)
- Bo Wang
- Surgical Department of Thyroid and Breast, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Wei Shen
- Surgical Department of Thyroid and Breast, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Li Yan
- Surgical Department of Thyroid and Breast, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Xiaoyu Li
- Surgical Department of Thyroid and Breast, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Linlei Zhang
- Surgical Department of Thyroid and Breast, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Suyuan Zhao
- Surgical Department of Thyroid and Breast, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Xiao Jin
- Surgical Department of Thyroid and Breast, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
10
|
Saljooghi S, Heidari Z, Saravani M, Rezaei M, Salimi S. Association of AXIN1 rs12921862 C/A and rs1805105 G/A and CTSB rs12898 G/A polymorphisms with papillary thyroid carcinoma: A case-control study. J Clin Lab Anal 2022; 37:e24804. [PMID: 36510340 PMCID: PMC9833985 DOI: 10.1002/jcla.24804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is the most common type of thyroid cancer which its precise etiology remains unknown. However, environmental and genetic factors contribute to the etiology of PTC. Axis inhibition protein 1 (Axin1) is a scaffold protein that exerts its role as a tumor suppressor. In addition, Cathepsin B (Ctsb) is a cysteine protease with higher expression in several types of tumors. Therefore, the aim of this study was to investigate the possible association of AXIN1 rs12921862 C/A and rs1805105 G/A and CTSB rs12898 G/A polymorphisms with PTC susceptibility. MATERIALS & METHODS In total, 156 PTC patients and 158 sex-, age-, and BMI-matched control subjects were enrolled in the study. AXIN1 rs12921862 C/A and rs1805105 G/A and CTSB rs12898 G/A polymorphisms were genotyped using the PCR-RFLP method. RESULTS There was a relationship between AXIN1 rs12921862 C/A polymorphism and an increased risk of PTC in all genetic models except the overdominant model. The AXIN1 rs1805105 G/A polymorphism was associated with an increased PTC risk only in codominant and overdominant models. The frequency of AXIN1 Ars12921862 Ars1805105 haplotype was higher in the PTC group and also this haplotype was associated with an increased risk of PTC. Moreover, the AXIN1 rs12921862 C/A polymorphism was not associated with PTC clinical and pathological findings, but AXIN1 rs1805105 G/A polymorphism was associated with almost three folds of larger tumor size (≥1 cm). There was no association between CTSB rs12898 G/A polymorphism and PTC and its findings. CONCLUSION The AXIN1 rs12921862 C/A and rs1805105 G/A polymorphisms were associated with PTC. AXIN1 rs1805105 G/A polymorphism was associated with higher tumor size.
Collapse
Affiliation(s)
- Shaghayegh Saljooghi
- Department of Clinical Biochemistry, School of MedicineZahedan University of Medical SciencesZahedanIran
| | - Zahra Heidari
- Department of Internal MedicineZahedan University of Medical SciencesZahedanIran
| | - Mohsen Saravani
- Department of Clinical Biochemistry, School of MedicineZahedan University of Medical SciencesZahedanIran,Cellular and Molecular Research CenterResistant Tuberculosis Institute, Zahedan University of Medical SciencesZahedanIran
| | - Mahnaz Rezaei
- Department of Clinical Biochemistry, School of MedicineZahedan University of Medical SciencesZahedanIran,Cellular and Molecular Research CenterResistant Tuberculosis Institute, Zahedan University of Medical SciencesZahedanIran
| | - Saeedeh Salimi
- Department of Clinical Biochemistry, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
11
|
Cappellacci F, Canu GL, Lai ML, Lori E, Biancu M, Boi F, Medas F. Association between hashimoto thyroiditis and differentiated thyroid cancer: A single-center experience. Front Oncol 2022; 12:959595. [PMID: 35965566 PMCID: PMC9366466 DOI: 10.3389/fonc.2022.959595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/30/2022] [Indexed: 12/29/2022] Open
Abstract
Hashimoto’s thyroiditis is the most common cause of hypothyroidism in the iodine-sufficient areas of the world. Differentiated thyroid cancer is the most common thyroid cancer subtype, accounting for more than 95% of cases, and it is considered a tumor with a good prognosis, although a certain number of patients experience a poor clinical outcome. Hashimoto’s thyroiditis has been found to coexist with differentiated thyroid cancer in surgical specimens, but the relationship between these two entities has not yet been clarified. Our study aims to analyze the relationship between these two diseases, highlighting the incidence of histological diagnosis of Hashimoto thyroiditis in differentiated thyroid cancer patients, and assess how this autoimmune disorder influences the risk of structural disease recurrence and recurrence rate.
Collapse
Affiliation(s)
- Federico Cappellacci
- Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
- *Correspondence: Federico Cappellacci,
| | - Gian Luigi Canu
- Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Letizia Lai
- Department of Cytomorphology, University of Cagliari, Cagliari, Italy
| | - Eleonora Lori
- Department of Surgical Science, Sapienza University of Rome, Rome, Italy
| | - Miriam Biancu
- Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Francesco Boi
- Endocrinology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Fabio Medas
- Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
12
|
Yang X, Yin H, Zhang D, Peng L, Li K, Cui F, Xia C, Li Z, Huang H. Bibliometric Analysis of Cathepsin B Research From 2011 to 2021. Front Med (Lausanne) 2022; 9:898455. [PMID: 35872750 PMCID: PMC9301081 DOI: 10.3389/fmed.2022.898455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsin B (CTSB) is a lysosomal protease implicated in the progression of various diseases. A large number of CTSB-related studies have been conducted to date. However, there is no comprehensive bibliometric analysis on this subject. In our study, we performed quantitative analysis of CTSB-related publications retrieved from the Science Citation Index Expanded (SCIE) of the Web of Science Core Collection (reference period: 2011–2021). A total of 3,062 original articles and reviews were retrieved. The largest number of publications were from USA (n = 847, 27.66%). The research output of each country showed positive correlation with gross domestic product (GDP) (r = 0.9745, P < 0.0001). Active collaborations between countries/regions were also observed. Reinheckel T and Sloane BF were perhaps the most impactful researchers in the research landscape of CTSB. Plos ONE was the most prevalent (119/3,062, 3.89%) and cited journal (3,021 citations). Comprehensive analysis of the top citations, co-citations, and keywords was performed to acquire the theoretical basis and hotspots of CTSB-related research. The main topics included CTSB-related cancers and inflammatory diseases, CTSB-associated cell death pattern, and the applications of CTSB. These results provide comprehensive insights into the current status of global CTSB-related research especially in pancreas, which is worthy of continued follow-up by practitioners and clinicians in this field.
Collapse
Affiliation(s)
- Xiaoli Yang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
| | - Hua Yin
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
| | - Deyu Zhang
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
| | - Lisi Peng
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
| | - Keliang Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Cui
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
| | - Chuanchao Xia
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
- *Correspondence: Zhaoshen Li
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
- Haojie Huang
| |
Collapse
|
13
|
Li C, Yuan Q, Xu G, Yang Q, Hou J, Zheng L, Wu G. A seven-autophagy-related gene signature for predicting the prognosis of differentiated thyroid carcinoma. World J Surg Oncol 2022; 20:129. [PMID: 35459137 PMCID: PMC9034603 DOI: 10.1186/s12957-022-02590-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/07/2022] [Indexed: 12/20/2022] Open
Abstract
Background Numerous studies have implicated autophagy in the pathogenesis of thyroid carcinoma. This investigation aimed to establish an autophagy-related gene model and nomogram that can help predict the overall survival (OS) of patients with differentiated thyroid carcinoma (DTHCA). Methods Clinical characteristics and RNA-seq expression data from TCGA (The Cancer Genome Atlas) were used in the study. We also downloaded autophagy-related genes (ARGs) from the Gene Set Enrichment Analysis website and the Human Autophagy Database. First, we assigned patients into training and testing groups. R software was applied to identify differentially expressed ARGs for further construction of a protein-protein interaction (PPI) network for gene functional analyses. A risk score-based prognostic risk model was subsequently developed using univariate Cox regression and LASSO-penalized Cox regression analyses. The model’s performance was verified using Kaplan-Meier (KM) survival analysis and ROC curve. Finally, a nomogram was constructed for clinical application in evaluating the patients with DTHCA. Finally, a 7-gene prognostic risk model was developed based on gene set enrichment analysis. Results Overall, we identified 54 differentially expressed ARGs in patients with DTHCA. A new gene risk model based on 7-ARGs (CDKN2A, FGF7, CTSB, HAP1, DAPK2, DNAJB1, and ITPR1) was developed in the training group and validated in the testing group. The predictive accuracy of the model was reflected by the area under the ROC curve (AUC) values. Univariate and multivariate Cox regression analysis indicated that the model could independently predict the prognosis of patients with THCA. The constrained nomogram derived from the risk score and age also showed high prediction accuracy. Conclusions Here, we developed a 7-ARG prognostic risk model and nomogram for differentiated thyroid carcinoma patients that can guide clinical decisions and individualized therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02590-6.
Collapse
Affiliation(s)
- Chengxin Li
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qianqian Yuan
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Gaoran Xu
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qian Yang
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinxuan Hou
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lewei Zheng
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Gaosong Wu
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
14
|
Ma K, Chen X, Liu W, Chen S, Yang C, Yang J. CTSB is a negative prognostic biomarker and therapeutic target associated with immune cells infiltration and immunosuppression in gliomas. Sci Rep 2022; 12:4295. [PMID: 35277559 PMCID: PMC8917123 DOI: 10.1038/s41598-022-08346-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/07/2022] [Indexed: 12/29/2022] Open
Abstract
Previous researches have demonstrated the meaning of CTSB for the progress of several tumors, whereas few clues about its immunological characteristic in gliomas. Here we systematically explored its biologic features and clinical significance for gliomas. 699 glioma cases of TCGA and 325 glioma cases of CGGA were respectively included as training and validating cohorts. R software was used for data analysis and mapping. We found that CTSB was remarkably highly-expressed for HGG, IDH wild type, 1p19q non-codeletion type, MGMT promoter unmethylation type and mesenchymal gliomas. CTSB could specifically and sensitively indicate mesenchymal glioma. Upregulated CTSB was an independent hazard correlated with poor survival. CTSB-related biological processes in gliomas chiefly concentrated on immunoreaction and inflammation response. Then we proved that CTSB positively related to most inflammatory metagenes except IgG, including HCK, LCK, MHC II, STAT1 and IFN. More importantly, the levels of glioma-infiltrating immune cells were positively associated with the expression of CTSB, especially for TAMs, MDSCs and Tregs. In conclusion, CTSB is closely related to the malignant pathological subtypes, worse prognosis, immune cells infiltration and immunosuppression of gliomas, which make it a promising biomarker and potential target in the diagnosis, treatment and prognostic assessment of gliomas.
Collapse
Affiliation(s)
- Kaiming Ma
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Weihai Liu
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Suhua Chen
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China. .,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China.
| |
Collapse
|
15
|
Huang Y, Li S, Huang S, Tu J, Chen X, Xiao L, Liu B, Yuan X. Comprehensive and Integrative Analysis of Two Novel SARS-CoV-2 Entry Associated Proteases CTSB and CTSL in Healthy Individuals and Cancer Patients. Front Bioeng Biotechnol 2022; 10:780751. [PMID: 35155389 PMCID: PMC8826559 DOI: 10.3389/fbioe.2022.780751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
More than 200 million people have been infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and 4 million deaths have been reported worldwide to date. Cathepsin B/cathepsin L (CTSB/L) are SARS-CoV-2 entry–associated proteases and facilitate SARS-CoV-2 to infect host cells. However, the expressions of CTSB/L in healthy individuals and cancer patients remain not fully elucidated yet. Here, we comprehensively profiled the expressions and distributions of CTSB/L in human normal tissues, cancer tissues, and cell lines. Moreover, we compared CTSB/L expressions between various cancers and matched normal tissues, and investigated their genetic alteration and prognostic values in pan-cancer. Finally, we also explored the correlation between CTSB/L expressions and immune infiltration. We found that CTSB was highly expressed in most tissues, and CTSL was highly expressed predominantly in the digestive, urinary, and respiratory systems, such as the lungs, liver and gallbladder, and kidney tissues in the translational level. Moreover, cancer patients may be more susceptible to SARS-CoV-2 infection. Our data suggested that CTSB/L are overexpressed in aerodigestive and genitourinary cancers when compared with that in matched normal tissues, and their expressions were closely related to the prognosis of some cancer types. Interestingly, CTSB/L expressions were significantly correlated with immune cell infiltration in manifold cancer tissues and their corresponding normal tissues. In conclusion, our study shows a comprehensive bioinformatic analysis of two important SARS-CoV-2 entry–related proteases, which could provide a potential indication on prevention of SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bo Liu
- *Correspondence: Xianglin Yuan, ; Bo Liu,
| | | |
Collapse
|
16
|
Piperigkou Z, Kyriakopoulou K, Koutsakis C, Mastronikolis S, Karamanos NK. Key Matrix Remodeling Enzymes: Functions and Targeting in Cancer. Cancers (Basel) 2021; 13:1441. [PMID: 33809973 PMCID: PMC8005147 DOI: 10.3390/cancers13061441] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue functionality and integrity demand continuous changes in distribution of major components in the extracellular matrices (ECMs) under normal conditions aiming tissue homeostasis. Major matrix degrading proteolytic enzymes are matrix metalloproteinases (MMPs), plasminogen activators, atypical proteases such as intracellular cathepsins and glycolytic enzymes including heparanase and hyaluronidases. Matrix proteases evoke epithelial-to-mesenchymal transition (EMT) and regulate ECM turnover under normal procedures as well as cancer cell phenotype, motility, invasion, autophagy, angiogenesis and exosome formation through vital signaling cascades. ECM remodeling is also achieved by glycolytic enzymes that are essential for cancer cell survival, proliferation and tumor progression. In this article, the types of major matrix remodeling enzymes, their effects in cancer initiation, propagation and progression as well as their pharmacological targeting and ongoing clinical trials are presented and critically discussed.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| | - Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | | | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| |
Collapse
|